Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- final-model.pt +3 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697017911.de2e83fddbee.1120.9 +3 -0
- test.tsv +0 -0
- training.log +263 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c83c60a6f5035292bf4c643d5ed9b5c385eba41b9a204e49fe9f007af3a5488
|
3 |
+
size 870817519
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e7525195d9e84eba736efbc5e0508f0f9fe99a054f15204a8cb5e3cac5ab481
|
3 |
+
size 870817636
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 10:00:49 0.0002 1.2953 0.2372 0.5104 0.5320 0.5210 0.3760
|
3 |
+
2 10:09:58 0.0001 0.1596 0.0998 0.7320 0.7878 0.7588 0.6356
|
4 |
+
3 10:19:08 0.0001 0.0709 0.1063 0.7819 0.8000 0.7909 0.6712
|
5 |
+
4 10:28:16 0.0001 0.0491 0.1310 0.7868 0.8082 0.7973 0.6765
|
6 |
+
5 10:37:25 0.0001 0.0360 0.1431 0.7900 0.8190 0.8043 0.6864
|
7 |
+
6 10:46:11 0.0001 0.0270 0.1740 0.7978 0.8000 0.7989 0.6806
|
8 |
+
7 10:55:04 0.0001 0.0211 0.1712 0.7819 0.8095 0.7955 0.6800
|
9 |
+
8 11:04:09 0.0000 0.0166 0.1897 0.7886 0.8122 0.8003 0.6838
|
10 |
+
9 11:13:13 0.0000 0.0131 0.1976 0.7824 0.8122 0.7971 0.6792
|
11 |
+
10 11:21:46 0.0000 0.0101 0.2045 0.7808 0.8095 0.7949 0.6761
|
runs/events.out.tfevents.1697017911.de2e83fddbee.1120.9
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c6a3ac55bdfb9cd314839ad8be537fce545147891b211e540721c988e2d7f16
|
3 |
+
size 502461
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-11 09:51:51,454 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-11 09:51:51,456 Model: "SequenceTagger(
|
3 |
+
(embeddings): ByT5Embeddings(
|
4 |
+
(model): T5EncoderModel(
|
5 |
+
(shared): Embedding(384, 1472)
|
6 |
+
(encoder): T5Stack(
|
7 |
+
(embed_tokens): Embedding(384, 1472)
|
8 |
+
(block): ModuleList(
|
9 |
+
(0): T5Block(
|
10 |
+
(layer): ModuleList(
|
11 |
+
(0): T5LayerSelfAttention(
|
12 |
+
(SelfAttention): T5Attention(
|
13 |
+
(q): Linear(in_features=1472, out_features=384, bias=False)
|
14 |
+
(k): Linear(in_features=1472, out_features=384, bias=False)
|
15 |
+
(v): Linear(in_features=1472, out_features=384, bias=False)
|
16 |
+
(o): Linear(in_features=384, out_features=1472, bias=False)
|
17 |
+
(relative_attention_bias): Embedding(32, 6)
|
18 |
+
)
|
19 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(1): T5LayerFF(
|
23 |
+
(DenseReluDense): T5DenseGatedActDense(
|
24 |
+
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
|
25 |
+
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
|
26 |
+
(wo): Linear(in_features=3584, out_features=1472, bias=False)
|
27 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
28 |
+
(act): NewGELUActivation()
|
29 |
+
)
|
30 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
31 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
32 |
+
)
|
33 |
+
)
|
34 |
+
)
|
35 |
+
(1-11): 11 x T5Block(
|
36 |
+
(layer): ModuleList(
|
37 |
+
(0): T5LayerSelfAttention(
|
38 |
+
(SelfAttention): T5Attention(
|
39 |
+
(q): Linear(in_features=1472, out_features=384, bias=False)
|
40 |
+
(k): Linear(in_features=1472, out_features=384, bias=False)
|
41 |
+
(v): Linear(in_features=1472, out_features=384, bias=False)
|
42 |
+
(o): Linear(in_features=384, out_features=1472, bias=False)
|
43 |
+
)
|
44 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
45 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
46 |
+
)
|
47 |
+
(1): T5LayerFF(
|
48 |
+
(DenseReluDense): T5DenseGatedActDense(
|
49 |
