File size: 25,365 Bytes
fcdf21c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
2023-10-13 01:11:03,794 ----------------------------------------------------------------------------------------------------
2023-10-13 01:11:03,796 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 01:11:03,796 ----------------------------------------------------------------------------------------------------
2023-10-13 01:11:03,796 MultiCorpus: 7936 train + 992 dev + 992 test sentences
 - NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr
2023-10-13 01:11:03,797 ----------------------------------------------------------------------------------------------------
2023-10-13 01:11:03,797 Train:  7936 sentences
2023-10-13 01:11:03,797         (train_with_dev=False, train_with_test=False)
2023-10-13 01:11:03,797 ----------------------------------------------------------------------------------------------------
2023-10-13 01:11:03,797 Training Params:
2023-10-13 01:11:03,797  - learning_rate: "0.00016" 
2023-10-13 01:11:03,797  - mini_batch_size: "4"
2023-10-13 01:11:03,797  - max_epochs: "10"
2023-10-13 01:11:03,797  - shuffle: "True"
2023-10-13 01:11:03,797 ----------------------------------------------------------------------------------------------------
2023-10-13 01:11:03,797 Plugins:
2023-10-13 01:11:03,797  - TensorboardLogger
2023-10-13 01:11:03,797  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 01:11:03,797 ----------------------------------------------------------------------------------------------------
2023-10-13 01:11:03,797 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 01:11:03,798  - metric: "('micro avg', 'f1-score')"
2023-10-13 01:11:03,798 ----------------------------------------------------------------------------------------------------
2023-10-13 01:11:03,798 Computation:
2023-10-13 01:11:03,798  - compute on device: cuda:0
2023-10-13 01:11:03,798  - embedding storage: none
2023-10-13 01:11:03,798 ----------------------------------------------------------------------------------------------------
2023-10-13 01:11:03,798 Model training base path: "hmbench-icdar/fr-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-3"
2023-10-13 01:11:03,798 ----------------------------------------------------------------------------------------------------
2023-10-13 01:11:03,798 ----------------------------------------------------------------------------------------------------
2023-10-13 01:11:03,798 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-13 01:11:57,074 epoch 1 - iter 198/1984 - loss 2.52843731 - time (sec): 53.27 - samples/sec: 301.54 - lr: 0.000016 - momentum: 0.000000
2023-10-13 01:12:49,896 epoch 1 - iter 396/1984 - loss 2.33063285 - time (sec): 106.10 - samples/sec: 299.47 - lr: 0.000032 - momentum: 0.000000
2023-10-13 01:13:43,828 epoch 1 - iter 594/1984 - loss 2.00558938 - time (sec): 160.03 - samples/sec: 304.60 - lr: 0.000048 - momentum: 0.000000
2023-10-13 01:14:37,623 epoch 1 - iter 792/1984 - loss 1.68962898 - time (sec): 213.82 - samples/sec: 305.19 - lr: 0.000064 - momentum: 0.000000
