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Machine Learning Engineering Open Book

An open collection of methodologies to help with successful training of large language models and multi-modal models.

This is a technical material suitable for LLM/VLM training engineers and operators. That is the content here contains lots
of scripts and copy-n-paste commands to enable you to quickly address your needs.

This repo is an ongoing brain dump of my experiences training Large Language Models (LLM) (and VLMs); a lot of the
know-how I acquired while training the open-source BLOOM-176B model in 2022 and IDEFICS-80B multi-modal model in
2023. Currently, I’m working on developing/training open-source Retrieval Augmented models at Contextual.AI.

I’ve been compiling this information mostly for myself so that I could quickly find solutions I have already researched in
the past and which have worked, but as usual I’m happy to share these with the wider ML community.
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My apologies if the layout is a bit unstable while I’m writing new chapters and gradually re-organizing the content to be
more intuitive.
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1. ResourcesResources - LLM/VLM chronicles

Shortcuts
Things that you are likely to need to find quickly and often.

Tools:

• all_reduce_bench.py - a much easier way to benchmark network throughput than nccl-tests.
• torch-distributed-gpu-test.py - a tool to quickly test your inter-node connectivity

Guides:

• debugging pytorch applications - quick copy-n-paste solutions to resolve hanging or breaking pytorch applications
• slurm for users - a slurm cheatsheet and tricks
• make tiny models/datasets/tokenizers
• LLM/VLM chronicles collection

Book Building
If you want to build a PDF, check links, etc. See Book building

Gratitude
None of this would have been possible without me being entrusted with doing the specific LLM/VLM trainings I have
learned this know-how from. This is a privilege that only a few enjoy due to the prohibitively expensive cost of renting
huge ML compute clusters. So hopefully the rest of the ML community will vicariously learn from these notes.

Special thanks go to Thom Wolf who proposed that I lead the BLOOM-176B training back when I didn’t know anything
about large scale training. This was the project that catapulted me into the intense learning process. And, of course,
HuggingFace for giving me the opportunity to work full time on BLOOM-176B and later on IDEFICS-80B trainings.

Contributing
If you found a bug, typo or would like to propose an improvement please don’t hesitate to open an Issue or contribute a
PR.

License
The content of this site is distributed under Attribution-ShareAlike 4.0 International.

My repositories map
✔ Machine Learning:Machine Learning: ML Engineering Open Book | ML ways | Porting

✔ Guides:Guides: The Art of Debugging

✔ Applications:Applications: ipyexperiments
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✔ Tools and Cheatsheets:Tools and Cheatsheets: bash | conda | git | jupyter-notebook | make | python | tensorboard | unix
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The AI Battlefield Engineering - What You Need
To Know

This chapter is one person’s opinionated overview of the ML/AI Engineering reality, which may or may not be another
person’s reality. The intention is to help you start asking the right questions and get your ML Engineering needs met.

Basics
What’s important in the AI race?
Training:

1. How fast one can train a better model (first to market advantage)
2. How much $$ was spent (do we still have money left to pay salaries to talent after training?)

Inference:

1. Fast latency (users are used to msec response times and will leave if the response takes seconds)
2. Fast throughput (how many concurrent queries can be processed)
3. How much $$ is being spent per user (can we rent more GPUs to acquire more users and/or improve (1) and (2)?)

What are the needs of LLM training?
1. Fast compute massively dominated by matrix multiplications
2. Fast enough memory, IO, network and CPU to feed the compute

Corollary: If when you buy or rent hardware you invest in the fastest accelerators, but cheap out on any of the other
components you wasted $$ and you might not win the race as it’ll take longer to train.

What are the workhorses of ML?
• An accelerator or a processing unit is what does most of the work.

• Since ML does a lot of parallel processing (SIMD) GPUs were used at the beginning, but now you additionally have
TPUs, IPUs, FPGAs, HPUs, QPUs, RDUs, etc. Recent CPUs are becoming used as accelerators as well, especially for
inference.

More details.

AI driving entities
• AI companies - train models/build products around self-trained or trained-by-others’ models, in-house research.
• Academia - does massive research and write papers. Lots of new ideas are generated.
• AI enthusiasts - lots of good will available, some pull resources/talents together to train open access models, with

donated compute by HPCs and an occasional cloud, or a university cluster.
• Entrepreneurs - lots of low hanging fruit to pick - creative reselling of services, making ML-driven apps, and using

various ingenious combinations of available resources to create amazing outcomes.

Information sharing
• It’s very surprising that almost everybody involved in the domain of AI shares a lot of the discoveries with the

community.
• Surely, companies don’t disclose all of their IP, but a lot of it does get shared in the form of knowledge or model
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weights
• Companies that publish a lot of IP and models tend to attract higher quality talent.
• Twitter seems to be the central platform where one must be to follow what’s going on

The AI bubble
• The Dot-com bubble occurred during 1995-2000. And a very similar situation is happening right now in the AI space.

• There is a lot of money available to create new startups or boost the existing companies. It’s relatively easy to raise
millions of dollars.

• As we are in the wild-wild-west stage of the AI industry it’s very difficult to predict the future, and so pretty much
anything goes as far as startup ideas go, as long as it sounds reasonable.

• What distinguishes the AI bubble from the Dot-com bubble, is that one didn’t actually need much money to operate
a Dot-com company - most of the raised money went to marketing and some to staff, barely any to compute. AI
companies need millions of dollars because training LLMs requires an insane amount of compute, and that compute
is very expensive. e.g. 1x NVIDIA H100 costs ~$30k and a company may need 512 of those, which is $15M (not
counting the other hardware components and related costs)!

ML Engineer’s heaven and hell
This is my personal LLM/VLM trainings-based heaven and hell. YMMV.

ML Engineer’s heaven
1. A well built HPC, or a full service cloud based cluster, where someone diligently and timely takes care of the

hardware and the systems.

I just need to bring my training software and do the training, which is already an insanely complicated job requiring
special skills.

2. Lots of nodes available for exclusive unlimited use

3. Fast inter-node connectivity that doesn’t bottleneck the accelerators and which isn’t shared with other users

4. Huge local super-fast NVME based shared filesystem that can fit datasets and checkpoints

5. Barebones Linux w/ SLURM and minimal software to be able to launch training jobs

6. sudoer access to ease the work with a team of people

ML Engineer’s hell
1. A cloud or in-house cluster, where you have to do everything - sysadmining, replacing hardware, dealing with

outages, etc. And to do the training on top of that.

2. A smallish slow shared filesystem (NFS?), with cloud to draw data from and checkpoint to

3. Slow inter-node leading to low accelerator utilization

4. Inter-node shared with other users which make the network erratic and unpredictable

5. Super-complicated cloud console with gazillion of screens and steps to set even simple things up

6. Not being able to swap out failing hardware fast

7. Needing to timeshare the nodes - with wait times between training jobs

8. Having other concurrent users who might use up the whole disk, leading to trainings crashing
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9. Not being able to kill jobs others on the team started and went to sleep

Getting compute
There are 3 main choices to where one gets compute:

• Rent on the cloud
• Get a timeshare on an HPC
• Buy it

Renting on the cloud
This is currently the prevalent way of getting compute.

Pros:

• Easy to expand or contract the size of the cluster
• Easy to upgrade from the old hardware generation to the new one in a few years
• Cluster management could be easily outsourced

Cons:

• Expensive, unless you negotiate a long term (1-3 year) contract for hundreds of accelerators
• You will be tempted to buy many tools and services that you may or may not need
• You always get charged whether you use your cluster fully or not

Using HPC
There aren’t that many HPCs out there and so the amount of available resources is limited.

Pros:

• Managed for you - all you need is your software to do the training and a bit of SLURM know-how to launch jobs
• Often sponsored by the local government/university - probably could get the job done for less $$ or even free (e.g.

we trained BLOOM-176B for free on JeanZay HPC!)

Cons:

• needing to time share compute with other teams == short job times with possible long wait times in between - could
be difficult to finish training quickly

• The inter-node network is likely to be unstable as it’ll be used by other teams
• Have to abide by the HPC’s rules (e.g. no sudo access and various other rules to follow)
• In a way the HPC cluster will be what it’ll be - you can’t make the network faster and often even getting some

software installed can be tricky.

Buying hardware
It’s mainly universities that buy and build their own clusters, and some big companies do that too.

Pros:

• If you can deploy the hardware 24/7 for more than a few years the total cost will be cheaper than renting
• Easy to provide fast local storage - a good NVME raid would be much cheaper and faster than online storage

Cons:

• You’re stuck with the outdated hardware just a few years after it was purchased - might be able to resell
• Must buy more than needed - Hardware tends to break, especially when it’s used 24/7, RMA could take weeks
• Have to hire talent to manage the in-house solution
• Have to figure out cooling, electric costs, insurance, etc.
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The needs of technology
Can you feed the furnace fast enough?
Imagine a steam locomotive - the engine is great, but if the fireman isn’t fast enough to shovel the coal in, the train won’t
move fast.

source

This is the current state of ML hardware: The bottleneck is in moving bits and not the compute.

• Accelerators get ~2x faster every 2 years (Moore’s law)
• Network and memory are not! Already now both are compute bottlenecks
• IO can be another bottleneck if your DataLoader has to pull data from the cloud
• CPU is fine as long as it has enough cpu-cores for DataLoader workers, and main processes

Corollary: research the whole machine and not just its engine.

a crazy idea: the older GPUs might do fine if you can actually feed them as fast as they can compute. And if you can get 3x
of them at the same cost as the next generation GPU you might finish training sooner and a lower cost.

TFLOPS
• Once you choose the architecture and the size of the model and how many tokens you want to train the model for

you immediately know how much compute will be required to accomplish this goal. Specifically you can now
calculate how many floating point operations will be needed.

• All that is missing is comparing different compute providers to how many floating point operations their hardware
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can computes per secs (TFLOPS) and their cost per unit and now you can tell the total approximate cost of the
training.

1. Calculate the time needed to train given the TFLOPS of the considered solution:

total_tflops_required / tflops_of_this_compute_unit = time_in_seconds

Let’s say it came to be 604800 secs or 7 days.

2. Look at the cost of using this compute solution for 7 days and now you know the total $$ to train this model.

3. Look at other proposals and calculate the same - chose the best option.

• As mentioned earlier, time is of a huge importance, so you might still choose a more expensive solution if finishing
the training sooner is important because you want to be first to market.

Unfortunately, this math is only partially correct because the advertised peak TFLOPS are typically unachievable. The MFU
section delves into it.

Model Flops Utilization (MFU)
As mentioned in the previous section, some (most?) vendors publish unrealistic peak performance TFLOPS - they aren’t
possible to achieve.

Model Flops Utilization (MFU) is the metric that tells us how well the accelerator is utilized. Here is how it is calculated:

1. Measure the actual TFLOPS by calculating how many floating point operations a single training iteration takes and
dividing that number by the number of seconds this iteration took.

2. Divide the actual TFLOPS by advertised TFLOPS to get the MFU

Example: Let’s say you’re training in BFLOAT16 precision:

• If a single iteration requires 624 Tera floating point operations and it took 4 secs to run then we know that we get:
624/4=156 actual TFLOPS

• now BF16@A100 is advertised as 312TFLOPS so 156/312=0.5 gives us 50% MFU.

Practically:

• with NVIDIA GPUs if you’re above 50% MFU on a multi-node setup with a large model you’re already doing fantastic
• recent advancements in more efficient scalability solutions keep on increasing MFU
• slow networks and inefficient frameworks or untuned configuration lower MFU

Therefore once you know the MFU you can now adjust the cost estimate from the previous section. In the example there
we said it’ll take 7 days to train, but if MFU is 50%, it means it’ll take 14 days to train.

Moving bits
Why can’t the advertised TFLOPS achieved? It’s because it takes time to move data between accelerator memory and
compute and additionally it takes even more time to move data from disk and other gpus to the accelerator’s memory.

• There is not much can be done about the accelerator memory since its bandwidth is what it is - one can only write
more efficient software to make data move faster to/from the accelerator - hint: fused and custom written kernels
(like torch.compile and flash attention)

• If you only have a single GPU and the model fits its memory, you don’t need to worry about the network -
accelerator memory is the only bottleneck. But if you have to shard the model across multiple GPUs network
becomes the bottleneck.

• Intra-node Network - is very fast, but difficult to take advantage of for large models - Tensor parallelism and
sequence parallelism address part of this problem. (more).
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• Inter-node Network - typically is too slow on most server setups - thus this is the key component to research!
Efficient frameworks succeed to partially hide the comms overhead by overlapping compute and comms. But if
comms take longer than compute, the comms are still the bottleneck. more.

• Storage IO is important primarily for feeding the DataLoader workers and saving the checkpoints. more.

1. Typically with enough DL workers the DataLoader adds very little overhead.
2. While checkpoints are being saved the accelerators idle unless some async saving solution is used, so fast IO is

crucial here

Key hardware components
Accelerators
As of this writing here are the most common accelerators that can be used for training, finetuning and inference ML
models:

Widely available:

• NVIDIA A100 - huge availability across all clouds, but is already gradually being replaced by H100

Available, but locks you in:

• Google TPUs - fast! but the cost is a lock-in into a single vendor and cloud

Emerging to general availability:

• NVIDIA H100 - 2-3x faster than A100 (half precision), 6x faster for fp8

• AMD MI250 ~= A100 - very few clouds have them

• AMD MI300 ~= H100 - don’t expect until 1.5-2 years from now to be GA

• Intel Gaudi2 ~= H100 - starting to slowly emerge on Intel’s cloud

• GraphCore IPU - very difficult to find, paperspace has them

• Cerebras WaferScale Engine - available on Cerebras’ cloud

Accelerator Interoperability
In general most (all?) accelerators are supported by major frameworks like PyTorch or TensorFlow and the same code
should run everywhere with small modifications as long as it doesn’t use any accelerator-specific functionality.

For example, if your PyTorch application includes custom CUDA kernels it’ll only work on NVIDIA GPUs and may be on
AMD MI-series.

• NVIDIA GPUs: all based on CUDA, which most training frameworks support. You can easily moved between different
NVIDIA GPUs and most things would work the same.

• AMD MI250/MI300: with PyTorch using ROCm you can run most CUDA-based software as is. This is really the only
inter-operable accelerator with the NVIDIA stack.

• Gaudi2: if you use HF Transformers/Diffusers you can use optimum-habana. If you use HF Trainer with NVIDIA GPUs
it should be relatively easy to switch to train/infer on Gaudi2.

• GraphCore IPU: can also be run via PyTorch via poptorch

• Cerebras: is also working on PyTorch support via Cerebras Software Platform (CSoft) via XLA.

Also in general most ML code could be compiled into cross-platform formats like Open Neural Network Exchange (ONNX)
which can be run on a variety of accelerators. This approach is typically used more often for inference workloads.
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Network
• If you want to train a large model that doesn’t fit onto a single accelerator’s memory you have to rely on the intra-

and inter-node networks to synchronize multiple accelerators.

• The biggest issue right now is that compute hardware advancements move faster than networking hardware, e.g. for
NVIDIA NVLink intra-node:

GPUGPU ComputeComputefp16fp16
TFLOPSTFLOPS

ComputeCompute
speedupspeedup

Intra-nodeIntra-node
GBpsGBps

Intra-nodeIntra-node
speedupspeedup

V100 125 1 300 1

A100 312 2.5 600 2

H100 989 8 900 3

• You can see that A100 was 2.5 faster than V100, and H100 is ~3x faster than A100. But the intra-node speed of NVLink
has only increased by 300GBps each generation.

• Moreover, all 3 generations of NVLink use identical NICs of the same 50GBps duplex throughput. They have just
doubled and tripled the number of links to speed things up. So there was 0 progress in that technology.

• The inter-node situation isn’t any better with most NICs there doing 100 or 200Gbps, and some 400Gbps are starting
to emerge. (correspondingly in GBps: 12.5, 25 and 50). It’s the same story here, some solutions provide dozens of
NICs to get to higher speeds.

• Also typically with LLMs the payload is so large that network latency is often negligible for training. It’s still quite
important for inference.

Intra-node Network
• Pay attention to bytes vs bits. 1Byte = 8bits. 1GBps = 8Gbps.

• If you need to reduce bits (e.g. gradients) across multiple nodes, it’s the slowest link (Inter-node) that defines the
overall throughput, so intra-node speed doesn’t matter then

• Tensor parallelism and sequence parallelism have to remain within the node to be efficient - only makes sense with
fast intra-node speed

NVIDIA:

• NVIDIA-based compute nodes come with 50GBps duplex NVLInk

• Some have a lot of NVLinks, others less but typically plenty w/ at least 900GBps (5.6Tbps) duplex for H100, 600GBps
for A100 nodes

Intel Gaudi2:

• 8x 21 NICs of 100GbE RoCE v2 ROMA for a total of 2.1TBps

More details

Inter-node Network
• An order of magnitude slower than Intra-node

• You will see a wide range of speeds from 50Gbps to 3200 Gbps
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• You need to reduce gradients and other bits faster than compute to avoid idling accelerators

• You typically get at most 80% of advertised speed. e.g., if you are told you get 800Gbps, expect ~480Gbps.

• If moving to fp8 H100 is 18x faster than V100

• We are yet to see if 3200Gbps for H100s will be enough to keep high MFU.

• Practically less than 3x but it’s a good estimate

More details.

Storage
There are 3 distinct Storage IO needs in the ML workload:

1. You need to be able to feed the DataLoader fast - (super fast read, don’t care about fast write) - requires sustainable
load for hours and days

2. You need to be able to write checkpoints fast - (super fast write, fastish read as you will be resuming a few times) -
requires burst writing - you want super fast to not block the training for long (unless you use some sort of cpu
offloading to quickly unblock the training)

3. You need to be able to load and maintain your codebase - (medium speed for both reading and writing) - this also
needs to be shared since you want all nodes to see the same codebase - as it happens only during the start or resume
it’ll happen infrequently

• Most of the time you’re being sold 80% of what you paid. If you want a reliable 100TBs you need to rent 125TBs or
your application may fail to write long before the disk is full.

• Shared Distributed Filesystem:

1. non-parallel shared file systems can be extremely slow if you have a lot of small files (=Python!)
2. You want Parallel FS like GPFS (IBM Spectrum Scale) or Lustre (Open Source)

More details.

CPU Memory
You need enough memory for:

• 2-3 possibly DL workers per Accelerator (so 16-24 processes with 8 accelerators per node)

• Even more memory for DL workers if you pull data from the cloud

• Enough memory to load the model if you can’t load to accelerator directly

• Often used for accelerator memory offloading - extends accelerator’s memory by swapping out the currently unused
layers - if that’s the target use, then the more cpu memory is available - the better!

