File size: 25,143 Bytes
f4f3810
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
2023-10-06 23:17:42,929 ----------------------------------------------------------------------------------------------------
2023-10-06 23:17:42,930 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): T5LayerNorm()
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-06 23:17:42,930 ----------------------------------------------------------------------------------------------------
2023-10-06 23:17:42,930 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-06 23:17:42,930 ----------------------------------------------------------------------------------------------------
2023-10-06 23:17:42,931 Train:  1100 sentences
2023-10-06 23:17:42,931         (train_with_dev=False, train_with_test=False)
2023-10-06 23:17:42,931 ----------------------------------------------------------------------------------------------------
2023-10-06 23:17:42,931 Training Params:
2023-10-06 23:17:42,931  - learning_rate: "0.00015" 
2023-10-06 23:17:42,931  - mini_batch_size: "4"
2023-10-06 23:17:42,931  - max_epochs: "10"
2023-10-06 23:17:42,931  - shuffle: "True"
2023-10-06 23:17:42,931 ----------------------------------------------------------------------------------------------------
2023-10-06 23:17:42,931 Plugins:
2023-10-06 23:17:42,931  - TensorboardLogger
2023-10-06 23:17:42,931  - LinearScheduler | warmup_fraction: '0.1'
2023-10-06 23:17:42,931 ----------------------------------------------------------------------------------------------------
2023-10-06 23:17:42,931 Final evaluation on model from best epoch (best-model.pt)
2023-10-06 23:17:42,931  - metric: "('micro avg', 'f1-score')"
2023-10-06 23:17:42,931 ----------------------------------------------------------------------------------------------------
2023-10-06 23:17:42,931 Computation:
2023-10-06 23:17:42,931  - compute on device: cuda:0
2023-10-06 23:17:42,931  - embedding storage: none
2023-10-06 23:17:42,932 ----------------------------------------------------------------------------------------------------
2023-10-06 23:17:42,932 Model training base path: "hmbench-ajmc/de-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-3"
2023-10-06 23:17:42,932 ----------------------------------------------------------------------------------------------------
2023-10-06 23:17:42,932 ----------------------------------------------------------------------------------------------------
2023-10-06 23:17:42,932 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-06 23:17:53,081 epoch 1 - iter 27/275 - loss 3.20779212 - time (sec): 10.15 - samples/sec: 215.71 - lr: 0.000014 - momentum: 0.000000
2023-10-06 23:18:04,015 epoch 1 - iter 54/275 - loss 3.19893422 - time (sec): 21.08 - samples/sec: 212.08 - lr: 0.000029 - momentum: 0.000000
2023-10-06 23:18:15,565 epoch 1 - iter 81/275 - loss 3.18017401 - time (sec): 32.63 - samples/sec: 213.13 - lr: 0.000044 - momentum: 0.000000
2023-10-06 23:18:26,626 epoch 1 - iter 108/275 - loss 3.14294964 - time (sec): 43.69 - samples/sec: 210.67 - lr: 0.000058 - momentum: 0.000000