+
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
|
50 |
+
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
|
51 |
+
(wo): Linear(in_features=3584, out_features=1472, bias=False)
|
52 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
53 |
+
(act): NewGELUActivation()
|
54 |
+
)
|
55 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
56 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
57 |
+
)
|
58 |
+
)
|
59 |
+
)
|
60 |
+
)
|
61 |
+
(final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
62 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
63 |
+
)
|
64 |
+
)
|
65 |
+
)
|
66 |
+
(locked_dropout): LockedDropout(p=0.5)
|
67 |
+
(linear): Linear(in_features=1472, out_features=17, bias=True)
|
68 |
+
(loss_function): CrossEntropyLoss()
|
69 |
+
)"
|
70 |
+
2023-10-11 09:51:51,456 ----------------------------------------------------------------------------------------------------
|
71 |
+
2023-10-11 09:51:51,457 MultiCorpus: 7142 train + 698 dev + 2570 test sentences
|
72 |
+
- NER_HIPE_2022 Corpus: 7142 train + 698 dev + 2570 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fr/with_doc_seperator
|
73 |
+
2023-10-11 09:51:51,457 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-11 09:51:51,457 Train: 7142 sentences
|
75 |
+
2023-10-11 09:51:51,457 (train_with_dev=False, train_with_test=False)
|
76 |
+
2023-10-11 09:51:51,457 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-11 09:51:51,457 Training Params:
|
78 |
+
2023-10-11 09:51:51,457 - learning_rate: "0.00016"
|
79 |
+
2023-10-11 09:51:51,457 - mini_batch_size: "8"
|
80 |
+
2023-10-11 09:51:51,457 - max_epochs: "10"
|
81 |
+
2023-10-11 09:51:51,457 - shuffle: "True"
|
82 |
+
2023-10-11 09:51:51,457 ----------------------------------------------------------------------------------------------------
|
83 |
+
2023-10-11 09:51:51,457 Plugins:
|
84 |
+
2023-10-11 09:51:51,458 - TensorboardLogger
|
85 |
+
2023-10-11 09:51:51,458 - LinearScheduler | warmup_fraction: '0.1'
|
86 |
+
2023-10-11 09:51:51,458 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-11 09:51:51,458 Final evaluation on model from best epoch (best-model.pt)
|
88 |
+
2023-10-11 09:51:51,458 - metric: "('micro avg', 'f1-score')"
|
89 |
+
2023-10-11 09:51:51,458 ----------------------------------------------------------------------------------------------------
|
90 |
+
2023-10-11 09:51:51,458 Computation:
|
91 |
+
2023-10-11 09:51:51,458 - compute on device: cuda:0
|
92 |
+
2023-10-11 09:51:51,458 - embedding storage: none
|
93 |
+
2023-10-11 09:51:51,458 ----------------------------------------------------------------------------------------------------
|
94 |
+
2023-10-11 09:51:51,458 Model training base path: "hmbench-newseye/fr-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-3"
|
95 |
+
2023-10-11 09:51:51,458 ----------------------------------------------------------------------------------------------------
|
96 |
+
2023-10-11 09:51:51,458 ----------------------------------------------------------------------------------------------------
|
97 |
+
2023-10-11 09:51:51,459 Logging anything other than scalars to TensorBoard is currently not supported.
|
98 |
+
2023-10-11 09:52:43,650 epoch 1 - iter 89/893 - loss 2.81958198 - time (sec): 52.19 - samples/sec: 515.94 - lr: 0.000016 - momentum: 0.000000
|
99 |
+
2023-10-11 09:53:33,684 epoch 1 - iter 178/893 - loss 2.73966772 - time (sec): 102.22 - samples/sec: 495.89 - lr: 0.000032 - momentum: 0.000000