CPU
This is probably the least worrisome component.

• Most clouds provide beefy CPUs with plenty of cpu cores

• You need to have enough cores to run 2-3 DL workers +1 per gpu - so at least 30 cores

• Even more cores for DL workers if you have complex and/or slow DL transforms (CV)

• Most of the compute happens on GPUs
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Impress others with your ML instant math
Tell how many GPUs do you need in 5 secs

• Training in half mixed-precision: model_size_in_B * 18 * 1.25 / gpu_size_in_GB

• Inference in half precision: model_size_in_B * 2 * 1.25 / gpu_size_in_GB

That’s the minimum, more to have a bigger batch size and longer sequence length.

Here is the breakdown:

• Training: 8 bytes for AdamW states, 4 bytes for grads, 4+2 bytes for weights

• Inference: 2 bytes for weights (1 byte if you use quantization)

• 1.25 is 25% for activations (very very approximate)

For example: Let’s take an 80B param model and 80GB GPUs and calculate how many of them we will need for:

• Training: at least 23 GPUs 80*18*1.25/80

• Inference: at least 3 GPUs 80*2*1.25/80

More details.

Traps to be aware of
As you navigate this very complex AI industry here are some thing to be aware of:

Say no to "will make a reasonable effort to ..." contracts
• If you contract doesn’t have clear deliverables (time and performance) don’t be surprised if you paid for something

you won’t receive in time you need it or not at all

• Be very careful before you sign a contract that includes clauses that start with "we will make a reasonable effort to
...".

When was the last time you went to the bread section of the supermarket and found a lump of half-baked dough
with a note "we made a reasonable effort to bake this bread, but alas, what you see is what you get"?

But for whatever reason it’s acceptable to create a legal contract where the provider provides neither delivery dates
nor performance metrics and doesn’t provide stipulations for what will they do in recompense when those promises
aren’t fulfilled.

Beware of hardware and software lock-in scenarios
• Some cloud providers will make you use very proprietary tools or hardware that will make it very difficult for you to

leave down the road because you will have to retool everything if you leave

• Consider what would be the cost of moving to a different provider should this provider prove to be not satisfactory
or if they don’t have a capacity to fulfill your growing needs.

• If you rent a cluster with a generic Linux box with generic open source tools it should be trivial to move from one
provider to another as almost everything would work out of the box

• Obviously if you choose compute that requires custom software that works for that hardware only and you can’t
rent this hardware anywhere else you’re setting yourself up for a lock-in
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Don’t buy what you don’t really need
• The cloud providers have mostly the same generic hardware, which leads to a very slim $$ margin and so in order to

make big $$ they invent products and then try to convince you that you need to buy them. Sometimes you actually
need those products, but very often not. See also the previous section on lock-in, since proprietary products usually
mean a partial lock-in.

• Often it’s easy to observe the 3 step marketing technique for solutions that seek a problem to solve:

1. Convince a couple of well respected customers to use the provider’s proprietary products by giving them huge
discounts or even pay them to use them

2. Use those in step 1 as the social approval lever to reel in more converts
3. Then scoop the rest of the strugglers by telling them that 80% of your customers (1+2) use these amazing products

When marketing these products it’s important:

• to mention how well they work with a dozen of other products, since now you’re not buying into a single product
but into a whole proprietary product-sphere.

• to use really nice looking complicated diagrams of how things plug into each other, and move really fast to the next
slide before someone asks a difficult question.

HPCs are probably a good group of compute providers to learn from - they have no funds to create new products and so
they creatively address all their needs using mostly generic open source tools with some custom written software added
when absolutely needed.

Unsolicited advice
To conclude I thought I’d share some insights to how one could slightly improve their daily AI battlefield experience.

FOMO and avoiding depression
If you read Twitter and other similar ML-related feeds you’re guaranteed to feel the fear of missing out, since there is
probably at least one new great model getting released weekly and multiple papers are getting published daily and your
peers will publish their cool achievements hours.

We are dealing with veryvery complicated technology and there is a small handful of people who can absorb that much new
material and understand / integrate it.

This can be extremely depressing and discouraging.

I deal with it by looking at twitter about once or twice a week. I mostly use Twitter in broadcast mode - that is if I have
something to share I post it and only watch for possible follow up questions.

Usually all the important news reach me through other people.

Don’t try to know everything
The pace of innovation in the field of AI is insane. It’s not possible to know all-things-AI. I’d dare to say it’s not possible to
know even 10% of it for most of us.

I realized this very early one and I stopped paying attention to most announcements, tutorials, keynotes, etc. Whenever
I have a new need I research it and I discover what I need and I have to be careful not to try to learn other things not
pertinent to the goal at hand.

So I actually know very little, but what I have researched in depth I know quite well for some time and later I forget even
that (that’s why I write these notes - so that I can easily find what I have already researched).

So if you ask me something, chances are that I don’t know it, but the saving grace for me is that if you give me time I can
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figure it out and give the answer or develop a solution.

Don’t beat yourself up when using half-baked software
Because the ML field is in a huge race, a lot of the open source software is half-baked, badly documented, badly tested, at
times poorly supported. So if you think you can save time by re-using software written by others expect spending hours
to weeks trying to figure out how to make it work. And then keeping it working when the updates break it.

The next problem is that most of this software depends on other software which often can be just as bad. It’s not
uncommon where I start fixing some integration problem, just to discover a problem in a dependent package, which in
its turn has another problem from another package. This can be extremely frustrating and discouraging. Once excepts to
save time by reuse, but ends up spending a long time figuring out how to make it work. At least if I write my own software
I have fun and it’s a creative process, trying to make other people’s software work is not.

So at the end of the day we are still better off re-using other people’s software, except it comes at an emotional price and
exhaustion.

So first of all, try to find a way not to beat yourself up if the software you didn’t write doesn’t work. If you think about it,
those problems aren’t of your creation.

Learning how to debug efficiently should also make this process much less painful.

Contributors
Mark Saroufim,
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Accelerators

XXX: This chapter is a super-early WIP

Compute accelerators are the workhorses of the ML training. At the beginning there were just GPUs. But now there are
also TPUs, IPUs, FPGAs, HPUs, QPUs, RDUs and more are being invented.

There exist two main ML workloads - training and inference. There is also the finetuning workload which is usually
the same as training, unless a much lighter LORA-style finetuning is performed. The latter requires significantly fewer
resources and time than normal finetuning.

In language models during inference the generation is performed in a sequence - one token at a time. So it has to repeat
the same forward call thousands of times one smallish matmul (matrix multiplication or GEMM) at a time. And this can be
done on either an accelerator, like GPU, or some of the most recent CPUs, that can handle inference quite efficiently.

During training the whole sequence length is processed in one huge matmul operation. So if the sequence length is 4k long,
the training of the same model will require a compute unit that can handle 4k times more operations than inference and do
it fast. Accelerators excel at this task. In fact the larger the matrices they have to multiply, the more efficient the compute.

The other computational difference is that while both training and inference have to perform the same total amount
of matmuls in the forward pass, in the backward pass, which is only done for training, an additional 2x times of matmuls is
done to calculate the gradients with regards to inputs and weights. And an additional forward is performed if activations
recomputation is used. Therefore the training process requires at 3-4x more matmuls than inference.

Subsections
• Troubleshooting NVIDIA GPUs

Bird’s eye view on the high end accelerator reality
While this might be changing in the future, unlike the consumer GPU market, as of this writing there aren’t that many
high end accelerators, and if you rent on the cloud, most providers will have more or less the same few GPUs to offer.

GPUs:

• As of today, ML clouds/HPCs started transitioning from NVIDIA A100s to H100s and this is going to take some
months due to the usual shortage of NVIDIA GPUs.

• AMD’s MI250 started popping up here and there, but it’s unclear when it’ll be easy to access those. From a recent
discussion with an AMD representative MI300 is not planned to be in general availability until some time in 2025,
though some HPCs already plan to get them some time in 2024.

HPU:

• Intel’s Gaudi2 are starting to slowly emerge on Intel’s cloud

IPU:

• And there is Graphcore with their IPU offering. You can try these out in Paperspace through their cloud notebooks.

TPU:

• Google’s TPUs are, of course, available but they aren’t the most desirable accelerators because you can only rent
them, and the software isn’t quite easily convertible between GPUs and TPUs, and so many (most?) developers
remain in the GPU land, since they don’t want to be locked into a hardware which is a Google monopoly.

Pods and racks:
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• Cerebras’ WaferScale Engine (WSE)
• SambaNova’s DataScale
• dozens of different pod and rack configs that compose the afformentioned GPUs with super-fast interconnects.

That’s about it as Q4-2023.

Glossary
• CPU: Central Processing Unit
• FPGA: Field Programmable Gate Arrays
• GPU: Graphics Processing Unit
• HBM: High Bandwidth Memory
• HPC: High-performance Computing
• HPU: Habana Gaudi AI Processor Unit
• IPU: Intelligence Processing Unit
• MME: Matrix Multiplication Engine
• QPU: Quantum Processing Unit
• RDU: Reconfigurable Dataflow Unit
• TPU: Tensor Processing Unit

The most important thing to understand
I will make the following statement multiple times in this book - and that it’s not enough to buy/rent the most expensive
accelerators and expect a high return on investment (ROI).

The two metrics for a high ROI for ML training are:

1. the speed at which the training will finish, because if the training takes 2-3x longer than planned, your model could
become irrelevant before it was released - time is everything in the current super-competitive ML market.

2. the total $$ spent to train the model, because if the training takes 2-3x longer than planned, you will end up
spending 2-3x times more.

Unless the rest of the purchased/rented hardware isn’t chosen carefully to match the required workload chances are very
high that the accelerators will idle a lot and both time and $$ will be lost. The most critical component is network, then
storage, and the least critical ones are (CPU and CPU memory).

If the compute is rented one usually doesn’t have the freedom to choose - the hardware is either set in stone or some
components might be replaceable but with not too many choices. Thus there are times when the chosen cloud provider
doesn’t provide a sufficiently well matched hardware, in which case it’s best to seek out a different provider.

If you purchase your servers then I recommend to perform a very indepth due diligence before buying.

Besides hardware, you, of course, need software that can efficiently deploy the hardware.

We will discuss both the hardware and the software aspects in various chapters of this book. You may want to start here
and here.

What Accelerator characteristics do we care for
Let’s use the NVIDIA A100 spec as a reference point in the following sections.
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source

TFLOPS
As mentioned earlier most of the work that ML training and inference do is matrix multiplication. If you remember your
algebra matrix multiplication is made of many multiplications followed by summation. Each of these computations can be
counted and define how many of these operations can be performed by the chip in a single seconds.

This is one of the key characteristics that the accelerators are judged by. The term TFLOPS defines how many trillions of
FloatingPointOperations the chip can perform in a second. The more the better. There is a different definition for different
data types. For example, here are a few entries for A100:
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Data typeData type TFLOPSTFLOPS w/ Sparsityw/ Sparsity

FP32 19.5 n/a

Tensor Float 32 (TF32) 156 312

BFLOAT16 Tensor Core 312 624

FP16 Tensor Core 312 624

INT8 Tensor Core 624 1248

footnote: INT8 is measured in TeraOperations as it’s not a floating operation.

footnote: the term FLOPS could mean either the total number of FloatingPointOperations, e.g. when counting how many
FLOPS a single Transformer iteration takes, and it could also mean FloatingPointOperations per second - so watch out for
the context. When you read an accelerator spec it’s almost always a per second definition. When model architectures are
discussed it’s usually just the total number of FloatingPointOperations.

So you can see that int8 is 2x faster than bf16 which in turn is 2x faster than tf32.

Moreover, the TFLOPs depend on the matrices size as can be seen from this table:
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As you can see the difference in performance is non-linear due to the tile and wave quantization effects.

Let’s look at the TFLOPS specs across the high end accelerators:

Accelerator / TFLOPSAccelerator / TFLOPS fp32fp32 fp16fp16 fp8fp8 int8int8

NVIDIA A100 SXM 19.5 312 624 624

AMD MI250 45.3 362 X 362

AMD MI250X 47.9 383 X 383

NVIDIA H100 SXM 67.0 989 1979 1979

NVIDIA H100 PCIe 51.0 756 1513 1513

NVIDIA H100 dual NVL 134.0 989 3958 3958
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Accelerator / TFLOPSAccelerator / TFLOPS fp32fp32 fp16fp16 fp8fp8 int8int8

AMD MI300 ? ? ? ?

• Intel Gaudi2 doesn’t plan to publish TFLOPS specs as of this writing

Achievable peak TFLOPS
The problem with the advertised peak TFLOPS is that they are veryvery theoretical and can’t be achieved in practice even if all
the perfect conditions have been provided. Each accelerator has its own realistic TFLOPS which is not advertised and there
are anecdotal community reports that do their best to find the actual best value, but I’m yet to find any official reports.

If you find solid reports (papers?) showing the actual TFLOPS one can expect from one or more of the high end accelerators
discussed in this chapter please kindly submit a PR with this information. The key is to have a reference to a source that
the reader can validate the proposed information with.

To provide a numerical sense to what I’m talking about is let’s take A100 with its 312 TFLOPS bf16 peak performance in the
specs of this card. Until the invent of FlashAttention it was known that 150TFLOPS was close to the highest one could get
for half precision mixed precision, with FlashAttention, it’s around 180TFLOPS. This is, of course, measured for training
LLMs where the network and IO are involved which create additional overheads. So here the peak performance probably
lays somewhere between 200 and 300 TFLOPS.

It should be possible to calculate the actual peak TFLOPS by doing a perfectly aligned max-size matrices matmul measured
on a single accelerator.

XXX: write a small program to do exactly dynamically figuring out the perfect shapes based on the tile and wave
quantization effects and max sizes (how?) so that the benchmark isn’t hardcoded to a particular accelerator.

Accelerator memory size and speed
Typically the more on-chip memory the accelerator has the better. At any given time usually most of the model weights
aren’t being used as they wait for their turn to be processed and thus large memory allows more of the model to be on the
accelerator memory and immediately available for access and update. When there is not enough memory, sometimes the
model has to be split across multiple accelerators, or offloaded to CPU and/or disk.

Current high end accelerators (some aren’t GA yet):

AcceleratorAccelerator MemoryMemory
in GBsin GBs

TypeType SpeedSpeed in TB/sin TB/s

NVIDIA A100 SXM 80 HBM2e 2

NVIDIA H100 SXM 80 HBM3 3.35

NVIDIA H100 PCIe 80 HBM3 2

NVIDIA H100 dual NVL 188 HBM3 7.8

AMD MI250 128 HBM2e 3.28

AMD MI250X 128 HBM2e 3.28

AMD MI300 192 HBM3

• XXX: add other accelerators
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Memory speed is, of course, very important since if it’s not fast enough than the compute ends up idling waiting for the
data to be moved to and from the memory.

The GPUs use High Bandwidth Memory (HBM) which is a 3D version of SDRAM memory. For example, A100-SXM comes
with HBM2 at 1.6TB/sec, and H100-SXM comes with HBM3 at 3.35TB/s.

Heat
This is of interest when you buy your own hardware, when you rent on the cloud the provider hopefully takes care of
adequate cooling.

The only important practical understanding for heat is that if the accelerators aren’t kept cool they will throttle their
compute clock and slow everything down (and could even crash sometimes, albeit throttling is supposed to prevent that).

High end accelerators for LLM/VLM workloads
Cloud and in-house accelerators
Most common accelerators that can be either rented on compute clouds or purchased:

NVIDIA:

• A100 - huge availability but already getting outdated.
• H100 - 2-3x faster than A100 (half precision), 6x faster for fp8, slowly emerging on all major clouds.
• GH200 - 2 chips on one card - (1) H100 w/ 96GB HBM3 or 144GB HBM3e + (2) Grace CPU w/ 624GB RAM - availability

is unknown.

AMD:

• MI250 ~= A100 - very few clouds have them
• MI300 ~= H100 - don’t expect until late-2024 or even 2025 to be GA

Intel:

• Gaudi2 ~= H100 - Currently there is a very low availability on cloud.google.com with a long waiting list which
supposedly should be reduced in Q1-2024. AWS has the older Gaudi1 via DL1 instances.

Graphcore:

• IPU - available via Paperspace

SambaNova:

• DataScale SN30

In-house accelerator clusters
Cerebras:

• clusters
• systems based on WaferScale Engine (WSE).

Cloud-only solutions
These can be only used via clouds:

Google

• TPUs - lock-in, can’t switch to another vendor like NVIDIA -> AMD

Cerebras:
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• Cloud

Prices
Remember that the advertised prices are almost always open to negotiations as long as you’re willing to buy/rent in bulk
and if renting then for a long time (i.e. years!). When do you will discover that the actual price that you end up paying
could be many times less than the original public price. Some cloud providers already include the discount as you choose
a longer commitment on their website, but it’s always the best to negotiate directly with their sales team. In addition or
instead of a $$-discount you could be offered some useful features/upgrades for free.

For the baseline prices it should be easy to find a few good sites that provide an up-to-date public price comparisons across
clouds - just search for something like cloud gpu pricing comparison.

Accelerators in detail
NVIDIA
Abbreviations:

• CUDA: Compute Unified Device Architecture (proprietary to NVIDIA)

NVIDIA-specific key GPU characteristics:

• CUDA Cores - similar to CPU cores, but unlike CPUs that typically have 10-100 powerful cores, CUDA Cores are
weaker and come in thousands and allow to perform massive general purpose computations (parallelization). Like
CPU cores CUDA Cores perform a single operation in each clock cycle.

• Tensor Cores - special compute units that are designed specifically to perform fast multiplication and addition
operations like matrix multiplication. These perform multiple operations in each clock cycle. They can execute
extremely fast computations on low or mixed precision data types with some loss (fp16, bf16, tf32, fp8, etc.). These
cores are specifically designed for ML workloads.

• Streaming Multiprocessors (SM) are clusters of CUDA Cores, Tensor Cores and other components.

For example, A100-80GB has:

• 6912 CUDA Cores
• 432 Tensor Cores (Gen 3)
• 108 Streaming Multiprocessors (SM)

AMD
AMD-specific key GPU characteristics:

• Stream Processors - are similar in functionality to CUDA Cores - that is these are the parallel computation units. But
they aren’t the same, so one can’t compare 2 gpus by just comparing the number of CUDA Cores vs the number of
Stream Processors.