2023-10-06 23:18:38,029 epoch 1 - iter 135/275 - loss 3.06861851 - time (sec): 55.10 - samples/sec: 210.27 - lr: 0.000073 - momentum: 0.000000
2023-10-06 23:18:48,668 epoch 1 - iter 162/275 - loss 2.98386536 - time (sec): 65.74 - samples/sec: 208.75 - lr: 0.000088 - momentum: 0.000000
2023-10-06 23:18:59,398 epoch 1 - iter 189/275 - loss 2.87891269 - time (sec): 76.46 - samples/sec: 207.70 - lr: 0.000103 - momentum: 0.000000
2023-10-06 23:19:09,952 epoch 1 - iter 216/275 - loss 2.77298535 - time (sec): 87.02 - samples/sec: 207.98 - lr: 0.000117 - momentum: 0.000000
2023-10-06 23:19:20,467 epoch 1 - iter 243/275 - loss 2.66563305 - time (sec): 97.53 - samples/sec: 207.28 - lr: 0.000132 - momentum: 0.000000
2023-10-06 23:19:30,935 epoch 1 - iter 270/275 - loss 2.54633852 - time (sec): 108.00 - samples/sec: 206.16 - lr: 0.000147 - momentum: 0.000000
2023-10-06 23:19:33,191 ----------------------------------------------------------------------------------------------------
2023-10-06 23:19:33,192 EPOCH 1 done: loss 2.5171 - lr: 0.000147
2023-10-06 23:19:39,803 DEV : loss 1.1775470972061157 - f1-score (micro avg)  0.0
2023-10-06 23:19:39,809 ----------------------------------------------------------------------------------------------------
2023-10-06 23:19:50,771 epoch 2 - iter 27/275 - loss 1.03372971 - time (sec): 10.96 - samples/sec: 215.51 - lr: 0.000148 - momentum: 0.000000
2023-10-06 23:20:02,347 epoch 2 - iter 54/275 - loss 1.00951904 - time (sec): 22.54 - samples/sec: 210.82 - lr: 0.000147 - momentum: 0.000000
2023-10-06 23:20:13,223 epoch 2 - iter 81/275 - loss 0.91537880 - time (sec): 33.41 - samples/sec: 206.90 - lr: 0.000145 - momentum: 0.000000
2023-10-06 23:20:24,587 epoch 2 - iter 108/275 - loss 0.89903855 - time (sec): 44.78 - samples/sec: 208.39 - lr: 0.000144 - momentum: 0.000000
2023-10-06 23:20:35,651 epoch 2 - iter 135/275 - loss 0.85333467 - time (sec): 55.84 - samples/sec: 207.59 - lr: 0.000142 - momentum: 0.000000
2023-10-06 23:20:46,118 epoch 2 - iter 162/275 - loss 0.82046048 - time (sec): 66.31 - samples/sec: 206.46 - lr: 0.000140 - momentum: 0.000000
2023-10-06 23:20:57,032 epoch 2 - iter 189/275 - loss 0.80119432 - time (sec): 77.22 - samples/sec: 205.82 - lr: 0.000139 - momentum: 0.000000
2023-10-06 23:21:07,772 epoch 2 - iter 216/275 - loss 0.77353092 - time (sec): 87.96 - samples/sec: 206.14 - lr: 0.000137 - momentum: 0.000000
2023-10-06 23:21:17,964 epoch 2 - iter 243/275 - loss 0.74058223 - time (sec): 98.15 - samples/sec: 204.84 - lr: 0.000135 - momentum: 0.000000
2023-10-06 23:21:29,022 epoch 2 - iter 270/275 - loss 0.70448315 - time (sec): 109.21 - samples/sec: 204.95 - lr: 0.000134 - momentum: 0.000000
2023-10-06 23:21:30,900 ----------------------------------------------------------------------------------------------------
2023-10-06 23:21:30,900 EPOCH 2 done: loss 0.7014 - lr: 0.000134
2023-10-06 23:21:37,665 DEV : loss 0.42873144149780273 - f1-score (micro avg)  0.5582
2023-10-06 23:21:37,671 saving best model
2023-10-06 23:21:38,639 ----------------------------------------------------------------------------------------------------