|
100 |
+
2023-10-11 09:54:24,264 epoch 1 - iter 267/893 - loss 2.54471735 - time (sec): 152.80 - samples/sec: 487.65 - lr: 0.000048 - momentum: 0.000000
|
101 |
+
2023-10-11 09:55:14,301 epoch 1 - iter 356/893 - loss 2.32649706 - time (sec): 202.84 - samples/sec: 486.76 - lr: 0.000064 - momentum: 0.000000
|
102 |
+
2023-10-11 09:56:05,159 epoch 1 - iter 445/893 - loss 2.08476844 - time (sec): 253.70 - samples/sec: 492.21 - lr: 0.000080 - momentum: 0.000000
|
103 |
+
2023-10-11 09:56:55,867 epoch 1 - iter 534/893 - loss 1.86965509 - time (sec): 304.41 - samples/sec: 488.69 - lr: 0.000095 - momentum: 0.000000
|
104 |
+
2023-10-11 09:57:49,598 epoch 1 - iter 623/893 - loss 1.68007860 - time (sec): 358.14 - samples/sec: 486.88 - lr: 0.000111 - momentum: 0.000000
|
105 |
+
2023-10-11 09:58:44,484 epoch 1 - iter 712/893 - loss 1.52983259 - time (sec): 413.02 - samples/sec: 481.46 - lr: 0.000127 - momentum: 0.000000
|
106 |
+
2023-10-11 09:59:39,435 epoch 1 - iter 801/893 - loss 1.39878794 - time (sec): 467.97 - samples/sec: 478.76 - lr: 0.000143 - momentum: 0.000000
|
107 |
+
2023-10-11 10:00:28,196 epoch 1 - iter 890/893 - loss 1.29860971 - time (sec): 516.74 - samples/sec: 479.81 - lr: 0.000159 - momentum: 0.000000
|
108 |
+
2023-10-11 10:00:29,735 ----------------------------------------------------------------------------------------------------
|
109 |
+
2023-10-11 10:00:29,736 EPOCH 1 done: loss 1.2953 - lr: 0.000159
|
110 |
+
2023-10-11 10:00:49,291 DEV : loss 0.23720598220825195 - f1-score (micro avg) 0.521
|
111 |
+
2023-10-11 10:00:49,321 saving best model
|
112 |
+
2023-10-11 10:00:50,224 ----------------------------------------------------------------------------------------------------
|
113 |
+
2023-10-11 10:01:41,521 epoch 2 - iter 89/893 - loss 0.24156291 - time (sec): 51.29 - samples/sec: 511.50 - lr: 0.000158 - momentum: 0.000000
|
114 |
+
2023-10-11 10:02:32,514 epoch 2 - iter 178/893 - loss 0.23973758 - time (sec): 102.29 - samples/sec: 503.29 - lr: 0.000156 - momentum: 0.000000
|
115 |
+
2023-10-11 10:03:23,339 epoch 2 - iter 267/893 - loss 0.22533212 - time (sec): 153.11 - samples/sec: 492.16 - lr: 0.000155 - momentum: 0.000000
|
116 |
+
2023-10-11 10:04:15,696 epoch 2 - iter 356/893 - loss 0.20433271 - time (sec): 205.47 - samples/sec: 490.36 - lr: 0.000153 - momentum: 0.000000
|
117 |
+
2023-10-11 10:05:06,103 epoch 2 - iter 445/893 - loss 0.19447693 - time (sec): 255.88 - samples/sec: 486.27 - lr: 0.000151 - momentum: 0.000000
|
118 |
+
2023-10-11 10:06:00,826 epoch 2 - iter 534/893 - loss 0.18500783 - time (sec): 310.60 - samples/sec: 483.67 - lr: 0.000149 - momentum: 0.000000
|
119 |
+
2023-10-11 10:06:55,207 epoch 2 - iter 623/893 - loss 0.17866349 - time (sec): 364.98 - samples/sec: 478.57 - lr: 0.000148 - momentum: 0.000000
|
120 |
+
2023-10-11 10:07:46,050 epoch 2 - iter 712/893 - loss 0.17165749 - time (sec): 415.82 - samples/sec: 476.07 - lr: 0.000146 - momentum: 0.000000
|
121 |
+
2023-10-11 10:08:40,495 epoch 2 - iter 801/893 - loss 0.16565209 - time (sec): 470.27 - samples/sec: 473.21 - lr: 0.000144 - momentum: 0.000000
|
122 |
+
2023-10-11 10:09:35,309 epoch 2 - iter 890/893 - loss 0.15984826 - time (sec): 525.08 - samples/sec: 472.17 - lr: 0.000142 - momentum: 0.000000
|
123 |
+
2023-10-11 10:09:36,886 ----------------------------------------------------------------------------------------------------
|
124 |
+