• Compute Units - are clusters of Stream Processors and other components

for example, AMD MI250 has:

• 13,312 Stream Processors
• 208 Compute Units

Intel Gaudi2
Architecture

• 24x 100 Gigabit Ethernet (RoCEv2) integrated on chip - 21 of which are used for intra-node and 3 for inter-node (so
21*8=168 cards for intra-node (262.5GBps per GPU), and 3*8=24 cards for inter-node (2.4Tbps between nodes)
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• 96GB HBM2E memory on board w/2.45 TBps bandwidth per chip, for a total of 768GB per node

A server/node is built from 8 GPUs, which can then be expanded with racks of those servers.

There are no official TFLOPS information published (and from talking to an Intel representative they have no intention
to publish any.) They publish the [following benchmarks](https://developer.habana.ai/resources/
habana-models-performance/ but I’m not sure how these can be used to compare this compute to other providers.

Comparison: supposedly Gaudi2 competes with NVIDIA H100

API
NVIDIA
uses CUDA

AMD
uses ROCm

Intel Gaudi
The API is via Habana SynapseAI® SDK which supports PyTorch and TensorFlow.

Useful integrations:

• HF Optimum Habana which also includes - DeepSpeed integration.

Apples-to-apples Comparison
It’s very difficult to compare specs of different offerings since marketing tricks get deployed pretty much by all
competitors so that one can’t compare 2 sets of specs and know the actual difference.

• MLPerf via MLCommons publishes various hardware benchmarks that measure training, inference, storage and
other tasks’ performance. For example, here is the most recent as of this writing training v3.0 and inference v3.1
results.

Except I have no idea how to make use of it - it’s close to impossible to make sense of or control the view. This is a
great intention lost in over-engineering and not thinking about how the user will benefit from it, IMHO. For
example, I don’t care about CV data, I only want to quickly see the LLM rows, but I can’t do it. And then the
comparisons are still not apples to apples so how can you possibly make sense of which hardware is better I don’t
know.
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Troubleshooting NVIDIA GPUs

Xid Errors
No hardware is perfect, sometimes due to the manufacturing problems or due to tear and wear (especially because
of exposure to high heat), GPUs are likely to encounter various hardware issues. A lot of these issues get corrected
automatically without needing to really understand what’s going on. If the application continues running usually there is
nothing to worry about. If the application crashes due to a hardware issue it’s important to understand why this is so and
how to act on it.

A normal user who uses a handful of GPUs is likely to never need to understand GPU-related hardware issues, but if you
come anywhere close to massive ML training where you are likely to use hundreds to thousands of GPUs it’s certain that
you’d want to understand about different hardware issues.

In your system logs you are likely to see occasionally Xid Errors like:

NVRM: Xid (PCI:0000:10:1c): 63, pid=1896, Row Remapper: New row marked for remapping, reset gpu to

activate.

To get those logs one of the following ways should work:

sudo grep Xid /var/log/syslog

sudo dmesg -T | grep Xid

Typically, as long as the training doesn’t crash, these errors often indicate issues that automatically get corrected by the
hardware.

The full list of Xid Errors and their interpretation can be found here.

You can run nvidia-smi -q and see if there are any error counts reported. For example, in this case of Xid 63, you will see
something like:

Timestamp                                 : Wed Jun  7 19:32:16 2023

Driver Version                            : 510.73.08

CUDA Version                              : 11.6

Attached GPUs                             : 8

GPU 00000000:10:1C.0

Product Name                          : NVIDIA A100-SXM4-80GB

[...]

ECC Errors

Volatile

SRAM Correctable              : 0

SRAM Uncorrectable            : 0

DRAM Correctable              : 177

DRAM Uncorrectable            : 0

Aggregate
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SRAM Correctable              : 0

SRAM Uncorrectable            : 0

DRAM Correctable              : 177

DRAM Uncorrectable            : 0

Retired Pages

Single Bit ECC                    : N/A

Double Bit ECC                    : N/A

Pending Page Blacklist            : N/A

Remapped Rows

Correctable Error                 : 1

Uncorrectable Error               : 0

Pending                           : Yes

Remapping Failure Occurred        : No

Bank Remap Availability Histogram

Max                           : 639 bank(s)

High                          : 1 bank(s)

Partial                       : 0 bank(s)

Low                           : 0 bank(s)

None                          : 0 bank(s)

[...]

Here we can see that Xid 63 corresponds to:

ECC page retirement or row remapping recording event

which may have 3 causes: HW Error / Driver Error / FrameBuffer (FB) Corruption

This error means that one of the memory rows is malfunctioning and that upon either reboot and/or a gpu reset one of
the 640 spare memory rows (in A100) will be used to replace the bad row. Therefore we see in the report above that only
639 banks remain (out of 640).

The Volatile section of the ECC Errors report above refers to the errors recorded since last reboot/GPU reset. The
Aggregate section records the same error since the GPU was first used.

Now, there are 2 types of errors - Correctable and Uncorrectable. The correctable one is a Single Bit ECC Error (SBE) where
despite memory being faulty the driver can still recover the correct value. The uncorrectable one is where more than one
bit is faulty and it’s called Double Bit ECC Error (DBE). Typically, the driver will retire whole memory pages if 1 DBE or 2
SBE errors occur at the same memory address. For full information see this document

A correctable error will not impact the application, a non-correctable one will crash the application. The memory page
containing the uncorrectable ECC error will be blacklisted and not accessible until the GPU is reset.

If there are page scheduled to be retired you will see something like this in the output of nvidia-smi -q:

Retired pages

Single Bit ECC             : 2

Double Bit ECC             : 0

Pending Page Blacklist    : Yes

Each retired page decreases the total memory available to applications. But each page is only 4MB large, so it doesn’t
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reduce the total available GPU memory by much.

To dive even deeper into the GPU debugging, please refer to this document - it includes a useful triage chart which helps
to determine when to RMA GPUs. This document has additional information about Xid 63-like errors

For example it suggests:

If associated with XID 94, the application that encountered the error needs to be restarted. All other applications
on the system can keep running as is until there is a convenient time to reboot for row remapping to activate.
See below for guidelines on when to RMA GPUs based on row remapping failures.

If after a reboot the same condition occur for the same memory address, it means that memory remapping has failed and
Xid 64 will be emitted again. If this continues it means you have a hardware issue that can’t be auto-corrected and the GPU
needs to RMA’ed.

At other times you may get Xid 63 or 64 and the application will crash. Which usually will generate additional Xid errors,
but most of the time it means that the error was uncorrectable (i.e. it was a DBE sort of an error and then it’ll be Xid 48).

As mentioned earlier to reset a GPU you can either simply reboot the machine, or run:

nvidia-smi -r -i gpu_id

where gpu_id is the sequential number of the gpu you want to reset. Without -i all GPUs will be reset.

Running diagnostics
If you suspect one or mode NVIDIA GPUs are broken on a given node, dcgmi is a great tool to quickly find any bad GPUs.

NVIDIA® Data Center GPU Manager (DCGM) is documented here and can be downloaded from here.

Here is an example slurm script that will run very in-depth diagnostics (-r 3), which will take about 10 minutes to
complete on an 8-GPU node:

$ cat dcgmi-1n.slurm

#!/bin/bash

#SBATCH --job-name=dcgmi-1n

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --cpus-per-task=96

#SBATCH --gres=gpu:8

#SBATCH --exclusive

#SBATCH --output=%x-%j.out

set -x -e

echo "START TIME: $(date)"

srun --output=%x-%j-%N.out dcgmi diag -r 3

echo "END TIME: $(date)"

Now to run it on specific nodes of choice:
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sbatch --nodelist=node-115 dcgmi-1n.slurm

sbatch --nodelist=node-151 dcgmi-1n.slurm

sbatch --nodelist=node-170 dcgmi-1n.slurm

edit the nodelist argument to point to the node name to run.

If the node is drained or downed and you can’t launch a slurm job using this node, just ssh into the node and run the
command directly on the node:

dcgmi diag -r 3

If the diagnostics didn’t find any issue, but the application still fails to work, re-run the diagnostics with level 4, which will
now take more than 1 hour to complete:

dcgmi diag -r 4

For example, if you run into a repeating Xid 64 error it’s likely that the diagnostics report will include:

+---------------------------+------------------------------------------------+

| Diagnostic                | Result                                         |

+===========================+================================================+

|-----  Deployment  --------+------------------------------------------------|

| Error                     | GPU 3 has uncorrectable memory errors and row  |

|                           |  remappings are pending                        |

so you now know to RMA that problematic GPU, if remapping fails.

The dcgmi tool contains various other levels of diagnostics, some of which complete in a matter of a few minutes and can
be run as a quick diagnostic in the epilogue of SLURM jobs to ensure that the node is ready to work for the next SLURM
job, rather than discovering that after the user started their job and it crashed.

When filing an RMA report you will be asked to run nvidia-bug-report script, the output of which you will need to submit
with the RMA request.

I usually save the log as well for posterity using one of:

dcgmi diag -r 3 | tee -a dcgmi-r3-`hostname`.txt

dcgmi diag -r 4 | tee -a dcgmi-r4-`hostname`.txt

How to detect if a node is missing GPUs
If you got a new VM, there are odd cases where there is less than expected number of GPUs. Here is how you can quickly
test you have got 8 of them:

cat << ’EOT’ >> test-gpu-count.sh
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#!/bin/bash

set -e

# test the node has 8 gpus

test $(nvidia-smi -q | grep UUID | wc -l) != 8 && echo "broken node: less than 8 gpus" && false

EOT

and then:

bash test-gpu-count.sh

How to detect if you get the same broken node again and again
This is mostly relevant to cloud users who rent GPU nodes.

So you launched a new virtual machine and discovered it has one or more broken NVIDIA GPUs. You discarded it and
launched a new and the GPUs are broken again.

Chances are that you’re getting the same node with the same broken GPUs. Here is how you can know that.

Before discarding the current node, run and log:

$ nvidia-smi -q | grep UUID

GPU UUID                              : GPU-2b416d09-4537-ecc1-54fd-c6c83a764be9

GPU UUID                              : GPU-0309d0d1-8620-43a3-83d2-95074e75ec9e

GPU UUID                              : GPU-4fa60d47-b408-6119-cf63-a1f12c6f7673

GPU UUID                              : GPU-fc069a82-26d4-4b9b-d826-018bc040c5a2

GPU UUID                              : GPU-187e8e75-34d1-f8c7-1708-4feb35482ae0

GPU UUID                              : GPU-43bfd251-aad8-6e5e-ee31-308e4292bef3

GPU UUID                              : GPU-213fa750-652a-6cf6-5295-26b38cb139fb

GPU UUID                              : GPU-52c408aa-3982-baa3-f83d-27d047dd7653

These UUIDs are unique to each GPU.

When you then re-created your VM, run this command again - if the UUIDs are the same - you know you have the same
broken GPUs.

Sometimes just rebooting the node will get new hardware. In some situations you get new hardware on almost every
reboot, in other situations this doesn’t happen. And this behavior may change from one provider to another.

If you keep on getting the same broken node - one trick to overcoming this is allocating a new VM, while holding the
broken VM running and when the new VM is running - discarding the broken one. That way you will surely get new GPUs
- except there is no guarantee they won’t be broken as well. If the use case fits consider getting a static cluster where it’s
much easier to keep the good hardware.

This method is extra-crucial for when GPUs don’t fail right away but after some use so it is non-trivial to see that there is
a problem. Even if you reported this node to the cloud provider the technician may not notice the problem right away and
put the bad node back into circulation. So if you’re not using a static cluster and tend to get random VMs on demand you
may want to keep a log of bad UUIDs and know you have got a lemon immediately and not 10 hours into the node’s use.

Cloud providers usually have a mechanism of reporting bad nodes. Therefore other than discarding a bad node, it’d help
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yourself and other users to report bad nodes. Since most of the time users just discard the bad nodes, the next user is going
to get them. I have seen users getting a very high percentage of bad nodes in some situations.
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Inter-node and intra-node Networking Hardware

This chapter is a WIP

It’s not enough to buy/rent expensive GPUs to train/infer models fast. You need to ensure that your IO, CPU and Network
are fast enough to "feed the GPU furnace". If this is not ensured then the expensive GPUs will be underutilized leading to
lost $$, slower training time and inference. While it can be any other of the mentioned components, the network is most
of the time what causes the bottleneck in the training (assume your DataLoader is fast).

If your model fits on a single GPU, you have little to worry about. But nowadays most models require several GPUs to load
and LLM/VLM models require multiple GPU nodes for training and some even for inference.

Most GPU nodes contain 8 GPUs, some 4 and recently there are some that have one super-GPU per node.

When the model spans several GPUs and doesn’t leave a single node all you need to worry about is fast Intra-node
networking. As soon as the model requires several nodes, which is often the case for training as one can use multiple
replicas to parallelize and speed up the training, then fast Inter-node networking becomes the key.

This article covers both types of networking hardware, reports their theoretical and effective speeds and explains how
they inter-play with each other.

Glossary
• DMA: Direct Memory Access
• EFA: Elastic Fabric Adapter
• HCA: Host Channel Adapter
• IB: Infiniband
• MFU: Model Flops Utilization (e.g. mfu=0.5 at half-precision on A100 comes from getting 156TFLOPs, because peak

half-precision spec is 312TFLOPS, and thus 156/312=0.5)
• NIC: Network Interface Card
• OPA: Omni-Path Architecture
• RoCE: RDMA over Converged Ethernet
• RoE: RDMA over Ethernet
• VPI: Virtual Protocol Interconnect
• RDMA: Remote Direct Memory Access

Speed-related:

• Bi-directional, Duplex: a transmission from one point to another in both directions A <-> B, typically 2x speed of
unidirectional

• GBps, GB/s: Gigabytes per secs (1GBps = 8Gbps) transferred in a channel
• GT/s: GigaTransfers per second - the number of operations transferring data that occur in each second.
• Gbps, Gb/s: Gigabits per secs (1Gbps = 1/8GBps) transferred in a channel
• Unidirectional: a transmission from one point to another in one direction A -> B

Understanding why inter-node network speed is of a huge
importance
This is probably one of the most important multi-segment section that you really want to understand well. While it
seeks out to show how important the inter-node speed is, to build up the case it’ll teach on the way many important
training-related concepts.
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The basics
First, let’s get a bit of a feeling what all those Gbps/GBps practically mean.

If your model is 80B parameter large, and you need to transmit every parameter or a gradient on the network even once
in float32 (fp32) format, which requires 4 bytes per parameter, so you need to send 80*4 320GB of data, or 2560Gb (*8). If
your network’s bandwidth is 200Gbps it will take 12.8 seconds (2560/200) to transmit. And if you had 1600Gbps network
then it’d take only 1.6 seconds. Why does it matter?

1-GPU training
Let’s start with a much smaller model of say 2B params, to train it you’d need at least 18 bytes per parameter in mixed
half precision. So 18*2 36GB of memory just for model weights, optimizer states and gradients. Plus you need additional
memory for activations and it’ll depend on the batch size and sequence length. But with 80GB A100 GPU we can definitely
train this model on a single GPU.

We then assume for the moment that the DataLoader is fast enough to be negligible in duration compared to the compute
time. And thus we get a close to a perfect MFU (Model FLOPs Utilization):

[DL][  compute  ][DL][  compute  ][DL][  compute  ]

---------------------------------------------------> time

|<--iteration-->||<--iteration-->||<--iteration-->|

which means that the GPU just needs to do many matmuls and it’d do it amazing fast. In this situation you get the highest
ROI (Return on Investment).

Single node training
The previous situation was fantastic due to the close to perfect MFU, but you realize that the training on a single GPU
is going to take quite some time, since we are in AI race you’d probably want to finish the training sooner than later. So
you’d ask - can I train the model on 8 GPUs instead, and the answer would be - yes, of course. With one caveat - at the end
of each iteration you’d need to sync the gradients between the 8 processes (each process for a single GPU), so that each
participating process of the training can benefit from what the other 7 have learned during the last iteration.

footnote: You could, of course, use less than 8 GPUs, it is just that most NVIDIA GPU-based compute nodes these days have
8 GPUs so why not get the best return on investment.

footnote: in the ideal world the training on 1 gpu for 8 durations of time, should cost the same as training on 8 gpus
for 1 duration of time. That’s one would expect to spend the same $$ and to finish 8 times faster. But because of data
synchronization requirements.

If the experimental model still contains 2B params like in the previous section and grads are in fp32 then the training
program needs to send 8GB (2G * 4B) of data on every iteration. Moreover, since syncing the gradients requires an
all_reduce collective collective - it needs to transmit the data twice - the first time sending the gradient data by each
gpu, computing the sum of gradients and send this value back to each participating gpu so that each training process will
benefit from the learning advancements each of its peers made in the last iteration.

Here is the all-reduce collective visualized:
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(source)

So we need to send 8GB twice, which means we need to send 16GB of data.

footnote: and to be exact the 2x comms volume for all-reduce is really 2*(n-1)/n where n is the number of participating
gpus. So if n=2, the coefficient is just 1 since 2*(2-1)/2=1 and 1.75 for n=8 since 2*(8-1)/8=1.75 and it becomes already very
close to 2 at n=64.

footnote: there is also the important issue of latency of the network - which is multiplied several times due to how data
is gathered from all participating gpus. But, given that here we are moving a very large payload the latency contributes a
very small overhead and for simplicity can be ignored.

How long will it take to send 16GB of data?

• A100 @ 300GBps: 16/300 = 0.053 secs
• H100 @ 450GBps: 16/450 = 0.035 secs

which is incredibly fast!

And here is how our timeline will look like:

[DL][  compute ][comms][DL][  compute ][comms][DL][  compute ][comms]|

-----------------------------------------------------------------------> time

|<---- iteration ---->||<---- iteration ---->||<---- iteration ----->|

oh and this whole synchronization protocol is called DDP (DistributedDataParallel) in the PyTorch lingo.

Comms and compute overlap
Even with this really fast comms the network still creates a bottleneck and leads to a short idling of the gpus. To solve this
issue the advanced algorithms implement an overlap of comms and compute. Until now we approached the problem as
one single transmission, but in reality each model is made of many layers and each layer can transmit the gradients it has
computed, while the next layer is computing its gradients. So if you look at the level of the model, what happens in the
backward path is:
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[   compute   ][   compute   ][   compute   ]

[comms]        [comms]        [comms]

---------------------------------------------> time

<- layer -1 ->|<- layer -2 ->|<- layer -3 ->|

so once the last layer (-1) computed its gradients it all-reduces them while the 2nd to last layer performs its backward, and
so on, until the first layer finished with gradients and it finally sends its gradients out.