2023-10-06 23:21:49,785 epoch 3 - iter 27/275 - loss 0.43704065 - time (sec): 11.14 - samples/sec: 212.84 - lr: 0.000132 - momentum: 0.000000
2023-10-06 23:22:00,388 epoch 3 - iter 54/275 - loss 0.39009542 - time (sec): 21.75 - samples/sec: 208.48 - lr: 0.000130 - momentum: 0.000000
2023-10-06 23:22:11,535 epoch 3 - iter 81/275 - loss 0.37638191 - time (sec): 32.89 - samples/sec: 210.19 - lr: 0.000129 - momentum: 0.000000
2023-10-06 23:22:22,286 epoch 3 - iter 108/275 - loss 0.36351112 - time (sec): 43.65 - samples/sec: 208.11 - lr: 0.000127 - momentum: 0.000000
2023-10-06 23:22:33,756 epoch 3 - iter 135/275 - loss 0.34380491 - time (sec): 55.12 - samples/sec: 207.60 - lr: 0.000125 - momentum: 0.000000
2023-10-06 23:22:44,252 epoch 3 - iter 162/275 - loss 0.33317147 - time (sec): 65.61 - samples/sec: 206.76 - lr: 0.000124 - momentum: 0.000000
2023-10-06 23:22:55,521 epoch 3 - iter 189/275 - loss 0.32264027 - time (sec): 76.88 - samples/sec: 206.42 - lr: 0.000122 - momentum: 0.000000
2023-10-06 23:23:06,782 epoch 3 - iter 216/275 - loss 0.31955630 - time (sec): 88.14 - samples/sec: 207.28 - lr: 0.000120 - momentum: 0.000000
2023-10-06 23:23:16,907 epoch 3 - iter 243/275 - loss 0.31378673 - time (sec): 98.27 - samples/sec: 205.84 - lr: 0.000119 - momentum: 0.000000
2023-10-06 23:23:27,385 epoch 3 - iter 270/275 - loss 0.30770208 - time (sec): 108.75 - samples/sec: 206.31 - lr: 0.000117 - momentum: 0.000000
2023-10-06 23:23:29,177 ----------------------------------------------------------------------------------------------------
2023-10-06 23:23:29,177 EPOCH 3 done: loss 0.3081 - lr: 0.000117
2023-10-06 23:23:35,739 DEV : loss 0.21868450939655304 - f1-score (micro avg)  0.7855
2023-10-06 23:23:35,744 saving best model
2023-10-06 23:23:36,679 ----------------------------------------------------------------------------------------------------
2023-10-06 23:23:47,415 epoch 4 - iter 27/275 - loss 0.23843334 - time (sec): 10.73 - samples/sec: 210.93 - lr: 0.000115 - momentum: 0.000000
2023-10-06 23:23:58,293 epoch 4 - iter 54/275 - loss 0.23321435 - time (sec): 21.61 - samples/sec: 213.77 - lr: 0.000114 - momentum: 0.000000
2023-10-06 23:24:09,026 epoch 4 - iter 81/275 - loss 0.22124299 - time (sec): 32.34 - samples/sec: 211.47 - lr: 0.000112 - momentum: 0.000000
2023-10-06 23:24:19,058 epoch 4 - iter 108/275 - loss 0.20355063 - time (sec): 42.38 - samples/sec: 206.93 - lr: 0.000110 - momentum: 0.000000
2023-10-06 23:24:30,407 epoch 4 - iter 135/275 - loss 0.19004237 - time (sec): 53.73 - samples/sec: 207.67 - lr: 0.000109 - momentum: 0.000000
2023-10-06 23:24:41,880 epoch 4 - iter 162/275 - loss 0.18252030 - time (sec): 65.20 - samples/sec: 209.48 - lr: 0.000107 - momentum: 0.000000
2023-10-06 23:24:52,348 epoch 4 - iter 189/275 - loss 0.17924747 - time (sec): 75.67 - samples/sec: 207.77 - lr: 0.000105 - momentum: 0.000000
2023-10-06 23:25:03,353 epoch 4 - iter 216/275 - loss 0.17416266 - time (sec): 86.67 - samples/sec: 207.01 - lr: 0.000104 - momentum: 0.000000
2023-10-06 23:25:13,778 epoch 4 - iter 243/275 - loss 0.16862196 - time (sec): 97.10 - samples/sec: 205.85 - lr: 0.000102 - momentum: 0.000000