2023-10-11 10:09:36,887 EPOCH 2 done: loss 0.1596 - lr: 0.000142
|
125 |
+
2023-10-11 10:09:58,231 DEV : loss 0.09981917589902878 - f1-score (micro avg) 0.7588
|
126 |
+
2023-10-11 10:09:58,264 saving best model
|
127 |
+
2023-10-11 10:10:00,886 ----------------------------------------------------------------------------------------------------
|
128 |
+
2023-10-11 10:10:52,118 epoch 3 - iter 89/893 - loss 0.06769040 - time (sec): 51.23 - samples/sec: 465.50 - lr: 0.000140 - momentum: 0.000000
|
129 |
+
2023-10-11 10:11:42,503 epoch 3 - iter 178/893 - loss 0.06730058 - time (sec): 101.61 - samples/sec: 481.27 - lr: 0.000139 - momentum: 0.000000
|
130 |
+
2023-10-11 10:12:32,365 epoch 3 - iter 267/893 - loss 0.06608996 - time (sec): 151.47 - samples/sec: 483.16 - lr: 0.000137 - momentum: 0.000000
|
131 |
+
2023-10-11 10:13:22,493 epoch 3 - iter 356/893 - loss 0.06822392 - time (sec): 201.60 - samples/sec: 487.02 - lr: 0.000135 - momentum: 0.000000
|
132 |
+
2023-10-11 10:14:13,138 epoch 3 - iter 445/893 - loss 0.07122185 - time (sec): 252.25 - samples/sec: 487.15 - lr: 0.000133 - momentum: 0.000000
|
133 |
+
2023-10-11 10:15:03,603 epoch 3 - iter 534/893 - loss 0.07293485 - time (sec): 302.71 - samples/sec: 487.29 - lr: 0.000132 - momentum: 0.000000
|
134 |
+
2023-10-11 10:15:59,820 epoch 3 - iter 623/893 - loss 0.07412771 - time (sec): 358.93 - samples/sec: 485.22 - lr: 0.000130 - momentum: 0.000000
|
135 |
+
2023-10-11 10:16:54,820 epoch 3 - iter 712/893 - loss 0.07275147 - time (sec): 413.93 - samples/sec: 478.54 - lr: 0.000128 - momentum: 0.000000
|
136 |
+
2023-10-11 10:17:50,647 epoch 3 - iter 801/893 - loss 0.07101037 - time (sec): 469.76 - samples/sec: 475.21 - lr: 0.000126 - momentum: 0.000000
|
137 |
+
2023-10-11 10:18:45,676 epoch 3 - iter 890/893 - loss 0.07076952 - time (sec): 524.78 - samples/sec: 472.85 - lr: 0.000125 - momentum: 0.000000
|
138 |
+
2023-10-11 10:18:47,139 ----------------------------------------------------------------------------------------------------
|
139 |
+
2023-10-11 10:18:47,140 EPOCH 3 done: loss 0.0709 - lr: 0.000125
|
140 |
+
2023-10-11 10:19:08,915 DEV : loss 0.10631939768791199 - f1-score (micro avg) 0.7909
|
141 |
+
2023-10-11 10:19:08,960 saving best model
|
142 |
+
2023-10-11 10:19:11,681 ----------------------------------------------------------------------------------------------------
|
143 |
+
2023-10-11 10:20:04,148 epoch 4 - iter 89/893 - loss 0.04488972 - time (sec): 52.46 - samples/sec: 457.96 - lr: 0.000123 - momentum: 0.000000
|
144 |
+
2023-10-11 10:20:59,199 epoch 4 - iter 178/893 - loss 0.04859362 - time (sec): 107.51 - samples/sec: 455.92 - lr: 0.000121 - momentum: 0.000000
|
145 |
+
2023-10-11 10:21:55,697 epoch 4 - iter 267/893 - loss 0.04714332 - time (sec): 164.01 - samples/sec: 461.00 - lr: 0.000119 - momentum: 0.000000
|
146 |
+
2023-10-11 10:22:50,160 epoch 4 - iter 356/893 - loss 0.04851860 - time (sec): 218.47 - samples/sec: 458.60 - lr: 0.000117 - momentum: 0.000000
|
147 |
+
2023-10-11 10:23:41,893 epoch 4 - iter 445/893 - loss 0.04963523 - time (sec): 270.21 - samples/sec: 465.48 - lr: 0.000116 - momentum: 0.000000
|
148 |
+
2023-10-11 10:24:30,632 epoch 4 - iter 534/893 - loss 0.05027391 - time (sec): 318.95 - samples/sec: 466.00 - lr: 0.000114 - momentum: 0.000000
|
149 |
+
2023-10-11 10:25:19,741 epoch 4 - iter 623/893 - loss 0.05064819 - time (sec): 368.06 - samples/sec: 472.03 - lr: 0.000112 - momentum: 0.000000