So now you understand how overlapping works, So we can now update our bigger picture diagram to be:

Now our timing diagram becomes very similar to the diagram we had for a single gpu:

[DL][  compute  ][DL][  compute  ][DL][  compute  ]

[  comms ]       [  comms]        [  comms]

---------------------------------------------------> time

|<--iteration-->||<--iteration-->||<--iteration-->|

and we hope that comms are faster than DL+compute, since if they aren’t faster than we have the following gpu idling
gaps:

[DL][  compute  ][idle][DL][  compute  ][idle][DL][  compute  ][idle]

[         comms       ][         comms       ][         comms       ]

----------------------------------------------------------------------> time

|<---  iteration  --->||<---  iteration  --->||<---  iteration  --->|

Calculating TFLOPS
Calculating TFLOPS answers the question of how long will it take to perform a compute.

There is a bit of nomenclature confusion here as TFLOPS as the final s sometimes means sec and at other times just ops.

For example, when you read, the A100 spec the TFLOPS there means TeraFloatingPointOperations per second.

So let’s define these abbreviations exactly:

• TFLOPS - TeraFLoatingpointOPerations per Second (another way is TFLOP/s)
• TFLOP - TeraFLoatingpointOPerations (or TFLOPs - lower case s but it’s already confusing)

Also see the wiki page for more clarifications.

For GPT-family of decoder transformers models we can use the math described in this BLOOM-176 docs:

Here is how many TFLOP are processed per second:

tflops = model_size_in_B * 4 * 2 * seqlen * global_batch_size / (time_in_sec_per_interation * total_gpus *

1e3)

This formula assume one uses activation recomputation which saves GPU memory while introducing a smallish overhead.
If one doesn’t use it then replace 4 with 3 as the model has to do only 1x compute per forward and 2x per backward (since
the grads are calculated twice - once for inputs and once for weights). With activation recomputation the forward is done
twice and thus you have an additional path which leads to a multiplier of 4 instead of 3
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footnote: activation recomputation and gradient checkpointing both refer to the same technique.

so let’s remove the time component, which will give us the total TFLOP

tflop = model_size_in_B * 4 * 2 * seqlen * global_batch_size / (total_gpus * 1e3)

So let’s say we have:

• seqlen=2048 (sequence length)
• global_batch_size=16

and we already defined:

• total_gpus=8

• model_size_in_B=2

This gives us:

tflops = 2 * 4 * 2 * 2048 * 16 / (8 * 1e3) = 65.536 TFLOP

So if we do a mixed half-precision training and most of the operations are done in half-precision then we can roughly say
that we do 312 TFLOPS on A100 and usually a well optimized framework on a well-tuned hardware will do at least 50% MFU
- that is it’ll be able to compute at about 1/2 peak performance.

footnote: It’s a ~3x 989 TFLOPS on H100 (scroll to the end) and also it shows a misleading 2x numbers for sparsity so you
have to mentally divide it by 2.

So continuing this train of thought it means that the setup will have about 156TFLOPS - and so it’ll take 0.42 secs to process
a single iteration (2x forward and 2x backward compute) if we ignore the overhead of the DataLoader (which we hope is
close to instant).

Earlier we said that a typical A100 node has an intra-node NVLink connection of 300GBps, and thus we said that to send
16GB of grads will take 16/300 = 0.053 secs.

And we measured our compute to be 0.42 secs, so here we have a problem as 0.053 > 0.42 so the comms will be slower
than compute and the network is a bottleneck.

You can now do several thought experiments - for example if you halve the batch size or the sequence length you will
halve the compute time.

footnote: this is a very rough suggestions since GPUs work the fastest when the matrices they multiple are huge. But this
is good enough for a simplified thought experiment we are having here. In reality halving the dimension will not halve the
compute time.

OK, but hopefully at this point it’s quite clear that if you remain at the boundaries of a single node, you don’t need to worry
about your GPUs idling.

But what if you want to speed up the training even more and throw say 4x 8-gpu nodes at it. (and of course you don’t have
a choice but to use multiple nodes if you have a much larger model). Suddenly, the comms can become an even bigger
bottleneck.

Multiple node training
So here we are continuing with the idea of 2B param model and we will now use 32 gpus across 4 nodes to speed up the
training even more.
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While each group of 8 gpus is still connected with super-fast NVLink technology, the inter-node connections are usually
in an order of magnitude slower.

Let’s say you have a 200Gbps connection. Let’s repeat the math from the previous section of how long it’ll take to reduce
16GB of gradients.

16GB is 128Gb, and so at 200Gbps this will take 0.64 seconds.

And if stick to the compute taking 0.42 seconds, here we end up with comms taking longer than compute since 0.64 >

0.42.

Let’s bring both use cases together:

nodesnodes commscomms computecompute comms is a bottleneckcomms is a bottleneck

1 0.027 0.42 no

4 0.64 0.42 yes

on this 200Gbps inter-node setup the comms are 23x slower than the same performed on an intra-node NVlink
connections.

In this case even though we still have the much faster NVLink connection, we don’t really benefit from it, since the whole
ensemble communicates at the speed of the slowest link. And that slowest link is the inter-node connection.

So in this particular situation if you were able to get a 400Gbps inter-node the speed would double and the comms will
finish in 0.32 secs and thus will be faster than that 0.42 secs the compute would take.

footnote: you will never be able to get the advertised speed fully on the application level, so if it’s advertised as 400Gbps in
the best case expect to get 320Gbps (about 80%). So make sure to take this into the account as well. Moreover, depending
on the payload of each collective - the smaller the payload the smaller the actual network throughput will be.

And remember this was all handling a pretty tiny as considered these days 2B param model.

Now do the same math with 20B and 200B parameter model and you will see that you need to have a much much faster
inter-node connectivity to efficiently scale.

Large model training
Of course, when we train large models we don’t use DDP, because we simply can’t fit the whole model on a single gpu
so various other techniques are used. The details are discussed in a dedicated chapter on Model Parallelism, but the only
important thing to understand immediately is that all scalability techniques incur a much larger comms overhead, because
they all need to communicate a lot more than just gradients. and therefore the amount of traffic on the network can easily
grow 3x and more as compared to the DDP protocol overhead we have been exploring so far.

It can be difficult to do even approximate math as we did in this chapter, because the actual compute time depends on
the efficiency of the chosen framework, how well it was tuned, how fast the DataLoader can feed the batches and many
other things, therefore there is no standard MFU that one can use in the math and you will discover your MFU when you
configure and run the first few steps of the large model training. and then you will read the Performance chapters and
improve your MFU even more.

As I have shown in these sections it should be possible to be able to do a back-of-envelope calculations once you
understand the specific scalability technique and its networking costs, so that you could know ahead of time which
Inter-node network speed you need to require from your acquisition manager. Of course, you also need to understand the
particular model architecture and calculate how many TFLOP it will take to do a single iteration.
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Unidirectional vs Bidirectional (Duplex)
Most benchmarking / bandwidth measurement tools will report a unidirectional bandwidth. So be careful when you look
at unidirectional vs. bidirectional (duplex) speeds. Typically the latter is ~2x faster.

If you measure the bandwidth on your setup and it’s about 40% of the advertised speed, carefully check if the advertised
speed said duplex and if so half that and then your measured bandwidth should now be about 80% which is expected.

case study: for a while I couldn’t understand why when I run the nccl-tests all_reduce benchmark on an A100 node with
advertised 600GBps intra-node speed I was getting only 235Gbps (40%) until Horace He kindly pointed out that I should be
looking at unidirectional speed which is 300GBps, and then I get 80% of the theoretical spec which checks out.

Intra-node networking
Note to the reader: my notes currently include only NVIDIA intra-node hardware, since I’m yet to find access to AMD MI*
nodes - if you are with AMD and you want me to extend this writing to AMD hardware please contact me with access to
such hardware as it seems impossible to find.

On the server nodes with NVIDIA GPUs there is pretty much just 2 pieces of hardware - NVLink and NVSwitch. There is of
course PCIe but it’s about an order of magnitude slower so it’s never used on modern GPU servers to perform GPU-to-GPU
communications.

NVLink
• PCIe
• NVLink
• What Is NVLink blog post.

I found the wiki pages quite difficult to follow, so I will try to help bring clarity into this.

footnote: Pay attention that 1 GBps = 8 Gbps

Effective payload rate of Intra-node GPU-to-GPU communication hardware:

InterconnectInterconnect Lane/DirectionLane/Direction LanesLanes LinksLinks UnidirectionUnidirection DuplexDuplex

NVlink 2 6.250 GBps 4 6 150 GBps 300 GBps

NVlink 3 6.250 GBps 4 12 300 GBps 600 GBps

NVlink 4 6.250 GBps 4 18 450 GBps 900 GBps

InterconnectInterconnect Lane/DirectionLane/Direction LanesLanes UnidirectionUnidirection DuplexDuplex

PCIe 4 ~2.0 GBps 16 31 GBps 62 GBps

PCIe 5 ~4.0 GBps 16 63 GBps 126 GBps

PCIe 6 ~7.5 GBps 16 121 GBps 241 GBps

PCIe 7 ~15.0 GBps 16 242 GBps 484 GBps

NVlink 2, 3 and 4 use the same hardware of 4 lanes of 6.250 GBps each per link. Each has a unidirectional bandwidth of
25GB/s per link, and therefore 50GB/s per duplex link. The only difference is in the number of links:

• NVLink 2 has 6 links => 25* 6=> 150 GBps unidirectional and 300 GBps bi-directional
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• NVLink 3 has 12 links => 25*12=> 300 GBps unidirectional and 600 GBps bi-directional
• NVLink 4 has 18 links => 25*18=> 450 GBps unidirectional and 900 GBps bi-directional

The largest PCIe 16x slot has 16 lanes. Smaller slots have less lanes, 1x == 1 lane.

As of this writing NVIDIA Hopper nodes typically come equipped with PCIe 5 and NVLink 4. So there NVlink is 7x faster
than PCIe.

Let’s look at some actual A100 and H100 nodes and correlate the theory with reality.

• A100 topology:

$ nvidia-smi topo -m

GPU0  GPU1  GPU2  GPU3  GPU4  GPU5  GPU6  GPU7  CPU Affinity  NUMA Affinity

GPU0   X    NV12  NV12  NV12  NV12  NV12  NV12  NV12   0-23         0

GPU1  NV12   X    NV12  NV12  NV12  NV12  NV12  NV12   0-23         0

GPU2  NV12  NV12   X    NV12  NV12  NV12  NV12  NV12   0-23         0

GPU3  NV12  NV12  NV12   X    NV12  NV12  NV12  NV12   0-23         0

GPU4  NV12  NV12  NV12  NV12   X    NV12  NV12  NV12  24-47         1

GPU5  NV12  NV12  NV12  NV12  NV12   X    NV12  NV12  24-47         1

GPU6  NV12  NV12  NV12  NV12  NV12  NV12   X    NV12  24-47         1

GPU7  NV12  NV12  NV12  NV12  NV12  NV12  NV12   X    24-47         1

You can see there are 12 NVLinks and 2 NUMA Groups (2 CPUs w/ 24 cores each)

• H100 topology:

$ nvidia-smi topo -m

GPU0  GPU1  GPU2  GPU3  GPU4  GPU5  GPU6  GPU7  CPU Affinity  NUMA Affinity

GPU0   X    NV18  NV18  NV18  NV18  NV18  NV18  NV18   0-51         0

GPU1  NV18   X    NV18  NV18  NV18  NV18  NV18  NV18   0-51         0

GPU2  NV18  NV18   X    NV18  NV18  NV18  NV18  NV18   0-51         0

GPU3  NV18  NV18  NV18   X    NV18  NV18  NV18  NV18   0-51         0

GPU4  NV18  NV18  NV18  NV18   X    NV18  NV18  NV18  52-103        1

GPU5  NV18  NV18  NV18  NV18  NV18   X    NV18  NV18  52-103        1

GPU6  NV18  NV18  NV18  NV18  NV18  NV18   X    NV18  52-103        1

GPU7  NV18  NV18  NV18  NV18  NV18  NV18  NV18   X    52-103        1

You can see there are 18 NVLinks and 2 NUMA Groups (2 CPUs w/ 52 cores each)

Of course, other A100 and H100s servers may be different, e.g. different number of cpu cores.

NVSwitch
NVSwitch can connect more than 8 GPUs at the speed of NVLink. It’s advertised to connect up to 256 GPUs in the future
generations of the switch.

The benefit of connecting more than 8 GPUs at the speed of NVLink is that it allows all-to-all GPU communications at a
much faster speed than any intra-node hardware can provide. And with ever increasing compute speeds the network is
the likely bottleneck leading to underutilized super-expensive GPUs.

For example, in the universe of Tensor Parallelism (Megatron), one doesn’t use TP degree of more than 8, because TP is
only efficient at NVLink speed. ZeRO-DP (Depspeed/FSDP) would also run much faster if the whole cluster uses NVLink
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speed and involves no slow inter-node connections.

The current NVIDIA DGX H100 has a 3.6 TBps of full-duplex NVLink Network bandwidth provided by 72 NVLinks (NVLink
4). The normal NVlink 4 has 18 NVLinks (0.9 TBps duplex). So this setup has 4 switches (18*4=72) and therefore 0.9*4=3.6

TBps. Note, that this server has 8 GPUs, so here we get a much faster intra-node communications as compared to the
standard NVlink 4.0 which provides only 0.9 TBps all-to-all connectivity for 8 GPUs.

NVIDIA DGX A100 has 6 switches of 12 NVlinks => 72.

DGX H100 SuperPOD combines 32 DGX H100 servers, for a total of 256 GPUs. It looks like here they use only half the
NVLinks they used for a single DGX H100, so only 1.8 GBps per node, for a total of 57.6 GBps in total.

Gaudi2
According to Gaudi2 spec, these servers provide 8x 21 NICs of 100GbE RoCE v2 ROMA for a total of 2.1TBps and each card
connected with each of the other 7 cards at 262.5 GBps.

NUMA Affinity
Non-uniform memory access (NUMA) is a computer memory design used in multiprocessing, where the memory access
time depends on the memory location relative to the processor. As modern servers have more than one CPU to get the best
performance GPUs residing in the same block as the corresponding CPU should have the processes bound to that NUMA
node.

Here is a typical A100 8x GPUs server, as visualized by hwloc:

As you can see it has 2 CPUs, each defining a NUMA block, and each such block contains a group of 4 GPUs. The GPUs are
the grey blocks that say CoProc with 108 compute units (SMs) and 79GB of memory.

footnote: was generated by lstopo a100.png
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Software Tools
note-to-self: probably belongs in its own chapter?

hwloc

https://github.com/open-mpi/hwloc

The Hardware Locality (hwloc) software project aims at easing the process of discovering hardware resources in parallel
architectures. It offers command-line tools and a C API for consulting these resources, their locality, attributes, and
interconnection. hwloc primarily aims at helping high-performance computing (HPC) applications, but is also applicable
to any project seeking to exploit code and/or data locality on modern computing platforms.

Diagnostics: to take a snapshot of the server NUMA topology and save it as an image (supports many other formats)

lstopo a100.png

NUME node binding: hwloc-bind - binding processes, threads and memory

Bind an existing process to a specific numa node:

hwloc-bind --pid 1234 numa:0

similar software: numactl/libnuma

some suggestions in pytorch docs

Inter-node networking
As inter-node hardware is about of an order of magnitude slower than intra-node hardware in this universe Gbps are used
instead of GBps. (1 GBps = 8 Gbps)

When it comes to inter-node networking hardware, there are the well established InfiniBand from NVIDIA and a few other
players and there are many new comers that mainly are coming from compute cloud providers who can’t compete on the
slim margin renting out someone else’s hardware so they build their own (EFA, and others not yet disclosed).

EFA
Elastic Fabric Adapter (EFA) is a recent technology created by AWS.

• EFA v1 0.4 Tbps (effective 340 Gbps for all_reduce tests) (P4 AWS instances)
• EFA v2 3.2 Tbps (since Q3-2023, P5 AWS instances)

InfiniBand
Now InfiniBand has been around for a few decades so there are many available configurations that can be found out there.
So that if someone says they have InfiniBand that is insufficient information. What you need to know is the rate and the
number of IB links.

Here the most recent signaling rates which you are likely to see in the current hardware offerings:

Signaling rate of uni-directional links in Gbps:
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LinksLinks EDREDR HDRHDR NDRNDR XDRXDR GDRGDR

1 25 50 100 200 400

4 100 200 400 800 1600

8 200 400 800 1600 3200

12 300 600 1200 2400 4800

Latency in usecs:

EDREDR HDRHDR NDRNDR XDRXDR GDRGDR

0.5 0.6 ?? ?? ??

?? = NDR and later didn’t publish latency data

InfiniBand provides RDMA.

Here are some examples of NVIDIA devices with the fastest IB:

• One configuration of NVIDIA DGX H100 comes with 8x NVIDIA ConnectX-7 Ethernet/InfiniBand ports each of
200Gbps, for a total of 1.6 Gbps to connect with other DGX servers.

• For DGX H100 SuperPOD the ConnectX-7s across all 32 DGX servers and associated InfiniBand switches provide 25.6
TBps of full duplex bandwidth for use within the pod or for scaling out the multiple SuperPODs - that is an
equivalent of 0.8 TBps per node (6.4Tbps!).

Gaudi2
According to Gaudi2 spec, these servers provide 24 NICs of 100GbE RoCE v2 ROMA for a total of 2.4Tbps of inter-node
connectivity with other Gaudi2 servers.

HPE Slingshot interconnect
HPE Slingshot interconnect seems to be used by HPCs. As of this writing it provides 200Gbps per link. Some HPCs use 4 of
those links to build 800Gbps interconnects, and, of course, with more links will deliver a higher overall bandwidth.

OPA
OmniPath Architecture. Originally by Intel, the technology got sold to Cornelis Networks.

case study: I used this technology at JeanZay HPC in France in 2022. It was only 135Gbps and while the vendor tried to fix
it a year later it was still the same speed. Hopefully the issue has been resolved and the speed is much faster nowadays.
Because it was so slow we had to use Megatron-Deepspeed for training BLOOM-176B instead of the much easier to use
DeepSpeed ZeRO).

As of this writing I see that the product comes with either 100 or 200Gbps bandwidth. So it’s unlikely you will see anybody
offering this solution for ML workloads, unless they manage to install many NICs perhaps?