2023-10-06 23:25:24,256 epoch 4 - iter 270/275 - loss 0.16310851 - time (sec): 107.58 - samples/sec: 206.76 - lr: 0.000101 - momentum: 0.000000
2023-10-06 23:25:26,700 ----------------------------------------------------------------------------------------------------
2023-10-06 23:25:26,700 EPOCH 4 done: loss 0.1624 - lr: 0.000101
2023-10-06 23:25:33,324 DEV : loss 0.1493232250213623 - f1-score (micro avg)  0.8382
2023-10-06 23:25:33,330 saving best model
2023-10-06 23:25:34,248 ----------------------------------------------------------------------------------------------------
2023-10-06 23:25:45,066 epoch 5 - iter 27/275 - loss 0.08466083 - time (sec): 10.82 - samples/sec: 202.38 - lr: 0.000099 - momentum: 0.000000
2023-10-06 23:25:55,975 epoch 5 - iter 54/275 - loss 0.09065331 - time (sec): 21.72 - samples/sec: 207.69 - lr: 0.000097 - momentum: 0.000000
2023-10-06 23:26:06,526 epoch 5 - iter 81/275 - loss 0.09365691 - time (sec): 32.28 - samples/sec: 206.13 - lr: 0.000095 - momentum: 0.000000
2023-10-06 23:26:17,220 epoch 5 - iter 108/275 - loss 0.10027437 - time (sec): 42.97 - samples/sec: 204.70 - lr: 0.000094 - momentum: 0.000000
2023-10-06 23:26:27,592 epoch 5 - iter 135/275 - loss 0.10170985 - time (sec): 53.34 - samples/sec: 203.78 - lr: 0.000092 - momentum: 0.000000
2023-10-06 23:26:39,008 epoch 5 - iter 162/275 - loss 0.09929130 - time (sec): 64.76 - samples/sec: 203.88 - lr: 0.000090 - momentum: 0.000000
2023-10-06 23:26:49,894 epoch 5 - iter 189/275 - loss 0.09494369 - time (sec): 75.64 - samples/sec: 205.05 - lr: 0.000089 - momentum: 0.000000
2023-10-06 23:27:00,929 epoch 5 - iter 216/275 - loss 0.09307176 - time (sec): 86.68 - samples/sec: 204.98 - lr: 0.000087 - momentum: 0.000000
2023-10-06 23:27:11,558 epoch 5 - iter 243/275 - loss 0.10031013 - time (sec): 97.31 - samples/sec: 205.28 - lr: 0.000086 - momentum: 0.000000
2023-10-06 23:27:22,376 epoch 5 - iter 270/275 - loss 0.09762639 - time (sec): 108.13 - samples/sec: 205.60 - lr: 0.000084 - momentum: 0.000000
2023-10-06 23:27:24,773 ----------------------------------------------------------------------------------------------------
2023-10-06 23:27:24,774 EPOCH 5 done: loss 0.0987 - lr: 0.000084
2023-10-06 23:27:31,457 DEV : loss 0.12611618638038635 - f1-score (micro avg)  0.8616
2023-10-06 23:27:31,465 saving best model
2023-10-06 23:27:32,384 ----------------------------------------------------------------------------------------------------
2023-10-06 23:27:43,387 epoch 6 - iter 27/275 - loss 0.07895610 - time (sec): 11.00 - samples/sec: 207.51 - lr: 0.000082 - momentum: 0.000000
2023-10-06 23:27:53,456 epoch 6 - iter 54/275 - loss 0.09273836 - time (sec): 21.07 - samples/sec: 204.64 - lr: 0.000080 - momentum: 0.000000
2023-10-06 23:28:03,998 epoch 6 - iter 81/275 - loss 0.08414141 - time (sec): 31.61 - samples/sec: 203.97 - lr: 0.000079 - momentum: 0.000000
2023-10-06 23:28:14,503 epoch 6 - iter 108/275 - loss 0.08316482 - time (sec): 42.12 - samples/sec: 203.43 - lr: 0.000077 - momentum: 0.000000
2023-10-06 23:28:25,564 epoch 6 - iter 135/275 - loss 0.07871307 - time (sec): 53.18 - samples/sec: 202.39 - lr: 0.000075 - momentum: 0.000000