|
150 |
+
2023-10-11 10:26:11,200 epoch 4 - iter 712/893 - loss 0.05119551 - time (sec): 419.51 - samples/sec: 471.86 - lr: 0.000110 - momentum: 0.000000
|
151 |
+
2023-10-11 10:27:01,611 epoch 4 - iter 801/893 - loss 0.05054556 - time (sec): 469.93 - samples/sec: 474.73 - lr: 0.000109 - momentum: 0.000000
|
152 |
+
2023-10-11 10:27:52,358 epoch 4 - iter 890/893 - loss 0.04922809 - time (sec): 520.67 - samples/sec: 476.32 - lr: 0.000107 - momentum: 0.000000
|
153 |
+
2023-10-11 10:27:53,878 ----------------------------------------------------------------------------------------------------
|
154 |
+
2023-10-11 10:27:53,879 EPOCH 4 done: loss 0.0491 - lr: 0.000107
|
155 |
+
2023-10-11 10:28:16,061 DEV : loss 0.13096819818019867 - f1-score (micro avg) 0.7973
|
156 |
+
2023-10-11 10:28:16,097 saving best model
|
157 |
+
2023-10-11 10:28:18,714 ----------------------------------------------------------------------------------------------------
|
158 |
+
2023-10-11 10:29:14,514 epoch 5 - iter 89/893 - loss 0.03067518 - time (sec): 55.79 - samples/sec: 450.15 - lr: 0.000105 - momentum: 0.000000
|
159 |
+
2023-10-11 10:30:10,324 epoch 5 - iter 178/893 - loss 0.03624382 - time (sec): 111.61 - samples/sec: 453.36 - lr: 0.000103 - momentum: 0.000000
|
160 |
+
2023-10-11 10:31:01,711 epoch 5 - iter 267/893 - loss 0.03352199 - time (sec): 162.99 - samples/sec: 464.01 - lr: 0.000101 - momentum: 0.000000
|
161 |
+
2023-10-11 10:31:50,487 epoch 5 - iter 356/893 - loss 0.03375946 - time (sec): 211.77 - samples/sec: 470.97 - lr: 0.000100 - momentum: 0.000000
|
162 |
+
2023-10-11 10:32:40,342 epoch 5 - iter 445/893 - loss 0.03395690 - time (sec): 261.62 - samples/sec: 472.45 - lr: 0.000098 - momentum: 0.000000
|
163 |
+
2023-10-11 10:33:31,750 epoch 5 - iter 534/893 - loss 0.03542389 - time (sec): 313.03 - samples/sec: 471.58 - lr: 0.000096 - momentum: 0.000000
|
164 |
+
2023-10-11 10:34:28,397 epoch 5 - iter 623/893 - loss 0.03472368 - time (sec): 369.68 - samples/sec: 467.82 - lr: 0.000094 - momentum: 0.000000
|
165 |
+
2023-10-11 10:35:18,765 epoch 5 - iter 712/893 - loss 0.03520394 - time (sec): 420.05 - samples/sec: 469.87 - lr: 0.000093 - momentum: 0.000000
|
166 |
+
2023-10-11 10:36:13,262 epoch 5 - iter 801/893 - loss 0.03464309 - time (sec): 474.54 - samples/sec: 468.46 - lr: 0.000091 - momentum: 0.000000
|
167 |
+
2023-10-11 10:37:02,901 epoch 5 - iter 890/893 - loss 0.03596866 - time (sec): 524.18 - samples/sec: 473.24 - lr: 0.000089 - momentum: 0.000000
|
168 |
+
2023-10-11 10:37:04,415 ----------------------------------------------------------------------------------------------------
|
169 |
+
2023-10-11 10:37:04,415 EPOCH 5 done: loss 0.0360 - lr: 0.000089
|
170 |
+
2023-10-11 10:37:25,634 DEV : loss 0.14307744801044464 - f1-score (micro avg) 0.8043
|
171 |
+
2023-10-11 10:37:25,663 saving best model
|
172 |
+
2023-10-11 10:37:28,263 ----------------------------------------------------------------------------------------------------
|
173 |
+
2023-10-11 10:38:18,809 epoch 6 - iter 89/893 - loss 0.03174465 - time (sec): 50.54 - samples/sec: 514.67 - lr: 0.000087 - momentum: 0.000000
|
174 |
+
2023-10-11 10:39:07,991 epoch 6 - iter 178/893 - loss 0.02928006 - time (sec): 99.72 - samples/sec: 497.76 - lr: 0.000085 - momentum: 0.000000
|
175 |
+
2023-10-11 10:39:57,896 epoch 6 - iter 267/893 - loss 0.02968319 - time (sec): 149.63 - samples/sec: 492.29 - lr: 0.000084 - momentum: 0.000000