2023-10-13 01:15:32,254 epoch 1 - iter 990/1984 - loss 1.42576251 - time (sec): 268.45 - samples/sec: 305.85 - lr: 0.000080 - momentum: 0.000000
2023-10-13 01:16:30,374 epoch 1 - iter 1188/1984 - loss 1.22765584 - time (sec): 326.57 - samples/sec: 301.16 - lr: 0.000096 - momentum: 0.000000
2023-10-13 01:17:25,376 epoch 1 - iter 1386/1984 - loss 1.09207250 - time (sec): 381.58 - samples/sec: 298.82 - lr: 0.000112 - momentum: 0.000000
2023-10-13 01:18:19,155 epoch 1 - iter 1584/1984 - loss 0.98238438 - time (sec): 435.36 - samples/sec: 299.79 - lr: 0.000128 - momentum: 0.000000
2023-10-13 01:19:13,147 epoch 1 - iter 1782/1984 - loss 0.89132216 - time (sec): 489.35 - samples/sec: 301.35 - lr: 0.000144 - momentum: 0.000000
2023-10-13 01:20:07,717 epoch 1 - iter 1980/1984 - loss 0.81919035 - time (sec): 543.92 - samples/sec: 300.96 - lr: 0.000160 - momentum: 0.000000
2023-10-13 01:20:08,902 ----------------------------------------------------------------------------------------------------
2023-10-13 01:20:08,902 EPOCH 1 done: loss 0.8182 - lr: 0.000160
2023-10-13 01:20:33,569 DEV : loss 0.13464027643203735 - f1-score (micro avg)  0.6822
2023-10-13 01:20:33,608 saving best model
2023-10-13 01:20:34,548 ----------------------------------------------------------------------------------------------------
2023-10-13 01:21:27,518 epoch 2 - iter 198/1984 - loss 0.13398518 - time (sec): 52.97 - samples/sec: 317.95 - lr: 0.000158 - momentum: 0.000000
2023-10-13 01:22:20,320 epoch 2 - iter 396/1984 - loss 0.13653987 - time (sec): 105.77 - samples/sec: 312.54 - lr: 0.000156 - momentum: 0.000000
2023-10-13 01:23:13,784 epoch 2 - iter 594/1984 - loss 0.13426706 - time (sec): 159.23 - samples/sec: 309.94 - lr: 0.000155 - momentum: 0.000000
2023-10-13 01:24:07,847 epoch 2 - iter 792/1984 - loss 0.12961703 - time (sec): 213.30 - samples/sec: 310.15 - lr: 0.000153 - momentum: 0.000000
2023-10-13 01:25:00,723 epoch 2 - iter 990/1984 - loss 0.12845842 - time (sec): 266.17 - samples/sec: 308.58 - lr: 0.000151 - momentum: 0.000000
2023-10-13 01:25:57,368 epoch 2 - iter 1188/1984 - loss 0.12621724 - time (sec): 322.82 - samples/sec: 306.90 - lr: 0.000149 - momentum: 0.000000
2023-10-13 01:26:53,050 epoch 2 - iter 1386/1984 - loss 0.12382592 - time (sec): 378.50 - samples/sec: 306.09 - lr: 0.000148 - momentum: 0.000000
2023-10-13 01:27:47,084 epoch 2 - iter 1584/1984 - loss 0.12243932 - time (sec): 432.53 - samples/sec: 304.10 - lr: 0.000146 - momentum: 0.000000
2023-10-13 01:28:40,225 epoch 2 - iter 1782/1984 - loss 0.12044255 - time (sec): 485.67 - samples/sec: 303.81 - lr: 0.000144 - momentum: 0.000000
2023-10-13 01:29:33,733 epoch 2 - iter 1980/1984 - loss 0.11911028 - time (sec): 539.18 - samples/sec: 303.69 - lr: 0.000142 - momentum: 0.000000
2023-10-13 01:29:34,760 ----------------------------------------------------------------------------------------------------
2023-10-13 01:29:34,760 EPOCH 2 done: loss 0.1191 - lr: 0.000142
2023-10-13 01:30:00,644 DEV : loss 0.09056346118450165 - f1-score (micro avg)  0.7464
2023-10-13 01:30:00,691 saving best model
2023-10-13 01:30:03,443 ----------------------------------------------------------------------------------------------------