2023-10-06 23:28:36,883 epoch 6 - iter 162/275 - loss 0.08138135 - time (sec): 64.50 - samples/sec: 204.35 - lr: 0.000074 - momentum: 0.000000
2023-10-06 23:28:47,438 epoch 6 - iter 189/275 - loss 0.08231468 - time (sec): 75.05 - samples/sec: 204.10 - lr: 0.000072 - momentum: 0.000000
2023-10-06 23:28:58,758 epoch 6 - iter 216/275 - loss 0.08734570 - time (sec): 86.37 - samples/sec: 204.81 - lr: 0.000071 - momentum: 0.000000
2023-10-06 23:29:09,868 epoch 6 - iter 243/275 - loss 0.08052102 - time (sec): 97.48 - samples/sec: 205.70 - lr: 0.000069 - momentum: 0.000000
2023-10-06 23:29:20,681 epoch 6 - iter 270/275 - loss 0.07520156 - time (sec): 108.30 - samples/sec: 206.50 - lr: 0.000067 - momentum: 0.000000
2023-10-06 23:29:22,697 ----------------------------------------------------------------------------------------------------
2023-10-06 23:29:22,697 EPOCH 6 done: loss 0.0743 - lr: 0.000067
2023-10-06 23:29:29,351 DEV : loss 0.12128882855176926 - f1-score (micro avg)  0.8758
2023-10-06 23:29:29,356 saving best model
2023-10-06 23:29:30,274 ----------------------------------------------------------------------------------------------------
2023-10-06 23:29:40,216 epoch 7 - iter 27/275 - loss 0.05932625 - time (sec): 9.94 - samples/sec: 200.08 - lr: 0.000065 - momentum: 0.000000
2023-10-06 23:29:51,868 epoch 7 - iter 54/275 - loss 0.04672326 - time (sec): 21.59 - samples/sec: 205.76 - lr: 0.000064 - momentum: 0.000000
2023-10-06 23:30:02,697 epoch 7 - iter 81/275 - loss 0.04533032 - time (sec): 32.42 - samples/sec: 207.73 - lr: 0.000062 - momentum: 0.000000
2023-10-06 23:30:13,412 epoch 7 - iter 108/275 - loss 0.04353625 - time (sec): 43.14 - samples/sec: 208.50 - lr: 0.000060 - momentum: 0.000000
2023-10-06 23:30:24,374 epoch 7 - iter 135/275 - loss 0.05327309 - time (sec): 54.10 - samples/sec: 210.45 - lr: 0.000059 - momentum: 0.000000
2023-10-06 23:30:35,356 epoch 7 - iter 162/275 - loss 0.05492008 - time (sec): 65.08 - samples/sec: 210.63 - lr: 0.000057 - momentum: 0.000000
2023-10-06 23:30:45,948 epoch 7 - iter 189/275 - loss 0.05356602 - time (sec): 75.67 - samples/sec: 209.59 - lr: 0.000056 - momentum: 0.000000
2023-10-06 23:30:56,774 epoch 7 - iter 216/275 - loss 0.05638404 - time (sec): 86.50 - samples/sec: 209.12 - lr: 0.000054 - momentum: 0.000000
2023-10-06 23:31:07,501 epoch 7 - iter 243/275 - loss 0.05727416 - time (sec): 97.23 - samples/sec: 207.60 - lr: 0.000052 - momentum: 0.000000
2023-10-06 23:31:18,650 epoch 7 - iter 270/275 - loss 0.05734359 - time (sec): 108.37 - samples/sec: 207.38 - lr: 0.000051 - momentum: 0.000000
2023-10-06 23:31:20,274 ----------------------------------------------------------------------------------------------------
2023-10-06 23:31:20,274 EPOCH 7 done: loss 0.0575 - lr: 0.000051
2023-10-06 23:31:26,927 DEV : loss 0.12337013334035873 - f1-score (micro avg)  0.8783
2023-10-06 23:31:26,932 saving best model
2023-10-06 23:31:28,029 ----------------------------------------------------------------------------------------------------
2023-10-06 23:31:38,496 epoch 8 - iter 27/275 - loss 0.06679142 - time (sec): 10.47 - samples/sec: 205.91 - lr: 0.000049 - momentum: 0.000000