|
176 |
+
2023-10-11 10:40:49,294 epoch 6 - iter 356/893 - loss 0.02835877 - time (sec): 201.03 - samples/sec: 493.58 - lr: 0.000082 - momentum: 0.000000
|
177 |
+
2023-10-11 10:41:40,128 epoch 6 - iter 445/893 - loss 0.02693656 - time (sec): 251.86 - samples/sec: 491.28 - lr: 0.000080 - momentum: 0.000000
|
178 |
+
2023-10-11 10:42:30,558 epoch 6 - iter 534/893 - loss 0.02653119 - time (sec): 302.29 - samples/sec: 486.48 - lr: 0.000078 - momentum: 0.000000
|
179 |
+
2023-10-11 10:43:21,338 epoch 6 - iter 623/893 - loss 0.02667286 - time (sec): 353.07 - samples/sec: 486.64 - lr: 0.000077 - momentum: 0.000000
|
180 |
+
2023-10-11 10:44:12,346 epoch 6 - iter 712/893 - loss 0.02748104 - time (sec): 404.08 - samples/sec: 490.38 - lr: 0.000075 - momentum: 0.000000
|
181 |
+
2023-10-11 10:45:00,449 epoch 6 - iter 801/893 - loss 0.02718055 - time (sec): 452.18 - samples/sec: 493.59 - lr: 0.000073 - momentum: 0.000000
|
182 |
+
2023-10-11 10:45:49,594 epoch 6 - iter 890/893 - loss 0.02706511 - time (sec): 501.33 - samples/sec: 494.82 - lr: 0.000071 - momentum: 0.000000
|
183 |
+
2023-10-11 10:45:51,093 ----------------------------------------------------------------------------------------------------
|
184 |
+
2023-10-11 10:45:51,093 EPOCH 6 done: loss 0.0270 - lr: 0.000071
|
185 |
+
2023-10-11 10:46:11,841 DEV : loss 0.1740272492170334 - f1-score (micro avg) 0.7989
|
186 |
+
2023-10-11 10:46:11,871 ----------------------------------------------------------------------------------------------------
|
187 |
+
2023-10-11 10:46:59,408 epoch 7 - iter 89/893 - loss 0.02529529 - time (sec): 47.53 - samples/sec: 515.71 - lr: 0.000069 - momentum: 0.000000
|
188 |
+
2023-10-11 10:47:48,889 epoch 7 - iter 178/893 - loss 0.02618348 - time (sec): 97.02 - samples/sec: 492.54 - lr: 0.000068 - momentum: 0.000000
|
189 |
+
2023-10-11 10:48:38,830 epoch 7 - iter 267/893 - loss 0.02283278 - time (sec): 146.96 - samples/sec: 497.17 - lr: 0.000066 - momentum: 0.000000
|
190 |
+
2023-10-11 10:49:27,859 epoch 7 - iter 356/893 - loss 0.02247875 - time (sec): 195.99 - samples/sec: 495.73 - lr: 0.000064 - momentum: 0.000000
|
191 |
+
2023-10-11 10:50:20,268 epoch 7 - iter 445/893 - loss 0.02349580 - time (sec): 248.39 - samples/sec: 492.55 - lr: 0.000062 - momentum: 0.000000
|
192 |
+
2023-10-11 10:51:11,607 epoch 7 - iter 534/893 - loss 0.02280138 - time (sec): 299.73 - samples/sec: 493.64 - lr: 0.000061 - momentum: 0.000000
|
193 |
+
2023-10-11 10:52:02,733 epoch 7 - iter 623/893 - loss 0.02188778 - time (sec): 350.86 - samples/sec: 493.14 - lr: 0.000059 - momentum: 0.000000
|
194 |
+
2023-10-11 10:52:55,211 epoch 7 - iter 712/893 - loss 0.02139551 - time (sec): 403.34 - samples/sec: 491.20 - lr: 0.000057 - momentum: 0.000000
|
195 |
+
2023-10-11 10:53:47,078 epoch 7 - iter 801/893 - loss 0.02130839 - time (sec): 455.20 - samples/sec: 490.46 - lr: 0.000055 - momentum: 0.000000
|
196 |
+
2023-10-11 10:54:40,102 epoch 7 - iter 890/893 - loss 0.02103175 - time (sec): 508.23 - samples/sec: 488.30 - lr: 0.000053 - momentum: 0.000000
|
197 |
+
2023-10-11 10:54:41,689 ----------------------------------------------------------------------------------------------------
|
198 |
+
2023-10-11 10:54:41,689 EPOCH 7 done: loss 0.0211 - lr: 0.000053
|
199 |
+
2023-10-11 10:55:04,149 DEV : loss 0.17123691737651825 - f1-score (micro avg) 0.7955
|
200 |
+
2023-10-11 10:55:04,179 ----------------------------------------------------------------------------------------------------