Omni-Path provides RDMA.

42

https://en.wikipedia.org/wiki/Remote_direct_memory_access
https://habana.ai/wp-content/uploads/2023/10/HLS-Gaudi2_Datasheet_10_23.pdf
https://www.hpe.com/ca/en/compute/hpc/slingshot-interconnect.html
https://en.wikipedia.org/wiki/Omni-Path
https://github.com/bigscience-workshop/Megatron-DeepSpeed
https://en.wikipedia.org/wiki/Remote_direct_memory_access


Important nuances
Real network throughput
The network throughput in the advertised spec and the actual throughput will never be the same. In the best case you can
expect about 80-90% of the advertised spec.

Then the network throughput will depend on the size of payload being sent during each communication. The higher the
payload the higher the throughput will be.

Let’s demonstrate this using nccl-tests on a single A100 node

$ ./build/all_reduce_perf -b 32k -e 16G -f 2 -g 8 -n 50

[...]

size    time   algbw   busbw

(B)    (us)  (GB/s)  (GB/s)

32_768   43.83    0.75    1.31

65_536   46.80    1.40    2.45

131_072   51.76    2.53    4.43

262_144   61.38    4.27    7.47

524_288   80.40    6.52   11.41

1048_576   101.9   10.29   18.00

2097_152   101.4   20.68   36.18

4_194_304   101.5   41.33   72.33

8_388_608   133.5   62.82  109.93

16_777_216   276.6   60.66  106.16

33_554_432   424.0   79.14  138.49

67_108_864   684.6   98.02  171.54

134_217_728  1327.6  101.10  176.92

268_435_456  2420.6  110.90  194.07

536_870_912  4218.4  127.27  222.72

1_073_741_824  8203.9  130.88  229.04

2_147_483_648   16240  132.23  231.41

4_294_967_296   32136  133.65  233.88

8_589_934_592   64074  134.06  234.61

17_179_869_184  127997  134.22  234.89

footnote: I massaged the output to remove unwanted columns and made the size more human readable

This benchmark run an all_reduce collective for various payload sizes from 32KB to 16GB. The value that we care about is
the busbw - this column tells us the real network throughput as explained here.

As you can see for payloads smaller than 8MB the throughput is very low - and it starts saturating around payload size of
536MB. It’s mostly because of latency. Reducing a single 4GB payload is much faster than 1000x 4MB payloads.

Here is a benchmark that demonstrates that: all_reduce_latency_comp.py. Let’s run it on the same A100 node:

$ python -u -m torch.distributed.run --nproc_per_node=8 all_reduce_latency_comp.py

----------- 1x 4.0GB ----------------

busbw: 1257.165 Gbps
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----------- 1000x 0.004GB ----------------

busbw: 374.391 Gbps

It’s easy to see that it’s about 3x slower in this particular case to send the same payload but in 1000 smaller chunks.

So when you calculate how long does it take to all_reduce a given payload size, you need to use the corresponding busbw

entry (after of course you have run this benchmark on your particular hardware/environment).

Figuring out the payload can be tricky since it’d depend on the implementation of the framework. Some implementations
will reduce each weight’s gradient alone which obvious would lead to a very small payload and the network will be
very slow. Other implementations bucket multiple gradients together before reducing those, increasing the payload and
minimizing the latency impact.

But let’s go back to the benchmark results table. This test was done on an A100 node that runs NVLink advertised as
uni-directional 300GBs so we get about 78% of the theoretical speed with 17GB payload and more than that the benchmark
crashes. It can be seen from the last few rows of the table that not much more can be squeezed.

We can also run p2pBandwidthLatencyTest which performs a low-level p2p benchmark:

./p2pBandwidthLatencyTest

[...]

Unidirectional P2P=Enabled Bandwidth (P2P Writes) Matrix (GB/s)

D\D     0      1      2      3      4      5      6      7

0 1581.48 274.55 275.92 272.02 275.35 275.28 273.62 273.20

1 274.70 1581.48 275.33 272.83 275.38 273.70 273.45 273.70

2 274.81 276.90 1594.39 272.66 275.39 275.79 273.97 273.94

3 273.25 274.87 272.12 1545.50 274.38 274.37 274.22 274.38

4 274.24 275.15 273.44 271.57 1584.69 275.76 275.04 273.49

5 274.37 275.77 273.53 270.84 274.59 1583.08 276.04 273.74

6 275.61 274.86 275.47 273.19 272.58 275.69 1586.29 274.76

7 275.26 275.46 275.49 273.61 275.50 273.28 272.24 1591.14

[...]

As you can see in the Unidirectional section of the report we do get 274 GBps out of the advertised 300GBps (~91%).

Bottom line - in this particular setup:

1. if you have huge payloads you will be able to use about 80% of the advertised 300GBps
2. if the payload of each communication is smallish it could be far far lower.

This graph is also helpful to demonstrate how the actual bandwidth changes with the size of the message:
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(source)
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Latency

(source)

XXX: integrate/expand

Proprietary network hardware and NCCL
Proprietary network hardware vendors like AWS (EFA) don’t disclose their secrets and therefore the public libraries like
nccl cannot support those out of the box. These vendors have to supply their own versions of the network collective
libraries to be used by users of their hardware.

Originally proprietary hardware vendors used the trick of telling the users to use LD_LIBRARY_PATH and/or LD_PRELOAD to
dynamically overload libnccl.so to get their custom version loaded into PyTorch or another framework. But recently
NCCL developed a NCCL Net Plugin which should be used now instead. This feature was added in NCCL v2.12.

Now, when NCCL is initialized, it will look for a libnccl-net.so library and dynamically load it, then look for symbols inside
the library. That’s where proprietary hardware vendors should now put their custom APIs. This library, of course, should
still be either in LD_LIBRARY_PATH or the /etc/ld.so.conf config.

For more information about dynamic library loading see this section.

Node Proximity
If you get 2 random nodes from the cloud they may not reside on the same subnet and there will be an additional latency
incurred for all transmissions.

46

https://ieeexplore.ieee.org/document/5238655
https://github.com/NVIDIA/nccl
https://github.com/NVIDIA/nccl/tree/master/ext-net
https://github.com/stas00/the-art-of-debugging/tree/master/compiled-programs#shared-libraries-ldsoconf-nm-unresolved-symbols-ldd-ld_library_path-ld_preload


You want to make sure that the nodes used for a single training all reside on the same subnet/spine so they are all one hop
away from each other.

When you plan to eventually have a large cluster but starting small make sure that your provider can expand the cluster
while keeping all the nodes close to each other.

Here are the cloud-specific ways of accomplishing node proximity:

• Azure: availability set
• GCP: compact placement policies

Depending on the type of package you have or what type of machines you rent - you may or may not be able to use those.

Shared internode network
If you use a shared HPC environment, or even if you have your own cluster but sharing it with your colleagues expect the
network bandwidth to be unreliable and fluctuate at different time of the day.

This situation unfortunately makes it extremely difficult to finetune the performance of your training setup. Since every
time you run a test the TFLOPs will vary, so how do you do the optimization? Unfortunately I don’t have a magic trick here.
If you have a working solution please kindly share.

case study: we had this issue at JeanZay HPC when we were doing preliminary experiments before we started training
BLOOM-176B. As that HPC has many users it was pretty much impossible to do speed optimizations, as even running the
exact same setup again and again gave different throughput results. Luckily just before we launched BLOOM-176B training
we were given an exclusive access to the new at that time A100 partition so we were the only users and we were able to
greatly optimize the throughput.
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Filesystems and IO

3 ML IO needs
There are 3 distinct IO needs in the ML workload:

1. You need to be able to feed the DataLoader fast - (super fast read, don’t care about fast write) - requires sustainable
load for hours and days

2. You need to be able to write checkpoints fast - (super fast write, fastish read as you will be resuming a few times) -
requires burst writing - you want super fast to not block the training for long (unless you use some sort of cpu
offloading to quickly unblock the training)

3. You need to be able to load and maintain your codebase - (medium speed for both reading and writing) - this also
needs to be shared since you want all nodes to see the same codebase - as it happens only during the start or resume
it’ll happen infrequently

As you can see these 3 have very different requirements both on speed and sustainable load, and thus ideally you’d have 3
different filesystems, each optimized for the required use case.

If you have infinite funds, of course, get a single super-fast read, super-fast write, that can do that for days non-stop. But
for most of us, this is not possible so getting 2 or 3 different types of partitions where you end up paying much less is a
wiser choice.

Incoming suggestions from Ross Wightman to integrate:

• I’d try to separate volumes by workload, so keep the ’lots of small files’, high churn like environments, code separate
from bulk storage like datasets, checkpoints. Possibly even split those too since datasets are largely static and
checkpoints are being rotated all the time

• When datasets are on network storage, just like bucket storage, they should consist of large files AND be read as
large files (sequentially in large chunks, not mmapped!). Avoid seeking within datasets

• Setups like HF datasets can be deceiving, might look like one big file, but often being mmap’d and the IO read
pattern is nuts, like 3-4x more iops than if you’d read them as individual files. Mmap loading can be turned off, but if
that’s the case, for a lot of datasets you move a problem into the DataLoader processes, requiring reading too much
data into memory at once. Better awareness of tradeoffs for different use cases, and especially using Iterable
streaming when appropriate.

• Note that once your datasets are optimally friendly for a large, distributed network filesystem, they can usually just
be streamed from bucket storage in cloud systems that have that option. So better to move them off the network
filesystem in that case.

• In a way, bucket storage like s3, via the interface limitations, enforces patterns that are reasonable for storage
backends like this. It’s ooh, it’s mounted as a folder, I can do whatever I want (mmap files, write loads of little ones,
delete them all, etc) that’s the prob.

• One also cannot expect to treat a distributed filesystem like their local disk. If you separated volumes by workload
you’d probably be able to utilize much higher % of the total storage. Don’t mix high churn, small files with low churn
large files.

• Also, note that once your datasets are optimally friendly for a large, distributed network filesystem, they can usually
just be streamed from bucket storage in cloud systems that have that option. So better to move them off the
network filesystem in that case.
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Glossary
• NAS: Network Attached Storage
• SAN: Storage Area Network
• DAS: Direct-Attached storage
• NSD: Network Shared Disk
• OSS: Object storage server
• MDS: Metadata server
• MGS: Management server

Which file system to choose
Distributed Parallel File Systems are the fastest solutionsDistributed Parallel File Systems are the fastest solutions

Distributed parallel file systems dramatically improve performance where hundreds to thousands of clients can access the
shared storage simultaneously. They also help a lot with reducing hotspots (where some data pockets are accessed much
more often than others).

The 2 excellent performing parallel file systems that I had experience with are:

• Lustre FS (Open Source) (Wiki)
• GPFS (IBM), recently renamed to IBM Storage Scale, and before that it was called IBM Spectrum Scale.

Both solutions have been around for 2+ decades. Both are POSIX-compliant. These are also not trivial to create - you have
to setup a whole other cluster with multiple cpu-only VMs dedicated exclusively for those filesystems - only then you can
mount those. As compared to weaker cloud-provided "built-in" solutions which take only a few screens of questions to
answer in order to activate. And when creating the storage cluster there is a whole science to which VMs to choose for
which functionality. For example, here is a Lustre guide on GCP.

case study: At JeanZay HPC (France) we were saving 2.3TB checkpoint in parallel on 384 processes in 40 secs! This is
insanely fast - and it was GPFS over NVME drives.

NASA’s cluster has a long long list of gotchas around using Lustre.

Some very useful pros of GFPS:

• If you have a lot of small files, you can easily run out of inodes (df -i to check). GFPS 5.x never runs out of inodes, it
dynamically creates more as needed

• GPFS doesn’t have the issue Lustre has where you can run out of disk space at 80% if one of the sub-disks got full and
wasn’t re-balanced in time - you can reliably use all 100% of the allocated storage.

• GPFS doesn’t use a central metadata server (or a cluster of those) which often becomes a bottleneck when dealing
with small files. Just like data, metatada is handled by each node in the storage cluster.

• GPFS comes with a native NSD client which is superior to the generic NFS client, but either can be used with it.

Other parallel file systems I don’t yet have direct experience with:

• BeeGFS
• WekaIO
• DAOS (Distributed Asynchronous Object Storage) (Intel)
• NetApp

Most clouds provide at least one implementation of these, but not all. If your cloud provider doesn’t provide at least one
of these and they don’t have a fast enough alternative to meet your needs you should reconsider.

OK’ish solutionsOK’ish solutions

There are many OK’ish solutions offered by various cloud providers. Benchmark those seriously before you commit to any.
Those are usually quite decent for handling large files and not so much for small files.
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case study: As of this writing with GCP’s Zonal FileStore over NFS solution python -c "import torch" takes 20 secs to
execute, which is extremely slow! Once the files are cached it then takes ~2 secs. Installing a conda environment with a
handful of prebuilt python packages can easily take 20-30 min! This solution we started with had been very painful and
counter-productive to our work. This would impact anybody who has a lot of python packages and conda environments.
But, of course, GCP provides much faster solutions as well.

Remote File System Clients
You will need to choose which client to use to connect the file system to your VM with.

The most common choice is: NFS - which has been around for 4 decades. It introduces an additional overhead and slows
things down. So if there is a native client supported by your VM, you’d have an overall faster performance using it over
NFS. For example, GPFS comes with an NSD client which is superior to NFS.

File Block size
If the file system you use uses a block size of 16mb, but the average size of your files is 16k, you will be using 1,000 times
more disk space than the actual use. For example, you will see 100TB of disk space used when the actual disk space will be
just 100MB.

footnote: On Linux the native file systems typically use a block size of 4k.

So often you might have 2 very different needs and require 2 different partitions optimized for different needs.

1. thousands to millions of tiny files - 4-8k block size
2. few large files - 2-16mb block size

case study: Python is so bad at having tens of thousand of tiny files that if you have many conda environments you are
likely to run of inodes in some situations. At JeanZay HPC we had to ask for a special dedicated partition where we would
install all conda environments because we kept running out of inodes on normal GPFS partitions. I think the problem is
that those GPFS partitions were configured with 16MB block sizes, so this was not a suitable partition for 4KB-large files.

The good news is that modern solutions are starting to introduce a dynamic block size. For example, the most recent GPFS
supports sub-blocks. So, for example, it’s possible to configure GPFS with a block size of 2mb, with a sub-block of 8k, and
then the tiny files get packed together as sub-blocks, thus not wasting too much disk space.

Cloud shared storage solutions
Here are shared file system storage solutions made available by various cloud providers:

• GCP
• Azure
• AWS

Local storage beats cloud storage
While cloud storage is cheaper the whole idea of fetching and processing your training data stream dynamically at training
time is very problematic with a huge number of issues around it.

Same goes for dynamic offloading of checkpoints to the cloud.

It’s so much better to have enough disk space locally for data loading.

For checkpointing there should be enough local disk space for saving a checkpoint in a fast and reliable way and then
having a crontab job or a slurm job to offload it to the cloud. Always keep the last few checkpoints locally for a quick
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resume, should your job crash, as it’d be very expensive to wait to fetch the checkpoint from the cloud for a resume.

case study: we didn’t have a choice and had to use cloud storage for dataloading during IDEFICS-80B training as we had
barely any local storage and since it was multimodal data it was many TBs of data. We spent many weeks trying to make
this solution robust and it sucked at the end. The biggest issue was that it was very difficult at the time to keep track of
RNG state for the DataSampler because the solution we used, well, didn’t bother to take care of it. So a lot of data that took
a lot of time to create was wasted (not used) and a lot of data was repeated, so we didn’t have a single epoch of unique data.

Beware that you’re often being sold only 80% of the storage you
pay for
There is a subtle problem with distributed shared storage used on compute nodes. Since most physical disks used to build
the large file systems are only 0.3-2TB large, any of these physical disks can get full before the combined storage gets full.
And thus they require constant rebalancing so that there will be no situation where one disk is 99% full and others are
only 50% full. Since rebalancing is a costly operation, like most programming languages’ garbage collection, it happens
infrequently. And so if you run df and it reports 90% full, it’s very likely that any of the programs can fail at any given time.

From talking to IO engineers, the accepted reality (that for some reason is not being communicated to customers) is that
only about 80% of distributed large storage is reliable.

Which means that if you want to have 100TB of reliable cloud storage you actually need to buy 125TB of storage, since 80%
of that will be 100TB. So you need to plan to pay 25% more than what you provisioned for your actual needs. I’m not sure
why the customer should pay for the technology deficiency but that’s how it is.

For example, GCP states that only 89% can be used reliably, albeit more than once the storage failed already at 83% for me
there. Kudos to Google to even disclosing this as a known issue, albeit not at the point of where a person buys the storage.
As in - we recommend you buy 12% more storage than you actually plan to use, since we can only reliably deliver 89% of
it.

I also talked to Sycomp engineers who provide managed IBM Storage Scale (GPFS) solutions, and according to them GPFS
doesn’t have this issue and the whole 100% can be reliably used.

Also on some setups if you do backups via the cloud provider API (not directly on the filesystem), they might end up using
the same partition, and, of course, consume the disk space, but when you run df it will not show the real disk usage - it
may show usage not including the backups. So if your backups consume 50% of the partition.

Whatever storage solution you pick, ask the provider how much of the storage can be reliably used, so that there will be
no surprises later.

Don’t forget the checksums
When you sync data to and from the cloud make sure to research whether the tool you use checks the checksums,
otherwise you may end up with corrupt during transmission data. Some tools do it automatically, others you have to
enable this feature (since it usually comes at additional compute cost and transmission slowdown). Better slow, but safe.

These are typically MD5 and SHA256 checksums. Usually MD5 is sufficient if your environment is safe, but if you want the
additional security do SHA256 checksums.

Concepts
Here are a few key storage-related concepts that you likely need to be familiar with:
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Queue Depth
Queue depthQueue depth (or IO depthIO depth) is the number of IO requests that can be queued at one time on a storage device controller. If
more IO requests than the controller can queue are being sent the OS will usually put those into its own queue.

On Linux the local block devices’ queue depth is usually pre-configured by the kernel. For example, if you want to check
the max queue depth set for /dev/sda you can cat /sys/block/sda/queue/nr_requests. To see the current queue depth of a
local device run iostat -x and watch for aqu-sz column. (apt install sysstat to get iostat.)

Typically the more IO requests get buffered the bigger the latency will be, and the better the throughput will be. This is
because if a request can’t be acted upon immediately it’ll prolong the response time as it has to wait before being served.
But having multiple requests awaiting to be served in a device’s queue would typically speed up the total throughput as
there is less waiting time between issuing individual requests.