2023-10-06 23:31:49,201 epoch 8 - iter 54/275 - loss 0.05175168 - time (sec): 21.17 - samples/sec: 206.19 - lr: 0.000047 - momentum: 0.000000
2023-10-06 23:31:59,409 epoch 8 - iter 81/275 - loss 0.04590241 - time (sec): 31.38 - samples/sec: 206.03 - lr: 0.000045 - momentum: 0.000000
2023-10-06 23:32:09,829 epoch 8 - iter 108/275 - loss 0.05025701 - time (sec): 41.80 - samples/sec: 206.68 - lr: 0.000044 - momentum: 0.000000
2023-10-06 23:32:20,652 epoch 8 - iter 135/275 - loss 0.04689769 - time (sec): 52.62 - samples/sec: 205.85 - lr: 0.000042 - momentum: 0.000000
2023-10-06 23:32:32,043 epoch 8 - iter 162/275 - loss 0.04687291 - time (sec): 64.01 - samples/sec: 207.51 - lr: 0.000041 - momentum: 0.000000
2023-10-06 23:32:43,660 epoch 8 - iter 189/275 - loss 0.04632883 - time (sec): 75.63 - samples/sec: 207.27 - lr: 0.000039 - momentum: 0.000000
2023-10-06 23:32:55,088 epoch 8 - iter 216/275 - loss 0.05000443 - time (sec): 87.06 - samples/sec: 207.66 - lr: 0.000037 - momentum: 0.000000
2023-10-06 23:33:05,581 epoch 8 - iter 243/275 - loss 0.04980880 - time (sec): 97.55 - samples/sec: 207.44 - lr: 0.000036 - momentum: 0.000000
2023-10-06 23:33:15,960 epoch 8 - iter 270/275 - loss 0.04839911 - time (sec): 107.93 - samples/sec: 207.10 - lr: 0.000034 - momentum: 0.000000
2023-10-06 23:33:18,029 ----------------------------------------------------------------------------------------------------
2023-10-06 23:33:18,030 EPOCH 8 done: loss 0.0477 - lr: 0.000034
2023-10-06 23:33:24,660 DEV : loss 0.127992644906044 - f1-score (micro avg)  0.873
2023-10-06 23:33:24,666 ----------------------------------------------------------------------------------------------------
2023-10-06 23:33:34,726 epoch 9 - iter 27/275 - loss 0.04178413 - time (sec): 10.06 - samples/sec: 199.43 - lr: 0.000032 - momentum: 0.000000
2023-10-06 23:33:45,547 epoch 9 - iter 54/275 - loss 0.05131075 - time (sec): 20.88 - samples/sec: 204.79 - lr: 0.000030 - momentum: 0.000000
2023-10-06 23:33:56,356 epoch 9 - iter 81/275 - loss 0.05860657 - time (sec): 31.69 - samples/sec: 206.35 - lr: 0.000029 - momentum: 0.000000
2023-10-06 23:34:06,475 epoch 9 - iter 108/275 - loss 0.05561689 - time (sec): 41.81 - samples/sec: 203.29 - lr: 0.000027 - momentum: 0.000000
2023-10-06 23:34:17,273 epoch 9 - iter 135/275 - loss 0.05086730 - time (sec): 52.61 - samples/sec: 203.17 - lr: 0.000026 - momentum: 0.000000
2023-10-06 23:34:28,378 epoch 9 - iter 162/275 - loss 0.04692919 - time (sec): 63.71 - samples/sec: 204.55 - lr: 0.000024 - momentum: 0.000000
2023-10-06 23:34:39,748 epoch 9 - iter 189/275 - loss 0.04599155 - time (sec): 75.08 - samples/sec: 206.27 - lr: 0.000022 - momentum: 0.000000
2023-10-06 23:34:51,078 epoch 9 - iter 216/275 - loss 0.04321166 - time (sec): 86.41 - samples/sec: 206.78 - lr: 0.000021 - momentum: 0.000000
2023-10-06 23:35:01,862 epoch 9 - iter 243/275 - loss 0.04328397 - time (sec): 97.19 - samples/sec: 206.47 - lr: 0.000019 - momentum: 0.000000
2023-10-06 23:35:12,650 epoch 9 - iter 270/275 - loss 0.04290629 - time (sec): 107.98 - samples/sec: 206.79 - lr: 0.000017 - momentum: 0.000000