|
201 |
+
2023-10-11 10:55:54,180 epoch 8 - iter 89/893 - loss 0.01527667 - time (sec): 50.00 - samples/sec: 493.94 - lr: 0.000052 - momentum: 0.000000
|
202 |
+
2023-10-11 10:56:44,974 epoch 8 - iter 178/893 - loss 0.01586546 - time (sec): 100.79 - samples/sec: 490.48 - lr: 0.000050 - momentum: 0.000000
|
203 |
+
2023-10-11 10:57:38,893 epoch 8 - iter 267/893 - loss 0.01414335 - time (sec): 154.71 - samples/sec: 470.32 - lr: 0.000048 - momentum: 0.000000
|
204 |
+
2023-10-11 10:58:32,085 epoch 8 - iter 356/893 - loss 0.01357556 - time (sec): 207.90 - samples/sec: 462.77 - lr: 0.000046 - momentum: 0.000000
|
205 |
+
2023-10-11 10:59:27,665 epoch 8 - iter 445/893 - loss 0.01506294 - time (sec): 263.48 - samples/sec: 455.96 - lr: 0.000045 - momentum: 0.000000
|
206 |
+
2023-10-11 11:00:20,764 epoch 8 - iter 534/893 - loss 0.01614469 - time (sec): 316.58 - samples/sec: 462.89 - lr: 0.000043 - momentum: 0.000000
|
207 |
+
2023-10-11 11:01:12,150 epoch 8 - iter 623/893 - loss 0.01576585 - time (sec): 367.97 - samples/sec: 468.57 - lr: 0.000041 - momentum: 0.000000
|
208 |
+
2023-10-11 11:02:04,707 epoch 8 - iter 712/893 - loss 0.01631603 - time (sec): 420.53 - samples/sec: 473.12 - lr: 0.000039 - momentum: 0.000000
|
209 |
+
2023-10-11 11:02:56,711 epoch 8 - iter 801/893 - loss 0.01698976 - time (sec): 472.53 - samples/sec: 474.98 - lr: 0.000037 - momentum: 0.000000
|
210 |
+
2023-10-11 11:03:46,712 epoch 8 - iter 890/893 - loss 0.01660442 - time (sec): 522.53 - samples/sec: 474.80 - lr: 0.000036 - momentum: 0.000000
|
211 |
+
2023-10-11 11:03:48,175 ----------------------------------------------------------------------------------------------------
|
212 |
+
2023-10-11 11:03:48,176 EPOCH 8 done: loss 0.0166 - lr: 0.000036
|
213 |
+
2023-10-11 11:04:09,326 DEV : loss 0.1897462159395218 - f1-score (micro avg) 0.8003
|
214 |
+
2023-10-11 11:04:09,356 ----------------------------------------------------------------------------------------------------
|
215 |
+
2023-10-11 11:04:59,464 epoch 9 - iter 89/893 - loss 0.01141607 - time (sec): 50.11 - samples/sec: 476.01 - lr: 0.000034 - momentum: 0.000000
|
216 |
+
2023-10-11 11:05:49,221 epoch 9 - iter 178/893 - loss 0.01061287 - time (sec): 99.86 - samples/sec: 467.98 - lr: 0.000032 - momentum: 0.000000
|
217 |
+
2023-10-11 11:06:37,768 epoch 9 - iter 267/893 - loss 0.01141794 - time (sec): 148.41 - samples/sec: 463.59 - lr: 0.000030 - momentum: 0.000000
|
218 |
+
2023-10-11 11:07:31,411 epoch 9 - iter 356/893 - loss 0.01110773 - time (sec): 202.05 - samples/sec: 469.68 - lr: 0.000029 - momentum: 0.000000
|
219 |
+
2023-10-11 11:08:27,558 epoch 9 - iter 445/893 - loss 0.01210552 - time (sec): 258.20 - samples/sec: 465.79 - lr: 0.000027 - momentum: 0.000000
|
220 |
+
2023-10-11 11:09:21,450 epoch 9 - iter 534/893 - loss 0.01286214 - time (sec): 312.09 - samples/sec: 468.30 - lr: 0.000025 - momentum: 0.000000
|
221 |
+
2023-10-11 11:10:14,841 epoch 9 - iter 623/893 - loss 0.01302278 - time (sec): 365.48 - samples/sec: 472.28 - lr: 0.000023 - momentum: 0.000000
|
222 |
+
2023-10-11 11:11:06,931 epoch 9 - iter 712/893 - loss 0.01261530 - time (sec): 417.57 - samples/sec: 475.71 - lr: 0.000022 - momentum: 0.000000
|
223 |
+
2023-10-11 11:11:59,563 epoch 9 - iter 801/893 - loss 0.01305653 - time (sec): 470.21 - samples/sec: 475.44 - lr: 0.000020 - momentum: 0.000000
|
224 |
+