Direct vs Buffered IO
DirectDirect IO refers to IO that bypasses the operating system’s caching buffers. This corresponds to O_DIRECT flag in open(2)

system call.

The opposite is the bufferedbuffered IO, which is usually the default way most applications do IO since caching typically makes
things faster.

When we run an IO benchmark it’s critical to turn the caching/buffering off, because otherwise the benchmark’s results
will most likely be invalid. You normally won’t be reading or writing the same file hundreds of times in a row. Hence most
likely you’d want to turn the direct mode on in the benchmark’s flags if it provides such.

In certain situation opening files with O_DIRECT may actually help to overcome delays. For example, if the training program
logs to a log file (especially on a slow shared file system), you might not be able to see the logs for many seconds if both the
application and the file system buffering are in the way. Opening the log file with O_DIRECT by the writer typically helps to
get the reader see the logged lines much sooner.

Synchronous vs asynchronous IO
In synchronous IO the client submits an IO request and wait for it to be finished before submitting the next IO request to
the same target device.

In asynchronous IO the client may submit multiple IO requests one after another without waiting for any to finish first.
This requires that the target device can queue up multiple IO requests.

Sequential vs Random access IO
Sequential accessSequential access IO is when you read blocks of data one by one sequentially (think a movie). Here are some examples:

• reading or writing a model’s checkpoint file all at once
• loading a python program
• installing a package

Random accessRandom access IO is when you’re accessing part of a file at random. Here are some examples:

• database querying
• reading samples from a pre-processed dataset in a random fashion
• moving around a file using seek

Benchmarks
Time is money both in terms of a developer’s time and model’s training time, so it’s crucial that storage IO isn’t a
bottleneck in your human and compute workflows.
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In the following sections we will discuss various approaches to figuring out whether the proposed storage solution satisfies
your work needs.

Metrics
The three main storage IO metrics one typically cares for are:

1. Network Throughput or Bandwidth (bytes per second - can be MBps, GBps, etc.)
2. IOPS (Input/output operations per second)
3. Latency (msecs or usecs)

• Network Throughput refers to the rate of message delivery over a network.

• IOPS measures how many input and/or output operations a given storage device can perform per second. Whether
it’s just read or write will depend on the use case - it can be just read or just write or both.

Latency: is the delay between the moment the instruction to transfer data is issued and the data starting to arrive.

It might be easier to understand using a commuter experience. If it takes you 1h to commute to work, then your commute
latency is 2h per day - as you have to travel to work and back. Regardless if you spent at work 8h or you stayed for just an
hour, it’ll still take you approximately the same amount of time to return home (minus the fluctuation in traffic jams).

So if you have a local NVME drive your read or write latency will be much shorter as compared to reading or writing to a
storage device that is located on another continent.

fio
fio - Flexible I/O tester is a commonly used IO benchmarking tool, which is relatively easy to operate. It has many options
which allow you to emulate pretty much any type of a load and it provides a very detailed performance report.

First install fio with apt install fio or however your package manager does it.

Here is an example of a read benchmark:

base_path=/path/to/partition/

fio --ioengine=libaio --filesize=16k --ramp_time=2s --time_based --runtime=3m --numjobs=16 \

--direct=1 --verify=0 --randrepeat=0 --group_reporting --unlink=1 --directory=$base_path  \

--name=read-test --blocksize=4k --iodepth=64 --readwrite=read

Here 16 concurrent read threads will run for 3 minutes. The benchmark uses a block size of 4k (typical for most OSes)
with the file size of 16k (a common size of most Python files) in a sequential reading style using non-buffered IO. So this
particular set of flags will create a good benchmark to show how fast you can import Python modules on 16 concurrent
processes.

case study: on one NFS setup we had python -c "import torch" taking 20 seconds the first time it was run, which is about
20x slower than the same test on a normal NVME drive. Granted once the files were cached the loading was much faster
but it made for a very painful development process since everything was slow.

good read: Fio Output Explained - it’s an oldie but is still a goodie - if you have a more up-to-date write up please send me
a link or a PR.

Important: if you don’t use the --unlink=1 flag make sure to delete fio’s work files between different benchmarks - not
doing so can lead to seriously wrong reports as fio will reuse files it prepared for a different benchmark which must not
be re-used if the benchmark parameters have changed. Apparently this reuse is an fio feature, but to me it’s a bug since I
didn’t know this nuance and got a whole lot of invalid reports because of it and it took awhile to realize they were wrong.
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Going back to the benchmark - the parameters will need to change to fit the type of the IO operation you care to be fast -
is it doing a lot of pip installs or writing a checkpoint on 512 processes, or doing a random read from a parquet file - each
benchmark will have to be adapted to measure the right thing.

At the beginning I was manually fishing out the bits I was after, so I automated it resulting in fio-scan benchmark that will
run a pair of read/write benchmarks on 16KB, 1MB and 1GB file sizes each using a fixed 4k block size (6 benchmarks in
total). It uses a helper fio-json-extract.py to parse the log files and pull out the average latency, bandwidth and iops and
report them in a nicely formatted markdown table.

Here is how to run it:

git clone https://github.com/stas00/ml-engineering/

cd ml-engineering

cd storage

path_to_test=/path/to/partition/to/test

./fio-scan $path_to_test

Adapt path_to_test to point to the partition path you want to benchmark.

note: the log parser uses python3. if fio-scan fails it’s most likely because you run it on a system with python2 installed by
default. It expects python --version to be some python 3.x version. You can edit fio-scan to point to the right python.

Here is an example of this IO scan on my Samsung SSD 980 PRO 2TB NVME drive (summary):

• filesize=16k read

lat mseclat msec bw MBpsbw MBps IOPSIOPS jobsjobs

4.0 1006.3 257614 16

• filesize=16k write

lat mseclat msec bw MBpsbw MBps IOPSIOPS jobsjobs

3.2 1239.1 317200 16

• filesize=1m read

lat mseclat msec bw MBpsbw MBps IOPSIOPS jobsjobs

1.7 2400.1 614419 16

• filesize=1m write

lat mseclat msec bw MBpsbw MBps IOPSIOPS jobsjobs

2.1 1940.5 496765 16

• filesize=1g read
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lat mseclat msec bw MBpsbw MBps IOPSIOPS jobsjobs

1.4 2762.0 707062 16

• filesize=1g write

lat mseclat msec bw MBpsbw MBps IOPSIOPS jobsjobs

2.1 1943.9 497638 16

As you can see as of this writing this is a pretty fast NVMe drive if you want to use it as a base-line against, say, a network
shared file system.

Poor man’s storage IO benchmark
Besides properly designed performance benchmarks which give you some numbers that you may or may not be able to
appreciate there is a perception benchmark, and that is how does a certain functionality or a service feel. For example,
when going to a website, does it feel like it’s taking too long to load a webpage? or when going to a video service, does it
take too long for the video to start playing and does it stop every few seconds to buffer the stream?

So with file system the questions are very simple - does it feel that it takes too long to install or launch a program? Since a
lot of us live in the Python world, python is known to have thousands of tiny files which are usually installed into a virtual
environment, with conda being the choice of many as of this writing.

In one of the environments we have noticed that our developers’ productivity was really bad on a shared filesystem
because it was taking up to 30min to install a conda environment with various packages needed for using a certain
ML-training framework, and we also noticed that python -c "import torch’ could take more than 20 seconds. This is about
5-10x slower than a fast local NVME-based filesystem would deliver. Obviously, this is bad. So I devised a perception test
using time to measure the common activities. That way we could quickly tell if the proposed shared file system solution
that we contemplated to switch to were significantly better. We didn’t want a solution that was 2x faster, we wanted a
solution that was 10x better, because having an expensive developer wait for proverbial paint to dry is not a good thing
for a business.

So here is the poor man’s benchmark that we used, so this is just an example. Surely if you think about the workflow of
your developers you would quickly identify where things are slow and devise yours best fitting your needs.

note: To have a baseline to compare to do these timing tests on a recently manufactured local NVME. This way you know
what the ceiling is, but with beware that many shared file systems won’t be able to match that.

Step 1. Install conda onto the shared file system you want to test if it’s not there already.

export target_partition_path=/mnt/weka  # edit me!!!

mkdir -p $target_partition_path/miniconda3

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O $target_partition_path/

miniconda3/miniconda.sh

bash $target_partition_path/miniconda3/miniconda.sh -b -u -p $target_partition_path/miniconda3

rm -rf $target_partition_path/miniconda3/miniconda.sh

$target_partition_path/miniconda3/bin/conda init bash

bash

notes:

55

https://www.anaconda.com/download


• adapt target_partition_path and the miniconda download link if you aren’t on the x86 platform.
• at the end we launch a new bash shell for conda setup to take an effect, you might need to tweak things further if

you’re not a bash user - I trust you will know what to do.

Step 2. Measure conda install time (write test)

Time the creation of a new conda environment:

time conda create -y -n install-test python=3.9

real    0m29.657s

user    0m9.141s

sys     0m2.861s

Time the installation of some heavy pip packages:

conda deactivate

conda activate install-test

time pip install torch torchvision torchaudio

real    2m10.355s

user    0m50.547s

sys     0m12.144s

Please note that this test is somewhat skewed since it also includes the packages download in it and depending on your
incoming network speed it could be super fast or super slow and could impact the outcome. But once the downloaded
packages are cached, in the case of conda they are also untarred, so if you try to install the packages the 2nd time the
benchmark will no longer be fair as on a slow shared file system the untarring could be very slow and we want to catch
that.

I don’t worry about it because usually when the file system is very slow usually you can tell it’s very slow even if the
downloads are slow, you just watch the progress and you can just tell.

If you do want to make this benchmark precise, you probably could keep the pre-downloaded conda packages and just
deleting their untar’ed dirs:

find $target_partition_path/miniconda3/pkgs -mindepth 1 -type d -exec rm -rf {} +

in the case of pip it doesn’t untar anything, but just caches the wheels it downloaded, so the time pip install benchmark
can definitely be more precise if you run it the 2nd time (the first time it’s downloaded, cached and installed, the second
time it’s installed from cache. So you could do:

conda create -y -n install-test python=3.9

conda activate install-test

pip install torch torchvision torchaudio

conda create -y -n install-test2 python=3.9
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conda activate install-test2

time pip install torch torchvision torchaudio

As you can see here we time only the 2nd time we install the pip packages.

Step 3. Measure loading time after flushing the memory and file system caches (read test)

sudo sync

echo 3 | sudo tee /proc/sys/vm/drop_caches

time python -c "import torch"

As you can see before we do the measurement we have to tell the OS to flush its memory and file system caches.

If you don’t have sudo access you can skip the command involving sudo, also sometimes the system is setup to work w/o
sudo. If you can’t run the syncing and flushing of the file system caches you will just get incorrect results as the benchmark
will be measuring the time to load already cached file system objects. To overcome this either ask your sysadmin to do it
for you or simply come back in the morning while hopefully your file system caches other things and evicts the python
packages, and then repeat the python one liner then with the hope those files are no longer in the cache.

Here is how to see the caching effect:

$ time python -c "import torch"

real    0m5.404s

user    0m1.761s

sys     0m0.751s

$ time python -c "import torch"

real    0m1.977s

user    0m1.623s

sys     0m0.519s

$ sudo sync

$ echo 3 | sudo tee /proc/sys/vm/drop_caches

$ time python -c "import torch"

real    0m5.698s

user    0m1.712s

sys     0m0.734s

You can see that the first time it wasn’t cached and took ~3x longer, then when I run it the second time. And then I told
the system to flush memory and file system caches and you can see it was 3x longer again.

I think it might be a good idea to do the memory and file system caching in the write tests again, since even there caching
will make the benchmark appear faster than what it would be like in the real world where a new package is installed for
the first time.

other tools
•

57



• HPC IO Benchmark Repository (mdtest has been merged into ior in 2017)
• DLIO

XXX: expand on how these are used when I get a chance to try those

Published benchmarks
Here are some published IO benchmarks:

• MLPerf via MLCommons publishes various hardware benchmarks that measure training, inference, storage and
other tasks’ performance. For example, here is the most recent as of this writing storage v0.5 results. Though I find
the results are very difficult to make sense of - too many columns and no control whatsoever by the user, and each
test uses different parameters - so how do you compare things.

Then various benchmarks that you can run yourself:

Contributors
Ross Wightman
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fio benchmark results for hope on
2023-12-20-14:37:02

partition /mnt/nvme0/fio/fio-test

• filesize=16k read

lat mseclat msec bw MBpsbw MBps IOPSIOPS jobsjobs

4.0 1006.3 257614 16

• filesize=16k write

lat mseclat msec bw MBpsbw MBps IOPSIOPS jobsjobs

3.2 1239.1 317200 16

• filesize=1m read

lat mseclat msec bw MBpsbw MBps IOPSIOPS jobsjobs

1.7 2400.1 614419 16

• filesize=1m write

lat mseclat msec bw MBpsbw MBps IOPSIOPS jobsjobs

2.1 1940.5 496765 16

• filesize=1g read

lat mseclat msec bw MBpsbw MBps IOPSIOPS jobsjobs

1.4 2762.0 707062 16

• filesize=1g write

lat mseclat msec bw MBpsbw MBps IOPSIOPS jobsjobs

2.1 1943.9 497638 16
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CPU

XXX: This chapter needs a lot more work

How many cpu cores do you need
Per 1 gpu you need:

1. 1 cpu core per process that is tied to the gpu
2. 1 cpu core for each DataLoader worker process - and you need 2-4 workers.

2 workers is usually plenty for NLP, especially if the data is preprocessed

If you need to do dynamic transforms, which is often the case with computer vision models, you may need 3-4 and
sometimes more workers.

The goal is to be able to pull from the DataLoader instantly, and not block the GPU’s compute, which means that you need
to pre-process a bunch of samples for the next iteration, while the current iteration is running. In other words your next
batch needs to take no longer than a single iteration GPU compute of the batch of the same size.

Besides preprocessing if you’re pulling dynamically from the cloud instead of local storage you also need to make sure that
the data is pre-fetched fast enough to feed the workers that feed the gpu furnace.

Multiply that by the number of GPUs, add a few cores for the Operation system (let’s say 4).

If the node has 8 gpus, and you have n_workers, then you need 8*(num_workers+1)+4. If you’re doing NLP, it’d be usually
about 2 workers per gpu, so 8*(2+1)+4 => 28 cpu cores. If you do CV training, and, say, you need 4 workers per gpu, then
it’d be 8(4+1)+4 => 44 cpu cores.

What happens if you have more very active processes than the total number of cpu cores? Some processes will get
preempted (put in the queue for when cpu cores become available) and you absolutely want to avoid any context
switching.

But modern cloud offerings typically have 48+ cpu-cores so usually there is no problem to have enough cores to go around.

CPU offload
Some frameworks, like Deepspeed can offload some compute work to CPU without creating an bottleneck. In which case
you’d want additional cpu-cores.

Hyperthreads
Doubles the cpu cores number

XXX:
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CPU memory

This is a tiny chapter, since usually there are very few nuances one needs to know about CPU memory - which is a good
thing!

Most of the ML workload compute happens on GPUs, but typically there should be at least as much CPU memory on each
node as there is on the GPUs. So, for example, if you’re on a H100 node with 8x 80GB GPUs, you have 640GB of GPU memory.
Thus you want at least as much of CPU memory. But most recent high end cloud packages usually come with 1-2TBs of CPU
memory.

What CPU memory is needed for in ML workloads
• Loading the model weights, unless they are loaded directly onto the GPUs - this is usually a transitory memory usage

that goes back to zero once the model has been moved to GPUs.
• Saving the model weights. In some situations each GPU writes its own checkpoint directly to the disk, in other cases

the model is recomposed on the CPU before it’s written to disk - this too is a transitory memory usage.
• Possible parameter and optimizer state offloading when using frameworks like Deepspeed. In which case quite a lot

of CPU memory might be needed.
• Activations calculated in the forward pass, and which need to be available for the backward path can also be offloaded

to CPU, rather than discarded and then recomputed during the backward pass to save the unnecessary overhead
• DataLoader is usually one of the main users of CPU memory and at times it may consume very large amounts of

memory. Typically there are at least 2x 8 DL workers running on each node, so you need enough memory to support
at least 16 processes each holding some data. For example, in the case of streaming data from the cloud, if the data
shards are large, these processes could easily eat up hundreds of GBs of CPU memory.

• The software itself and its dependent libraries uses a bit of CPU memory, but this amount is usually negligible.

Things to know
• If the DataLoader uses HF datasets in mmap mode the Resident memory usage may appear to be using a huge amount

of CPU memory as it’ll try to map out the whole datasets to the memory. Except this is misleading, since if the
memory is needed elsewhere the OS will page out any unneeded mmap’ed pages back to the system. You can read
more about it here. This awareness, of course, applies to any dataset using mmap, I was using HF datasets as an
example since it’s very widely used.
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Performance and Acceleration

• Tuning ML software for best performance - tweaking software for the best performance.

• Tuning ML hardware for best performance - choosing and configuring machine learning hardware for best
performance.
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Choosing and Configuring Machine Learning
Hardware for Best Performance

Notes on getting the best performance from the perspective of what hardware is being used. And how to properly set up
and configure it for the peak performance.

GPUs
Power and Cooling
If you bought an expensive high end GPU make sure you give it the correct power and sufficient cooling.

Power
Some high end consumer GPU cards have 2 and sometimes 3 PCI-E 8-Pin power sockets. Make sure you have as many
independent 12V PCI-E 8-Pin cables plugged into the card as there are sockets. Do not use the 2 splits at one end of the
same cable (also known as pigtail cable). That is if you have 2 sockets on the GPU, you want 2 PCI-E 8-Pin cables going from
your PSU to the card and not one that has 2 PCI-E 8-Pin connectors at the end! You won’t get the full performance out of
your card otherwise.

Each PCI-E 8-Pin power cable needs to be plugged into a 12V rail on the PSU side and can supply up to 150W of power.

Some other cards may use a PCI-E 12-Pin connectors, and these can deliver up to 500-600W of power.

Low end cards may use 6-Pin connectors, which supply up to 75W of power.

Additionally you want the high-end PSU that has stable voltage. Some lower quality ones may not give the card the stable
voltage it needs to function at its peak.

And of course the PSU needs to have enough unused Watts to power the card.

Cooling
When a GPU gets overheated it will start throttling down and will not deliver full performance and it can even shutdown
if it gets too hot.