2023-10-06 23:35:14,703 ----------------------------------------------------------------------------------------------------
2023-10-06 23:35:14,704 EPOCH 9 done: loss 0.0429 - lr: 0.000017
2023-10-06 23:35:21,542 DEV : loss 0.1252521574497223 - f1-score (micro avg)  0.883
2023-10-06 23:35:21,548 saving best model
2023-10-06 23:35:22,470 ----------------------------------------------------------------------------------------------------
2023-10-06 23:35:32,902 epoch 10 - iter 27/275 - loss 0.03780507 - time (sec): 10.43 - samples/sec: 203.07 - lr: 0.000015 - momentum: 0.000000
2023-10-06 23:35:44,530 epoch 10 - iter 54/275 - loss 0.02927955 - time (sec): 22.06 - samples/sec: 203.91 - lr: 0.000014 - momentum: 0.000000
2023-10-06 23:35:54,510 epoch 10 - iter 81/275 - loss 0.04116419 - time (sec): 32.04 - samples/sec: 201.14 - lr: 0.000012 - momentum: 0.000000
2023-10-06 23:36:04,734 epoch 10 - iter 108/275 - loss 0.04094626 - time (sec): 42.26 - samples/sec: 200.70 - lr: 0.000011 - momentum: 0.000000
2023-10-06 23:36:16,023 epoch 10 - iter 135/275 - loss 0.04004258 - time (sec): 53.55 - samples/sec: 203.73 - lr: 0.000009 - momentum: 0.000000
2023-10-06 23:36:26,817 epoch 10 - iter 162/275 - loss 0.03973698 - time (sec): 64.35 - samples/sec: 204.54 - lr: 0.000007 - momentum: 0.000000
2023-10-06 23:36:37,043 epoch 10 - iter 189/275 - loss 0.04053412 - time (sec): 74.57 - samples/sec: 203.43 - lr: 0.000006 - momentum: 0.000000
2023-10-06 23:36:48,182 epoch 10 - iter 216/275 - loss 0.04054429 - time (sec): 85.71 - samples/sec: 204.55 - lr: 0.000004 - momentum: 0.000000
2023-10-06 23:36:59,116 epoch 10 - iter 243/275 - loss 0.04240430 - time (sec): 96.64 - samples/sec: 205.37 - lr: 0.000002 - momentum: 0.000000
2023-10-06 23:37:10,460 epoch 10 - iter 270/275 - loss 0.04062955 - time (sec): 107.99 - samples/sec: 206.36 - lr: 0.000001 - momentum: 0.000000
2023-10-06 23:37:12,554 ----------------------------------------------------------------------------------------------------
2023-10-06 23:37:12,555 EPOCH 10 done: loss 0.0405 - lr: 0.000001
2023-10-06 23:37:19,202 DEV : loss 0.1265440583229065 - f1-score (micro avg)  0.8788
2023-10-06 23:37:20,098 ----------------------------------------------------------------------------------------------------
2023-10-06 23:37:20,100 Loading model from best epoch ...
2023-10-06 23:37:24,178 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-06 23:37:31,313 
Results:
- F-score (micro) 0.9129
- F-score (macro) 0.5465
- Accuracy 0.8561

By class:
              precision    recall  f1-score   support

       scope     0.9011    0.9318    0.9162       176
        pers     0.9457    0.9531    0.9494       128
        work     0.8553    0.8784    0.8667        74
      object     0.0000    0.0000    0.0000         2
         loc     0.0000    0.0000    0.0000         2

   micro avg     0.9070    0.9188    0.9129       382
   macro avg     0.5404    0.5527    0.5465       382
weighted avg     0.8977    0.9188    0.9081       382

2023-10-06 23:37:31,313 ----------------------------------------------------------------------------------------------------