2023-10-11 11:12:49,808 epoch 9 - iter 890/893 - loss 0.01318959 - time (sec): 520.45 - samples/sec: 475.89 - lr: 0.000018 - momentum: 0.000000
|
225 |
+
2023-10-11 11:12:51,530 ----------------------------------------------------------------------------------------------------
|
226 |
+
2023-10-11 11:12:51,530 EPOCH 9 done: loss 0.0131 - lr: 0.000018
|
227 |
+
2023-10-11 11:13:13,077 DEV : loss 0.19762861728668213 - f1-score (micro avg) 0.7971
|
228 |
+
2023-10-11 11:13:13,107 ----------------------------------------------------------------------------------------------------
|
229 |
+
2023-10-11 11:14:01,040 epoch 10 - iter 89/893 - loss 0.00903721 - time (sec): 47.93 - samples/sec: 520.50 - lr: 0.000016 - momentum: 0.000000
|
230 |
+
2023-10-11 11:14:48,169 epoch 10 - iter 178/893 - loss 0.01155862 - time (sec): 95.06 - samples/sec: 506.09 - lr: 0.000014 - momentum: 0.000000
|
231 |
+
2023-10-11 11:15:36,368 epoch 10 - iter 267/893 - loss 0.01117476 - time (sec): 143.26 - samples/sec: 507.88 - lr: 0.000013 - momentum: 0.000000
|
232 |
+
2023-10-11 11:16:25,236 epoch 10 - iter 356/893 - loss 0.01092791 - time (sec): 192.13 - samples/sec: 511.73 - lr: 0.000011 - momentum: 0.000000
|
233 |
+
2023-10-11 11:17:15,043 epoch 10 - iter 445/893 - loss 0.01104186 - time (sec): 241.93 - samples/sec: 513.40 - lr: 0.000009 - momentum: 0.000000
|
234 |
+
2023-10-11 11:18:03,341 epoch 10 - iter 534/893 - loss 0.01048931 - time (sec): 290.23 - samples/sec: 512.33 - lr: 0.000007 - momentum: 0.000000
|
235 |
+
2023-10-11 11:18:53,582 epoch 10 - iter 623/893 - loss 0.01050700 - time (sec): 340.47 - samples/sec: 507.21 - lr: 0.000006 - momentum: 0.000000
|
236 |
+
2023-10-11 11:19:43,252 epoch 10 - iter 712/893 - loss 0.01002609 - time (sec): 390.14 - samples/sec: 506.48 - lr: 0.000004 - momentum: 0.000000
|
237 |
+
2023-10-11 11:20:33,114 epoch 10 - iter 801/893 - loss 0.00990462 - time (sec): 440.01 - samples/sec: 505.61 - lr: 0.000002 - momentum: 0.000000
|
238 |
+
2023-10-11 11:21:24,177 epoch 10 - iter 890/893 - loss 0.01009786 - time (sec): 491.07 - samples/sec: 505.52 - lr: 0.000000 - momentum: 0.000000
|
239 |
+
2023-10-11 11:21:25,540 ----------------------------------------------------------------------------------------------------
|
240 |
+
2023-10-11 11:21:25,540 EPOCH 10 done: loss 0.0101 - lr: 0.000000
|
241 |
+
2023-10-11 11:21:46,902 DEV : loss 0.2045479267835617 - f1-score (micro avg) 0.7949
|
242 |
+
2023-10-11 11:21:47,835 ----------------------------------------------------------------------------------------------------
|
243 |
+
2023-10-11 11:21:47,837 Loading model from best epoch ...
|
244 |
+
2023-10-11 11:21:51,551 SequenceTagger predicts: Dictionary with 17 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
|
245 |
+
2023-10-11 11:23:00,255
|
246 |
+
Results:
|
247 |
+
- F-score (micro) 0.6987
|
248 |
+
- F-score (macro) 0.6131
|
249 |
+
- Accuracy 0.5529
|
250 |
+
|
251 |
+
By class:
|
252 |
+
precision recall f1-score support
|
253 |
+
|
254 |
+
LOC 0.6829 0.7315 0.7063 1095
|
255 |
+
PER 0.7810 0.7717 0.7763 1012
|
256 |
+
ORG 0.4562 0.5686 0.5062 357
|
257 |
+
HumanProd 0.3878 0.5758 0.4634 33
|
258 |
+
|
259 |
+
micro avg 0.6764 0.7225 0.6987 2497
|
260 |
+
macro avg 0.5769 0.6619 0.6131 2497
|
261 |
+
weighted avg 0.6863 0.7225 0.7029 2497
|
262 |
+
|
263 |
+
2023-10-11 11:23:00,255 ----------------------------------------------------------------------------------------------------
|