It’s hard to tell the exact best temperature to strive for when a GPU is heavily loaded, but probably anything under +80C
is good, but lower is better - perhaps 70-75C is an excellent range to be in. The throttling down is likely to start at around
84-90C. But other than throttling performance a prolonged very high temperature is likely to reduce the lifespan of a GPU.

Intra-connects and Inter-connects
Multi-GPU Connectivity
If you use multiple GPUs the way cards are inter-connected can have a huge impact on the total training time. If the GPUs
are on the same physical node, you can run:

nvidia-smi topo -m

and it will tell you how the GPUs are inter-connected. On a machine with dual-GPU and which are connected with NVLink,
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you will most likely see something like:

GPU0    GPU1    CPU Affinity    NUMA Affinity

GPU0     X      NV2     0-23            N/A

GPU1    NV2      X      0-23            N/A

on a different machine w/o NVLink we may see:

GPU0    GPU1    CPU Affinity    NUMA Affinity

GPU0     X      PHB     0-11            N/A

GPU1    PHB      X      0-11            N/A

The report includes this legend:

X    = Self

SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)

NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA

node

PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)

PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)

PIX  = Connection traversing at most a single PCIe bridge

NV#  = Connection traversing a bonded set of # NVLinks

So the first report NV2 tells us the GPUs are interconnected with 2 NVLinks, and the second report PHB we have a typical
consumer-level PCIe+Bridge setup.

Check what type of connectivity you have on your setup. Some of these will make the communication between cards faster
(e.g. NVLink), others slower (e.g. PHB).

Depending on the type of scalability solution used, the connectivity speed could have a major or a minor impact. If the
GPUs need to sync rarely, as in DDP, the impact of a slower connection will be less significant. If the GPUs need to send
messages to each other often, as in ZeRO-DP, then faster connectivity becomes super important to achieve faster training.

NVlink
NVLink is a wire-based serial multi-lane near-range communications link developed by Nvidia.

Each new generation provides a faster bandwidth, e.g. here is a quote from Nvidia Ampere GA102 GPU Architecture:

Third-Generation NVLink® GA102 GPUs utilize NVIDIA’s third-generation NVLink interface, which includes four
x4 links, with each link providing 14.0625 GB/sec bandwidth in each direction between two GPUs. Four links
provide 56.25 GB/sec bandwidth in each direction, and 112.5 GB/sec total bandwidth between two GPUs. Two
RTX 3090 GPUs can be connected together for SLI using NVLink. (Note that 3-Way and 4-Way SLI configurations
are not supported.)

So the higher X you get in the report of NVX in the output of nvidia-smi topo -m the better. The generation will depend on
your GPU architecture.
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Let’s compare the execution of a gpt2 language model training over a small sample of wikitext.

The results are:

NVlinkNVlink TimeTime

Y 101s

N 131s

You can see that NVLink completes the training ~23% faster. In the second benchmark we use NCCL_P2P_DISABLE=1 to tell
the GPUs not to use NVLink.

Here is the full benchmark code and outputs:

# DDP w/ NVLink

rm -r /tmp/test-clm; CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \

--nproc_per_node 2 examples/pytorch/language-modeling/run_clm.py --model_name_or_path gpt2 \

--dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 --do_train \

--output_dir /tmp/test-clm --per_device_train_batch_size 4 --max_steps 200

{’train_runtime’: 101.9003, ’train_samples_per_second’: 1.963, ’epoch’: 0.69}

# DDP w/o NVLink

rm -r /tmp/test-clm; CUDA_VISIBLE_DEVICES=0,1 NCCL_P2P_DISABLE=1 python -m torch.distributed.launch \

--nproc_per_node 2 examples/pytorch/language-modeling/run_clm.py --model_name_or_path gpt2 \

--dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 --do_train

--output_dir /tmp/test-clm --per_device_train_batch_size 4 --max_steps 200

{’train_runtime’: 131.4367, ’train_samples_per_second’: 1.522, ’epoch’: 0.69}

Hardware: 2x TITAN RTX 24GB each + NVlink with 2 NVLinks (NV2 in nvidia-smi topo -m) Software: pytorch-1.8-to-be +
cuda-11.0 / transformers==4.3.0.dev0

NVSwitch

InfiniBand (IB)
Infiniband

Intel Omni-Path (OPA)

EFA
AWS-based hardware

Performance measurements
• all_reduce_bench.py
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• all_gather_perf from nccl-tests
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Software Tune Up For The Best Performance

The faster you can make your model to train the sooner the model will finish training, which is important not only to
being first to publish something, but also potentially saving a lot of money.

In general maximizing throughput is all about running many experiments and measuring the outcome and choosing the
one that is superior.

In certain situations your modeling team may ask you to choose some hyper parameters that will be detrimental to
throughput but overall beneficial for the overall model’s success.

Crucial reproducibility requirements
The most important requirements for a series of successful experiments is to be able to reproduce the experiment
environment again and again while changing only one or a few setup variables.

Therefore when you try to figure out whether some change will improve performance or make it worse, you must figure
out how to keep things stable.

For example, you need to find a way to prevent the network usage from fluctuations. When we were doing performance
optimizations for 108B pre-BLOOM experiments it was close to impossible to perform, since we were on a shared internode
network and the exact same setup would yield different throughput depending on how many other users used the
network. It was not working. During BLOOM-176B we were given a dedicated SLURM partition with an isolated network
where the only traffic was ours. Doing the performance optimization in such environment was just perfect.

Network throughput
It’s critical to understand your particular model size and framework requirements with regard to network bandwidth,
throughput and latency. If you underpay for network you will end up having idle gpus and thus you wasted money and
time. If you overpay for very fast network, but your gpus are slow, then again you wasted money and time.

If your network is very slow, your training is likely to be network-bound and many improvements in the training setup
will not help with the improving performance.

Here is a simple all-reduce benchmark that you can use to quickly measure the throughput of your internode network:

all_reduce_bench.py

Usually benchmarking at least 4 nodes is recommended, but, of course, if you already have access to all the nodes you will
be using during the training, benchmark using all of the nodes.

To run it on 4 nodes:

GPUS_PER_NODE=8

NNODES=4

MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)

MASTER_PORT=6000

python -u -m torch.distributed.run \

--nproc_per_node $GPUS_PER_NODE \

--nnodes $NNODES \

--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \

--rdzv_backend c10d \

67

https://github.com/bigscience-workshop/bigscience/tree/master/train/tr8-104B-wide
https://github.com/stas00/ml-engineering/blob/master/multi-node/all_reduce_bench.py


--max_restarts 0 \

--role `hostname -s`: \

--tee 3 \

all_reduce_bench.py

Notes:

• adapt MASTER_ADDR to rank 0 hostname if it’s not a SLURM environment where it’s derived automatically.

Here is how to run launch it in a SLURM env with 4 nodes:

salloc --partition=mypartition --nodes=4 --ntasks-per-node=1 --cpus-per-task=48 --gres=gpu:8

--time=1:00:00 bash

srun --gres=gpu:8 --nodes=4 --tasks-per-node=1 python -u -m torch.distributed.run --nproc_per_node=8

--nnodes 4 --rdzv_endpoint $(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1):6000 --rdzv_backend

c10d all_reduce_bench.py

Notes:

• You are likely to need to adapt --cpus-per-task and --partition arguments there.
• You do salloc once and then can repeat srun multiple times on the same allocation.

You may get results anywhere between 5Gbps and 1600Gbps (as of this writing). The minimal speed to prevent being
network bound will depend on your particular training framework, but typically you’d want at least 400Gbps or higher.
Though we trained BLOOM on 50Gbps.

Frameworks that shard weights and optim stages like Deepspeed w/ ZeRO Stage-3 do a lot more traffic than frameworks
like Megatron-Deepspeed which do tensor and pipeline parallelism in addition to data parallelism. The latter ones only
send activations across and thus don’t need as much bandwidth. But they are much more complicated to set up and run.

Of course, an efficient framework will overlap communications and compute, so that while one stage is fetching data, the
other stage in parallel runs computations. So as long as the communication overhead is smaller than compute the network
requirements are satisfied and don’t have to be super fantastic.

To get reasonable GPU throughput when training at scale (64+GPUs) with DeepSpeed ZeRO Stage 3 with V100s

1. 100Gbps is not enough
2. 200-400 Gbps is ok
3. 800-1000 Gbps is ideal

full details

Of course, the requirements are higher for A100 gpu nodes and even higher for H100s (but no such benchmark information
has been shared yet).

MACs vs FLOP vs FLOPS vs FLOP/s
This section is here to try to disambiguate the common performance metric definitions and their relationship to each
other.

MAC vs FLOPMAC vs FLOP:

• 1 FLOP (FLoating point OPeration) can be one of addition, subtraction, multiplication, or division operation.

• 1 MAC (Multiply-ACCumulate) operation is a multiplication followed by an addition, that is: a * b + c
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Thus 1 MAC = 2 FLOPs. It’s also quite common for modern hardware to perform 1 MAC in a single clock cycle.

Please note that to calculate the number of MACs in relationship to FLOPs the reverse logic applies, that is MACs = 0.5
FLOPs - it’s somewhat confusing since we have just said that 1 MAC = 2 FLOPs, but it checks out - observe: 100 FLOPs = 50
MACs - because there are 2 FLOPs in each MAC.

Moreover, while 1 MAC = 2 FLOPs, the reverse isn’t necessarily true. That is 2 FLOPs isn’t necessarily equal to 1 MAC. For
example, if you did .5*.6 100 times it’d be 100 FLOPs, which here would equal to 100 MACs, because here only the multiply
part of the MAC is executed.

FLOP vs FLOPS vs FLOP/sFLOP vs FLOPS vs FLOP/s

• 1 FLOP (FLoating point OPeration) is any floating point addition, subtraction, multiplication, or division operation.

• 1 FLOPS (FLoating point OPeration per Second) is how many floating point operations were performed in 1 second -
see FLOPS

Further you will find the following abbreviations: GFLOPS = Giga FLOPS, TFLOPS = Tera FLOPS, etc., since it’s much easier
to quickly grasp 150TFLOPS rather than 150000000000000FLOPS.

There is an ambiguity when FLOPS is used in writing - sometimes people use it to indicate the total quantity of operations,
at other times it refers to operations per second. The latter is the most common usage and that is the definition used in
this book.

In scientific writing FLOP/s is often used to clearly tell the reader that it’s operations per second. Though this particular
approach is hard to convert to a variable name since it still becomes flops when illegal characters are removed.

In some places you might also see FLOPs, which again could mean either, since it’s too easy to flip lower and upper case s.

If the definition is ambiguous try to search for context which should help to derive what is meant:

• If it’s a math equation and there is a division by time you know it’s operations per second.
• If speed or performance is being discussed it usually refers to operations per second.
• If it talks about the amount of compute required to do something it refers to the total amount of operations.

TFLOPS as a performance metric
Before you start optimizing the performance of your training setup you need a metric that you can use to see whether
the throughput is improving or not. You can measure seconds per iteration, or iterations per second, or some other such
timing, but there is a more useful metric that measures TFLOPS.

Measuring TFLOPS is superior because without it you don’t know whether you are close to the best performance that can
be achieved or not. This measurement gives you an indication of how far you’re from the peak performance reported by
the hardware manufacturer.

In this section I will use BLOOM’s training for the exemplification. We used 80GB A100 NVIDIA GPUs and we trained in
mixed bf16 regime. So let’s look at the A100 spec which tells us:

BFLOAT16 Tensor Core         312 TFLOPS

Therefore we now know that if we were to only run matmul on huge bf16 matrices of very specific dimensions without
copying to and from the device we should get around 312 TFLOPS max.

Practically though, due to disk IO, communications and copying data from the GPU’s memory to its computing unit
overhead and because we can’t do everything in bf16 and at times we have to do math in fp32 (or tf32) we can really expect
much less than that. The realistic value will vary from accelerator to accelerator, but for A100 in 2022 getting above 50%
(155 TFLOPS) was an amazing sustainable throughput for a complex 384 GPUs training setup.
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footnote: in 2023 the invention of flash attention and other techniques have pushed the bar to more than 50%.

When we first started tuning things up we were at <100 TFLOPS and a few weeks later when we launched the training we
managed to get 150 TFLOPS.

The important thing to notice here is that we knew that we can’t push it further by much and we knew that there was no
more point to try and optimize it even more.

So a general rule of thumb for when you prepare for a massive model training - ask around what’s the top TFLOPS one can
expect to get with a given accelerator on a multi-node setup with the specified precision - and optimize until you get close
to that. Once you did stop optimizing and start training.

footnote: For 80GB A100s in 2022 that was 155, in 2023 it has been pushed to about 180 TFLOPS.

footnote: When calculating TFLOPS it’s important to remember that the math is different if Gradient checkpointing are
enabled, since when it’s activated more compute is used and it needs to be taken into an account. Usually the cost is of an
additional forward path, but recently better methods have been found that saves some of that recomputation.

For decoder transformer models the following is an estimation formula which slightly under-reports the real TFLOPS:

TFLOPS: model_size_in_B * 4 * 2 * seqlen * global_batch_size / (time_in_sec_per_interation * total_gpus * 1e3)

The factor of 4 is used with activation/gradient checkpointing, otherwise it will be 3. For 100B+ models, activation
checkpointing will almost always be on.

So the 3*2 is often called "model FLOPs" and 4*2 - "hardware FLOPs", correlating to MFU and HFU (model and hardware
FLOPS per second divided by the accelerator’s theoretical peak FLOPS)

perl -le ’$ng=64; $ms=52; $gbs=1024; $sp=127; $seqlen=2048; print $ms*4*2*$seqlen*$gbs / ( $sp * $ng *

1e3)’

(ng = total gpus, ms = model size in B, gbs = global batch size, sp = throughput in seconds)

Here is the same formula using bash env vars and which breaks down GBS into MBS*DP*GAS (GAS in this case corresponded
to pp_chunks which was the number of chunks in the pipeline, but normally GAS just stands for Gradient Accumulation
Steps):

echo "($MSIZE*4*2*SEQLEN*$MICRO_BATCH_SIZE*$DP_SIZE*$GAS)/($THROUGHPUT*$NNODES*4*1000)" | bc -l

The exact formula is in Equation 3 of Section 5.1 of the Efficient Large-Scale Language Model Training on GPU Clusters
Using Megatron-LM paper. You can see the code here.

footnote: For Inference only it’d be: 24Bsh^2 + 4Bs^2h floating point operations per layer.

How To Improve Speed and Save Memory
The more GPU memory you have for your batch size (BS) the more efficient the GPUs will be at performing compute, and
the faster you will complete your task since you will be able to go through data faster.

Of course, this section is crucial for when you get GPU OOM with even BS=1 and you don’t want to rent/buy more
hardware.

Here is an overview of what features can help to either improve speed or save memory
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MethodMethod SpeedSpeed MemoryMemory

Gradient accumulation Yes Yes

Gradient checkpointing Yes Yes

Mixed precision training Yes No

Batch size Yes Yes

Optimizer choice Yes Yes

DataLoader Yes No

DeepSpeed Zero No Yes

Anatomy of Model’s Operations
Transformers architecture includes 3 main groups of operations grouped below by compute-intensity.

1. Tensor ContractionsTensor Contractions

Linear layers and components of Multi-Head Attention all do batched matrix-matrix multiplicationsmatrix-matrix multiplications. These
operations are the most compute-intensive part of training a transformer.

2. Statistical NormalizationsStatistical Normalizations

Softmax and layer normalization are less compute-intensive than tensor contractions, and involve one or more
reduction operationsreduction operations, the result of which is then applied via a map.

3. Element-wise OperatorsElement-wise Operators

These are the remaining operators: biases, dropout, activations, and residual connectionsbiases, dropout, activations, and residual connections. These are the least
compute-intensive operations.

This knowledge can be helpful to know when analyzing performance bottlenecks.

This summary is derived from Data Movement Is All You Need: A Case Study on Optimizing Transformers 2020

Anatomy of Model’s Memory Usage
We’ve seen that training the model uses much more memory than just putting the model on the GPU. This is because there
are many components during training that use GPU memory. The components on GPU memory are the following:

1. model weights
2. optimizer states
3. gradients
4. forward activations saved for gradient computation
5. temporary buffers
6. functionality-specific memory

A typical model trained in mixed precision with AdamW requires 18 bytes per model parameter plus activation memory
and temp memory.

Let’s look at the details.

Model Weights:Model Weights:

• 4 bytes * number of parameters for fp32 training
• 6 bytes * number of parameters for mixed precision training (maintains a model in fp32 and one in fp16/bf16 in
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memory)

Optimizer States:Optimizer States:

• 8 bytes * number of parameters for normal AdamW (maintains 2 states)
• 4 bytes * number of parameters for AdamW running at bf16. See this work that uses AnyPrecisionAdamW.
• 4 bytes * number of parameters for optimizers like SGD with momentum (maintains only 1 state) or LION, or

Adafactor (and others) (Adafactor uses some additional memory beside 4 bytes)
• 2 bytes * number of parameters for 8-bit AdamW optimizers like bitsandbytes

GradientsGradients

• 4 bytes * number of parameters for either fp32 or mixed precision training (gradients are almost always kept in
fp32).

• 2 bytes * number of parameters for more recent works where half-precision is used

Forward ActivationsForward Activations

• size depends on many factors, the key ones being sequence length, hidden size and batch size.

There are the input and output that are being passed and returned by the forward and the backward functions and the
forward activations saved for gradient computation.

Temporary MemoryTemporary Memory

Additionally there are all kinds of temporary variables which get released once the calculation is done, but in the moment
these could require additional memory and could push to OOM. Therefore when coding it’s crucial to think strategically
about such temporary variables and sometimes to explicitly free those as soon as they are no longer needed.

Functionality-specific memoryFunctionality-specific memory

Then your software could have special memory needs. For example, when generating text using beam search, the software
needs to maintain multiple copies of inputs and outputs.

For inferenceinference, the math is very similar to training, minus optimizer states and gradients. And for model weights there is
just a single multiplier of the number of parameters:

• 6 bytes in mixed precision (4+2)
• 4 bytes in fp32
• 2 bytes in half precision
• 1 byte in quantized int8 precision

Another excellent resource that takes you through the memory needs and other requirements is Transformer Math 101.

Additional GPU memory usage
In addition to the memory usage described in the previous section, there are other consumers of the GPU memory - so you
never get the full memory for your model’s use.