2023-10-13 01:30:58,918 epoch 3 - iter 198/1984 - loss 0.06739931 - time (sec): 55.47 - samples/sec: 309.34 - lr: 0.000140 - momentum: 0.000000
2023-10-13 01:31:51,844 epoch 3 - iter 396/1984 - loss 0.07425965 - time (sec): 108.40 - samples/sec: 306.04 - lr: 0.000139 - momentum: 0.000000
2023-10-13 01:32:45,346 epoch 3 - iter 594/1984 - loss 0.07267235 - time (sec): 161.90 - samples/sec: 302.08 - lr: 0.000137 - momentum: 0.000000
2023-10-13 01:33:40,251 epoch 3 - iter 792/1984 - loss 0.07060065 - time (sec): 216.80 - samples/sec: 298.37 - lr: 0.000135 - momentum: 0.000000
2023-10-13 01:34:34,939 epoch 3 - iter 990/1984 - loss 0.07092729 - time (sec): 271.49 - samples/sec: 299.52 - lr: 0.000133 - momentum: 0.000000
2023-10-13 01:35:31,126 epoch 3 - iter 1188/1984 - loss 0.07276706 - time (sec): 327.68 - samples/sec: 297.65 - lr: 0.000132 - momentum: 0.000000
2023-10-13 01:36:27,297 epoch 3 - iter 1386/1984 - loss 0.07298504 - time (sec): 383.85 - samples/sec: 295.50 - lr: 0.000130 - momentum: 0.000000
2023-10-13 01:37:24,493 epoch 3 - iter 1584/1984 - loss 0.07331926 - time (sec): 441.05 - samples/sec: 294.46 - lr: 0.000128 - momentum: 0.000000
2023-10-13 01:38:20,383 epoch 3 - iter 1782/1984 - loss 0.07273039 - time (sec): 496.94 - samples/sec: 294.70 - lr: 0.000126 - momentum: 0.000000
2023-10-13 01:39:13,609 epoch 3 - iter 1980/1984 - loss 0.07386661 - time (sec): 550.16 - samples/sec: 297.68 - lr: 0.000125 - momentum: 0.000000
2023-10-13 01:39:14,597 ----------------------------------------------------------------------------------------------------
2023-10-13 01:39:14,597 EPOCH 3 done: loss 0.0738 - lr: 0.000125
2023-10-13 01:39:39,918 DEV : loss 0.10628753900527954 - f1-score (micro avg)  0.7431
2023-10-13 01:39:39,957 ----------------------------------------------------------------------------------------------------
2023-10-13 01:40:34,507 epoch 4 - iter 198/1984 - loss 0.05002684 - time (sec): 54.55 - samples/sec: 319.28 - lr: 0.000123 - momentum: 0.000000
2023-10-13 01:41:28,212 epoch 4 - iter 396/1984 - loss 0.04642258 - time (sec): 108.25 - samples/sec: 306.78 - lr: 0.000121 - momentum: 0.000000
2023-10-13 01:42:24,209 epoch 4 - iter 594/1984 - loss 0.04922220 - time (sec): 164.25 - samples/sec: 300.82 - lr: 0.000119 - momentum: 0.000000
2023-10-13 01:43:20,372 epoch 4 - iter 792/1984 - loss 0.04903358 - time (sec): 220.41 - samples/sec: 298.20 - lr: 0.000117 - momentum: 0.000000
2023-10-13 01:44:16,017 epoch 4 - iter 990/1984 - loss 0.05035239 - time (sec): 276.06 - samples/sec: 297.50 - lr: 0.000116 - momentum: 0.000000
2023-10-13 01:45:10,220 epoch 4 - iter 1188/1984 - loss 0.05166238 - time (sec): 330.26 - samples/sec: 297.17 - lr: 0.000114 - momentum: 0.000000
2023-10-13 01:46:04,647 epoch 4 - iter 1386/1984 - loss 0.05299053 - time (sec): 384.69 - samples/sec: 295.60 - lr: 0.000112 - momentum: 0.000000
2023-10-13 01:46:57,739 epoch 4 - iter 1584/1984 - loss 0.05360553 - time (sec): 437.78 - samples/sec: 298.38 - lr: 0.000110 - momentum: 0.000000
2023-10-13 01:47:51,321 epoch 4 - iter 1782/1984 - loss 0.05404042 - time (sec): 491.36 - samples/sec: 298.68 - lr: 0.000109 - momentum: 0.000000
2023-10-13 01:48:46,615 epoch 4 - iter 1980/1984 - loss 0.05469939 - time (sec): 546.66 - samples/sec: 299.43 - lr: 0.000107 - momentum: 0.000000
2023-10-13 01:48:47,680 ----------------------------------------------------------------------------------------------------
2023-10-13 01:48:47,680 EPOCH 4 done: loss 0.0547 - lr: 0.000107
2023-10-13 01:49:13,494 DEV : loss 0.12986594438552856 - f1-score (micro avg)  0.7629
2023-10-13 01:49:13,542 saving best model
2023-10-13 01:49:16,237 ----------------------------------------------------------------------------------------------------
2023-10-13 01:50:11,842 epoch 5 - iter 198/1984 - loss 0.03937109 - time (sec): 55.60 - samples/sec: 279.25 - lr: 0.000105 - momentum: 0.000000
2023-10-13 01:51:04,893 epoch 5 - iter 396/1984 - loss 0.03149180 - time (sec): 108.65 - samples/sec: 293.70 - lr: 0.000103 - momentum: 0.000000
2023-10-13 01:51:57,276 epoch 5 - iter 594/1984 - loss 0.03526855 - time (sec): 161.03 - samples/sec: 300.86 - lr: 0.000101 - momentum: 0.000000
2023-10-13 01:52:48,839 epoch 5 - iter 792/1984 - loss 0.04002136 - time (sec): 212.59 - samples/sec: 299.54 - lr: 0.000100 - momentum: 0.000000
2023-10-13 01:53:41,046 epoch 5 - iter 990/1984 - loss 0.04019836 - time (sec): 264.80 - samples/sec: 299.44 - lr: 0.000098 - momentum: 0.000000
2023-10-13 01:54:33,468 epoch 5 - iter 1188/1984 - loss 0.03965078 - time (sec): 317.22 - samples/sec: 302.34 - lr: 0.000096 - momentum: 0.000000
2023-10-13 01:55:27,904 epoch 5 - iter 1386/1984 - loss 0.03976973 - time (sec): 371.66 - samples/sec: 306.05 - lr: 0.000094 - momentum: 0.000000
2023-10-13 01:56:21,617 epoch 5 - iter 1584/1984 - loss 0.03952830 - time (sec): 425.37 - samples/sec: 306.42 - lr: 0.000093 - momentum: 0.000000
2023-10-13 01:57:14,389 epoch 5 - iter 1782/1984 - loss 0.04052637 - time (sec): 478.14 - samples/sec: 306.45 - lr: 0.000091 - momentum: 0.000000
2023-10-13 01:58:06,695 epoch 5 - iter 1980/1984 - loss 0.04037425 - time (sec): 530.45 - samples/sec: 308.53 - lr: 0.000089 - momentum: 0.000000
2023-10-13 01:58:07,772 ----------------------------------------------------------------------------------------------------
2023-10-13 01:58:07,772 EPOCH 5 done: loss 0.0403 - lr: 0.000089
2023-10-13 01:58:31,953 DEV : loss 0.15890514850616455 - f1-score (micro avg)  0.7578
2023-10-13 01:58:31,995 ----------------------------------------------------------------------------------------------------
2023-10-13 01:59:24,863 epoch 6 - iter 198/1984 - loss 0.03383294 - time (sec): 52.87 - samples/sec: 307.40 - lr: 0.000087 - momentum: 0.000000
2023-10-13 02:00:17,092 epoch 6 - iter 396/1984 - loss 0.03126055 - time (sec): 105.09 - samples/sec: 306.52 - lr: 0.000085 - momentum: 0.000000
2023-10-13 02:01:09,827 epoch 6 - iter 594/1984 - loss 0.03079949 - time (sec): 157.83 - samples/sec: 309.23 - lr: 0.000084 - momentum: 0.000000
2023-10-13 02:02:02,146 epoch 6 - iter 792/1984 - loss 0.03162031 - time (sec): 210.15 - samples/sec: 311.53 - lr: 0.000082 - momentum: 0.000000
2023-10-13 02:02:54,554 epoch 6 - iter 990/1984 - loss 0.03146134 - time (sec): 262.56 - samples/sec: 312.79 - lr: 0.000080 - momentum: 0.000000
2023-10-13 02:03:46,567 epoch 6 - iter 1188/1984 - loss 0.03128278 - time (sec): 314.57 - samples/sec: 311.49 - lr: 0.000078 - momentum: 0.000000
2023-10-13 02:04:39,641 epoch 6 - iter 1386/1984 - loss 0.03149198 - time (sec): 367.64 - samples/sec: 313.24 - lr: 0.000077 - momentum: 0.000000
2023-10-13 02:05:33,650 epoch 6 - iter 1584/1984 - loss 0.02992630 - time (sec): 421.65 - samples/sec: 312.39 - lr: 0.000075 - momentum: 0.000000
2023-10-13 02:06:26,646 epoch 6 - iter 1782/1984 - loss 0.02996741 - time (sec): 474.65 - samples/sec: 312.51 - lr: 0.000073 - momentum: 0.000000
2023-10-13 02:07:18,444 epoch 6 - iter 1980/1984 - loss 0.02958364 - time (sec): 526.45 - samples/sec: 311.08 - lr: 0.000071 - momentum: 0.000000
2023-10-13 02:07:19,461 ----------------------------------------------------------------------------------------------------
2023-10-13 02:07:19,461 EPOCH 6 done: loss 0.0296 - lr: 0.000071
2023-10-13 02:07:43,565 DEV : loss 0.16922588646411896 - f1-score (micro avg)  0.7613
2023-10-13 02:07:43,608 ----------------------------------------------------------------------------------------------------
2023-10-13 02:08:34,306 epoch 7 - iter 198/1984 - loss 0.01507566 - time (sec): 50.70 - samples/sec: 318.70 - lr: 0.000069 - momentum: 0.000000
2023-10-13 02:09:25,504 epoch 7 - iter 396/1984 - loss 0.01573958 - time (sec): 101.89 - samples/sec: 323.20 - lr: 0.000068 - momentum: 0.000000
2023-10-13 02:10:18,310 epoch 7 - iter 594/1984 - loss 0.01664591 - time (sec): 154.70 - samples/sec: 316.50 - lr: 0.000066 - momentum: 0.000000
2023-10-13 02:11:10,262 epoch 7 - iter 792/1984 - loss 0.01785772 - time (sec): 206.65 - samples/sec: 316.65 - lr: 0.000064 - momentum: 0.000000
2023-10-13 02:12:01,198 epoch 7 - iter 990/1984 - loss 0.01876625 - time (sec): 257.59 - samples/sec: 316.49 - lr: 0.000062 - momentum: 0.000000
2023-10-13 02:12:52,573 epoch 7 - iter 1188/1984 - loss 0.02003134 - time (sec): 308.96 - samples/sec: 318.37 - lr: 0.000061 - momentum: 0.000000
2023-10-13 02:13:43,862 epoch 7 - iter 1386/1984 - loss 0.01967015 - time (sec): 360.25 - samples/sec: 318.42 - lr: 0.000059 - momentum: 0.000000
2023-10-13 02:14:37,995 epoch 7 - iter 1584/1984 - loss 0.02069974 - time (sec): 414.38 - samples/sec: 316.77 - lr: 0.000057 - momentum: 0.000000
2023-10-13 02:15:35,237 epoch 7 - iter 1782/1984 - loss 0.02041747 - time (sec): 471.63 - samples/sec: 312.32 - lr: 0.000055 - momentum: 0.000000
2023-10-13 02:16:29,103 epoch 7 - iter 1980/1984 - loss 0.02160503 - time (sec): 525.49 - samples/sec: 311.51 - lr: 0.000053 - momentum: 0.000000
2023-10-13 02:16:30,210 ----------------------------------------------------------------------------------------------------
2023-10-13 02:16:30,210 EPOCH 7 done: loss 0.0217 - lr: 0.000053
2023-10-13 02:16:54,770 DEV : loss 0.19541531801223755 - f1-score (micro avg)  0.7587
2023-10-13 02:16:54,810 ----------------------------------------------------------------------------------------------------
2023-10-13 02:17:51,202 epoch 8 - iter 198/1984 - loss 0.01913314 - time (sec): 56.39 - samples/sec: 293.35 - lr: 0.000052 - momentum: 0.000000
2023-10-13 02:18:47,470 epoch 8 - iter 396/1984 - loss 0.01758474 - time (sec): 112.66 - samples/sec: 283.41 - lr: 0.000050 - momentum: 0.000000
2023-10-13 02:19:44,479 epoch 8 - iter 594/1984 - loss 0.01501596 - time (sec): 169.67 - samples/sec: 287.41 - lr: 0.000048 - momentum: 0.000000
2023-10-13 02:20:38,244 epoch 8 - iter 792/1984 - loss 0.01524608 - time (sec): 223.43 - samples/sec: 293.67 - lr: 0.000046 - momentum: 0.000000
2023-10-13 02:21:28,379 epoch 8 - iter 990/1984 - loss 0.01572225 - time (sec): 273.57 - samples/sec: 299.81 - lr: 0.000045 - momentum: 0.000000
2023-10-13 02:22:18,130 epoch 8 - iter 1188/1984 - loss 0.01543476 - time (sec): 323.32 - samples/sec: 303.46 - lr: 0.000043 - momentum: 0.000000
2023-10-13 02:23:07,803 epoch 8 - iter 1386/1984 - loss 0.01514254 - time (sec): 372.99 - samples/sec: 306.00 - lr: 0.000041 - momentum: 0.000000
2023-10-13 02:23:58,125 epoch 8 - iter 1584/1984 - loss 0.01446280 - time (sec): 423.31 - samples/sec: 309.49 - lr: 0.000039 - momentum: 0.000000
2023-10-13 02:24:47,909 epoch 8 - iter 1782/1984 - loss 0.01453879 - time (sec): 473.10 - samples/sec: 310.57 - lr: 0.000037 - momentum: 0.000000
2023-10-13 02:25:39,611 epoch 8 - iter 1980/1984 - loss 0.01586744 - time (sec): 524.80 - samples/sec: 311.79 - lr: 0.000036 - momentum: 0.000000
2023-10-13 02:25:40,640 ----------------------------------------------------------------------------------------------------
2023-10-13 02:25:40,641 EPOCH 8 done: loss 0.0159 - lr: 0.000036
2023-10-13 02:26:07,441 DEV : loss 0.20716699957847595 - f1-score (micro avg)  0.7565
2023-10-13 02:26:07,484 ----------------------------------------------------------------------------------------------------
2023-10-13 02:27:01,686 epoch 9 - iter 198/1984 - loss 0.00740229 - time (sec): 54.20 - samples/sec: 285.24 - lr: 0.000034 - momentum: 0.000000
2023-10-13 02:27:55,342 epoch 9 - iter 396/1984 - loss 0.00741304 - time (sec): 107.86 - samples/sec: 286.26 - lr: 0.000032 - momentum: 0.000000
2023-10-13 02:28:48,271 epoch 9 - iter 594/1984 - loss 0.00953282 - time (sec): 160.78 - samples/sec: 293.98 - lr: 0.000030 - momentum: 0.000000
2023-10-13 02:29:41,888 epoch 9 - iter 792/1984 - loss 0.00987460 - time (sec): 214.40 - samples/sec: 299.90 - lr: 0.000029 - momentum: 0.000000
2023-10-13 02:30:34,733 epoch 9 - iter 990/1984 - loss 0.00972689 - time (sec): 267.25 - samples/sec: 302.63 - lr: 0.000027 - momentum: 0.000000
2023-10-13 02:31:26,785 epoch 9 - iter 1188/1984 - loss 0.00991641 - time (sec): 319.30 - samples/sec: 308.78 - lr: 0.000025 - momentum: 0.000000
2023-10-13 02:32:18,304 epoch 9 - iter 1386/1984 - loss 0.01028782 - time (sec): 370.82 - samples/sec: 311.33 - lr: 0.000023 - momentum: 0.000000
2023-10-13 02:33:10,088 epoch 9 - iter 1584/1984 - loss 0.01070081 - time (sec): 422.60 - samples/sec: 312.62 - lr: 0.000021 - momentum: 0.000000
2023-10-13 02:34:02,588 epoch 9 - iter 1782/1984 - loss 0.01055651 - time (sec): 475.10 - samples/sec: 312.75 - lr: 0.000020 - momentum: 0.000000
2023-10-13 02:34:54,501 epoch 9 - iter 1980/1984 - loss 0.01028953 - time (sec): 527.01 - samples/sec: 310.49 - lr: 0.000018 - momentum: 0.000000
2023-10-13 02:34:55,569 ----------------------------------------------------------------------------------------------------
2023-10-13 02:34:55,570 EPOCH 9 done: loss 0.0103 - lr: 0.000018
2023-10-13 02:35:21,677 DEV : loss 0.2197086364030838 - f1-score (micro avg)  0.7675
2023-10-13 02:35:21,722 saving best model
2023-10-13 02:35:24,408 ----------------------------------------------------------------------------------------------------
2023-10-13 02:36:16,693 epoch 10 - iter 198/1984 - loss 0.00313690 - time (sec): 52.28 - samples/sec: 315.59 - lr: 0.000016 - momentum: 0.000000
2023-10-13 02:37:09,099 epoch 10 - iter 396/1984 - loss 0.00558899 - time (sec): 104.69 - samples/sec: 317.42 - lr: 0.000014 - momentum: 0.000000
2023-10-13 02:38:01,060 epoch 10 - iter 594/1984 - loss 0.00556445 - time (sec): 156.65 - samples/sec: 319.86 - lr: 0.000013 - momentum: 0.000000
2023-10-13 02:38:53,915 epoch 10 - iter 792/1984 - loss 0.00552369 - time (sec): 209.50 - samples/sec: 315.53 - lr: 0.000011 - momentum: 0.000000
2023-10-13 02:39:46,052 epoch 10 - iter 990/1984 - loss 0.00607246 - time (sec): 261.64 - samples/sec: 315.00 - lr: 0.000009 - momentum: 0.000000
2023-10-13 02:40:39,710 epoch 10 - iter 1188/1984 - loss 0.00683260 - time (sec): 315.30 - samples/sec: 311.80 - lr: 0.000007 - momentum: 0.000000
2023-10-13 02:41:32,898 epoch 10 - iter 1386/1984 - loss 0.00736140 - time (sec): 368.49 - samples/sec: 312.14 - lr: 0.000005 - momentum: 0.000000
2023-10-13 02:42:26,307 epoch 10 - iter 1584/1984 - loss 0.00744783 - time (sec): 421.89 - samples/sec: 310.11 - lr: 0.000004 - momentum: 0.000000
2023-10-13 02:43:19,462 epoch 10 - iter 1782/1984 - loss 0.00740743 - time (sec): 475.05 - samples/sec: 311.13 - lr: 0.000002 - momentum: 0.000000
2023-10-13 02:44:11,558 epoch 10 - iter 1980/1984 - loss 0.00755919 - time (sec): 527.14 - samples/sec: 310.50 - lr: 0.000000 - momentum: 0.000000
2023-10-13 02:44:12,617 ----------------------------------------------------------------------------------------------------
2023-10-13 02:44:12,618 EPOCH 10 done: loss 0.0076 - lr: 0.000000
2023-10-13 02:44:38,438 DEV : loss 0.22709771990776062 - f1-score (micro avg)  0.769
2023-10-13 02:44:38,479 saving best model
2023-10-13 02:44:42,054 ----------------------------------------------------------------------------------------------------
2023-10-13 02:44:42,057 Loading model from best epoch ...
2023-10-13 02:44:47,171 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
2023-10-13 02:45:11,248 
Results:
- F-score (micro) 0.7627
- F-score (macro) 0.6811
- Accuracy 0.6449

By class:
              precision    recall  f1-score   support

         LOC     0.7997    0.8351    0.8170       655
         PER     0.6965    0.8027    0.7458       223
         ORG     0.5392    0.4331    0.4803       127

   micro avg     0.7488    0.7771    0.7627      1005
   macro avg     0.6785    0.6903    0.6811      1005
weighted avg     0.7439    0.7771    0.7587      1005

2023-10-13 02:45:11,248 ----------------------------------------------------------------------------------------------------