Preloaded CUDA kernels memory usage
When PyTorch uses CUDA for the first time, it may use up 0.5-2GB of GPU memory, reducing the GPU’s total available
memory.

The size of allocated memory for cuda kernels varies between different GPUs, and also it can be different between pytorch
versions. Let’s allocate a 4-byte tensor on cuda and check how much GPU memory is used up upfront.

With pytorch==1.10.2:

$ CUDA_MODULE_LOADING=EAGER python -c "import torch; x=torch.ones(1).cuda(); free, total = map(lambda x:
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x/2**30, torch.cuda.mem_get_info()); \

used=total-free; print(f’pt={torch.__version__}: {used=:0.2f}GB, {free=:0.2f}GB, {total=:0.2f}GB’)"

pt=1.10.2: used=1.78GB, free=77.43GB, total=79.21GB

With pytorch==1.13.1:

$ CUDA_MODULE_LOADING=EAGER python -c "import torch; x=torch.ones(1).cuda(); free, total = map(lambda x:

x/2**30, torch.cuda.mem_get_info()); \

used=total-free; print(f’pt={torch.__version__}: {used=:0.2f}GB, {free=:0.2f}GB, {total=:0.2f}GB’)"

pt=1.13.1: used=0.90GB, free=78.31GB, total=79.21GB

The older pytorch "wasted" 1.78GB of A100, the newer only 0.9GB, thus saving a whooping 0.9GB, which can be the saving
grace for the OOM situations.

CUDA_MODULE_LOADING=EAGER is needed in the recent pytorch version if we want to force cuda kernels pre-loading, which
are otherwise lazy-loaded on demand. But do not use this setting in production since it’s likely to use more memory than
needed. The whole point of lazy-loading is to load only the kernels that are needed.

With pytorch==2.1.1:

$ CUDA_MODULE_LOADING=EAGER python -c "import torch; x=torch.ones(1).cuda(); free, total = map(lambda x:

x/2**30, torch.cuda.mem_get_info()); \

used=total-free; print(f’pt={torch.__version__}: {used=:0.2f}GB, {free=:0.2f}GB, {total=:0.2f}GB’)"

pt=2.1.1+cu121: used=0.92GB, free=78.23GB, total=79.15GB

As compared to the lazy mode:

$ python -c "import torch; x=torch.ones(1).cuda(); free, total = map(lambda x: x/2**30,

torch.cuda.mem_get_info()); \

used=total-free; print(f’pt={torch.__version__}: {used=:0.2f}GB, {free=:0.2f}GB, {total=:0.2f}GB’)"

pt=2.1.1+cu121: used=0.47GB, free=78.68GB, total=79.15GB

There is a 450MB difference, but here we only loaded kernels to do torch.ones - the actual memory allocated at run time
with other code using torch API will be somewhere between 0.47 and 0.92GB.

Memory fragmentation
As the model allocates and frees tensors, the memory could fragment. That is there could be enough free memory to
allocate, say, 1GB of contiguous memory, but it could be available in 100s of small segments spread out through the
memory and thus even though the memory is available it can’t be used unless very small allocations are made.

Environment variable PYTORCH_CUDA_ALLOC_CONF comes to help and allows you to replace the default memory allocation
mechanisms with more efficient ones. For more information see Memory management.

Batch sizes
First, there are usually two batch sizes:

1. micro batch size (MBS), also known as batch size per gpu - this is how many samples a single gpu consumes during a
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model’s single forward call.

2. global batch size (GBS) - this is the total amount of samples consumed between two optimizer steps across all
participating GPUs.

Model replica is how many gpus are needed to fit the full model.

• If the model fits into a single GPU a model replica takes 1 GPU. Usually then one can use multiple GPUs to perform
Data Parallelism

• If the model doesn’t fit into a single GPU, it’d usually require some sort of sharding technique - it can be Tensor
Parallelism (TP), Pipeline Parallelism (PP), or ZeRO Data Parallelism (ZeRO-DP).

You can have as many data streams as there are replicas. Which is the same as the value of DP.

• So in the simple case of a model fitting into a single GPU. There are as many data streams as there are GPUs.
DP=N_GPUS

• when the model doesn’t fit onto a single GPU, then DP=N_GPUs/(TP*PP) in the case of 3D parallelism and DP=ZeRO-DP
in the case of ZeRO parallelism.

Going back to our global batch size (GBS) it’s calculated as:

GBS = MBS*DP

So if you have 8 gpus (N_GPUS=8) and your MBS=4 and you do DP you end up with having GBS=32 because:

GBS = MBS*DP = 4*8 = 32

If you use TP with a degree of 2 (TP=2) and PP with a degree of 2 (PP=2) this means each model replica takes 4 gpus (TP*PP),
and thus with N_GPUS=8

DP = N_GPUS/(TP*PP) = 8 / (2*2) = 2

and now GBS becomes:

GBS = MBS*DP = 4*2 = 8

If your training setup requires Gradient Accumulation, one usually defines the interval of how many steps to wait before
performing a gradient accumulation. The term is usually Gradient Accumulation Steps (GAS). If GAS=4 (i.e. sync grads
every 4 steps) and TP=1, PP=1 and DP=8:

DP = N_GPUS/(TP*PP) = 8 / (1*1) = 8

GBS = MBS*DP*GAS = 4*8*4 = 128

Typically you want to make the micro batch size as large as possible so that the GPU memory is close to being full, but not
too full.

With large models usually there is not much free GPU memory left to have a large micro batch size, therefore every
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additional sample you can fit is important.

While it’s super important that sequence length and hidden size and various other hyper parameters are high multiples
of 2 (64, 128 and higher) to achieve the highest performance, because in most models the batch dimension is flattened
with the sequence length dimension during the compute the micro batch size alignment usually has little to no impact on
performance.

Therefore if you tried to fit a micro batch size of 8 and it OOM’ed, but 7 fits - use the latter rather than 4. The higher the
batch size the more samples you will be able to fit into a single step.

Of course, when using hundreds of GPUs your global batch size may become very large. In that case you might use a smaller
micro batch size or use less GPUs or switch to a different form of data parallelism so that the GPUs work more efficiently.

Gradient Accumulation
The idea behind gradient accumulation is to instead of calculating the gradients for the whole batch at once to do it
in smaller steps. The way we do that is to calculate the gradients iteratively in smaller batches by doing a forward and
backward pass through the model and accumulating the gradients in the process. When enough gradients are accumulated
we run the model’s optimization step. This way we can easily increase the overall batch size to numbers that would never
fit into the GPU’s memory. In turn, however, the added forward and backward passes can slow down the training a bit.

Gradient Accumulation Steps (GAS) is the definition of how many steps are done w/o updating the model weights.

When using Pipeline parallelism a very large Gradient Accumulation is a must to keep the pipeline’s bubble to the
minimum.

Since the optimizer step isn’t performed as often with gradient accumulation there is an additional speed up here as well.

The following benchmarks demonstrate how increasing the gradient accumulation steps improves the overall throughput
(20-30% speedup):

• RTX-3090
• A100

When data parallelism is used gradient accumulation further improves the training throughput because it reduces the
number of gradient reduction calls, which is typically done via the all_reduce collective which costs a 2x size of gradients
to be reduced. So for example, if one goes from GAS=1 to GAS=8 in DistributedDataParallelism (DDP) the network overhead
is reduced by 8x times, which on a slow inter-node network can lead to a noticeable improvement in the training
throughput.

Gradient checkpointing
Gradient Checkpointing is also known as Activation Recompution, Activation Checkpointing and Checkpoint Activations.

This methodology is only relevant for training, and not during inference.

Enabling gradient checkpointing allows one to trade training throughput for accelerator memory. When this feature is
activated instead of remembering the outputs of, say, transformer blocks until the backward pass is done, these outputs are
dropped. This frees up huge amounts of accelerator memory. But, of course, a backward pass is not possible without having
the outputs of forward pass, and thus they have to be recalculated.

This, of course, can vary from model to model, but typically one pays with about 20-25% decrease in throughput, but since
a huge amount of gpu memory is liberated, one can now increase the batch size per gpu and thus overall improve the
effective throughput of the system. In some cases this allows you to double or quadruple the batch size if you were already
able to do a small batch size w/o OOM. (Recent papers report as high as 30-40% additional overhead.)

Activation checkpointing and gradient checkpointing are 2 terms for the same methodology.

For example, in HF Transformers models you do model.gradient_checkpointing_enable() to activate it in your custom
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Trainer or if you use the HF Trainer then you’d activate it with --gradient_checkpointing 1.

XXX: expand on new tech from the paper: Reducing Activation Recomputation in Large Transformer Models which found
a way to avoid most activation recomputations and thus save both memory and compute.

Memory-efficient optimizers
The most common optimizer is Adam. It and its derivatives all use 8 bytes per param (2x fp32 tensors - one for each
momentum), which account for almost half the memory allocation for the model, optimizer and gradients. So at times
using other optimizers may save the day, if they successfully train that is. Not all optimizers are suitable for all training
tasks.

4-byte optimizers:

• There are optimizers like Adafactor that need only 4 bytes. Same goes for the recently invented LION optimizer.

• AnyPrecisionAdamW. Some courageous souls try to do the whole training in BF16 (not mixed precision!), including the
optimizer and thus need only 4 bytes per parameter for optim states. See this work. Hint: this optimizer requires
Kahan summation and/or stochastic rounding, see Revisiting BFloat16 Training (2020). You need only 8 bytes per
parameter for weights, optim states and gradients here! Instead of 18!

2-byte optimizers:

• There are quantized solutions like bnb.optim.Adam8bit which uses only 2 bytes instead of 8 (1 byte per momentum).
You can get it from here. Once installed, if you’re using HF Trainer, you can enable it on with just passing --optim

adamw_bnb_8bit!

For speed comparisons see this benchmark Speed-wise:apex’s apex.optimizers.FusedAdam optimizer is so far the fastest
implementation of Adam. Since pytorch-2.0 torch.optim.AdamW added support for fused=True option, which brings it
almost on par with apex.optimizers.FusedAdam.

Model execution speed
forward vs backward Execution Speed
For convolutions and linear layers there are 2x flops in the backward compared to the forward, which generally translates
into ~2x slower (sometimes more, because sizes in the backward tend to be more awkward). Activations are usually
bandwidth-limited, and it’s typical for an activation to have to read more data in the backward than in the forward (e.g.
activation forward reads once, writes once, activation backward reads twice, gradOutput and output of the forward, and
writes once, gradInput).

Memory profiler tools
In this chapter we discussed the theoretical math of how much this or that feature should consume in MBs of memory.
But often in reality things aren’t exactly the same. So you plan for a certain model size and batch sizes but when you
come to use it suddenly there is not enough memory. So you need to work with your actual code and model and see which
part takes how much memory and where things got either miscalculated or some additional missed overhead hasn’t been
accounted for.

You’d want to use some sort of memory profiler for that purpose. There are various memory profilers out there.

One useful tool that I developed for quick and easy profiling of each line or block of code is IPyExperiments. You just
need to load your code into a jupyter notebook and it’ll automatically tell you how much CPU/GPU memory each block
allocates/frees. So e.g. if you want to see how much memory loading a model took, and then how much extra memory a
single inference step took - including peak memory reporting.
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Vector and matrix size divisibility
One gets the most efficient performance when batch sizes and input/output neuron counts are divisible by a certain
number, which typically starts at 8, but can be much higher as well. That number varies a lot depending on the specific
hardware being used and the dtype of the model.

For fully connected layers (which correspond to GEMMs), NVIDIA provides recommendations for input/output neuron
counts and batch size.

Tensor Core Requirements define the multiplier based on the dtype and the hardware. For example, for fp16 a multiple of
8 is recommended, but on A100 it’s 64!

For parameters that are small, there is also Dimension Quantization Effects to consider, this is where tiling happens and
the right multiplier can have a significant speedup.

Tile and wave quantization
XXX

Number/size of Attention heads
XXX
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Fault Tolerance

Regardless of whether you own the ML training hardware or renting it by the hour, in this ever speeding up domain of
ML, finishing the training in a timely matter is important. As such if while you were asleep one of the GPUs failed or the
checkpoint storage run out of space which led to your training crashing, you’d have discovered upon waking that many
training hours were lost.

Due the prohibitively high cost of ML hardware, it’d be very difficult to provide redundancy fail-over solutions as it’s done
in Web-services. Nevertheless making your training fault-tolerant is achievable with just a few simple recipes.

As most serious training jobs are performed in a SLURM environment, it’ll be mentioned a lot, but most of this chapter’s
insights are applicable to any other training environments.

Always plan to have more nodes than needed
The reality of the GPU devices is that they tend to fail. Sometimes they just overheat and shut down, but can recover, at
other times they just break and require a replacement.

The situation tends to ameliorate as you use the same nodes for some weeks/months as the bad apples get gradually
replaced, but if you are lucky to get a new shipment of GPUs and especially the early GPUs when the technology has just
come out, expect a sizeable proportion of those to fail.

Therefore, if you need 64 nodes to do your training, make sure that you have a few spare nodes and study how quickly you
can replace failing nodes should the spares that you have not be enough.

It’s hard to predict what the exact redundancy percentage should be, but 5-10% shouldn’t be unreasonable. The more
you’re in a crunch to complete the training on time, the higher the safety margin should be.

Once you have the spare nodes available, validate that your SLURM environment will automatically remove any
problematic nodes from the pool of available nodes so that it can automatically replace the bad nodes with the good ones.

If you use a non-SLURM scheduler validate that it too can do unmanned bad node replacements.

You also need at least one additional node for running various preventative watchdogs (discussed later in this chapter),
possibly offloading the checkpoints and doing cleanup jobs.

Queue up multiple training jobs
The next crucial step is to ensure that if the training crashed, there is a new job lined up to take place of the previous one.

Therefore, when a training is started, instead of using:

sbatch train.slurm

You’d want to replace that with:

sbatch --array=1-10%1 train.slurm

This tells SLURM to book a job array of 10 jobs, and if one of the job completes normally or it crashes, it’ll immediately
schedule the next one.
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footnote: %1 in --array=1-10%1 tells SLURM to launch the job array serially - one job at a time.

If you have already started a training without this provision, it’s easy to fix without aborting the current job by using the
--dependency argument:

sbatch --array=1-10%1 --dependency=CURRENTLY_RUNNING_JOB_ID train.slurm

So if your launched job looked like this:

$ squeue -u `whoami` -o "%.10i %9P %20j %.8T %.10M %.8l %.6D %.20S %R"

JOBID PARTITION NAME             STATE       TIME   TIME_LIM    NODES  START_TIME

NODELIST(REASON)

87    prod    my-training-10b  RUNNING 2-15:52:19 1-16:00:00   64    2023-10-07T01:26:28

node-[1-63]

You will not that the current’s JOBID=87 and now you can use it in:

sbatch --array=1-10%1 --dependency=87 train.slurm

and then the new status will appear as:

$ squeue -u `whoami` -o "%.10i %9P %20j %.8T %.10M %.8l %.6D %.20S %R"

JOBID PARTITION NAME             STATE       TIME   TIME_LIM    NODES  START_TIME

NODELIST(REASON)

87    prod    my-training-10b  RUNNING 2-15:52:19 1-16:00:00   64    2023-10-07T01:26:28

node-[1-63]

88_[10%1]   prod    my-training-10b  PENDING       0:00 1-16:00:00   64                    N/A

(Dependency)

So you can see that an array of 10 jobs (88_[10%1]) was appended to be started immediately after the current job (87)
completes or fails.

Granted that if the condition that lead to the crash is still there the subsequent job will fail as well. For example, if the
storage device is full, no amount of restarts will allow the training to proceed. And we will discuss shortly how to avoid
this situation.

But since the main reason for training crashes is failing GPUs, ensuring that faulty nodes are automatically removed and
the new job starts with a new set of nodes makes for a smooth recovery from the crash.

In the SLURM lingo, the removed nodes are given a new status called drained. Here is an example of a hypothetical SLURM
cluster:

$ sinfo

PARTITION AVAIL  TIMELIMIT  NODES  STATE NODELIST

prod*       up   infinite       4  drain node-[0-3]

prod*       up   infinite      47  alloc node-[4-51]
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prod*       up   infinite      23   idle node-[52-73]

Here we have 47 nodes being used (alloc), 23 available (idle) and 4 unavailable (drained).

The sysadmin is expected to periodically check the drained nodes, fix or replace them and then make them again available
to be used by changing their state to idle.

The other approach is to daisy-chain jobs via --dependency as explained here. Both of these approaches could also be
combined.

How do you know when the job array or a daisy chain should not resume - well, normally the training loop will exit
immediately if it knows the job is done. But you could also add features like kill switch which are even easier to use to
prevent a job array from running.

Frequent checkpoint saving
Whenever the training job fails, many hours of training can be lost. This problem is mitigated by a frequent checkpoint
saving. When the training is resumed it’ll continue from the last checkpoint saved. If the failure occurred 12 hours after
the last checkpoint has been saved, 12 hours of training is lost and needs to be re-done. This can be very expensive if the
training uses hundreds of GPUs.

In theory one could save a checkpoint every 10 minutes and only ever lose 10 minutes of training time, but this too would
dramatically delay the reaching of the finish line because large models can’t be saved quickly and if the saving time starts
to create a bottleneck for the training this approach becomes counterproductive.

Depending on your checkpointing methodology and the speed of your IO storage partition the saving of a large model can
take from dozens of seconds to several minutes. Therefore, the optimal approach to saving frequency lies somewhere in
the middle.

The math is quite simple - measure the amount of time it takes to save the checkpoint, multiply it by how many times
you’d want to save it and see how much of an additional delay the checkpoint saving will contribute to the total training
time.

Use case: While training BLOOM-176B we had an incredibly fast GPFS over NVME filesystem and it took only 40 seconds to
save a 2.3TB checkpoint written concurrently on 384 processes. We saved a checkpoint approximately every 3 hours. As
we trained for about 3 months, that means that we saved about 720 checkpoints (90 days * 24h / 3h) - that is an additional
8 hours was spent just saving the checkpoints (720 times * 40 secs / 3600 secs) - or ~0.37% of the total training time (8h
/ (90 days * 24 hours). Now say if the IO were to be 5 times slower, which is not uncommon on the cloud unless one pays
for premium IO, that would have become 2% of the training time, which would be quite significant.

footnote: If you don’t have a large local storage and you have to offload the checkpoints to the cloud, make sure that the
2 most frequent checkpoints remain local to allow for a quick resume. The reason for 2 and not 1, is that it’s possible that
the very last checkpoint got corrupted or didn’t finish saving if a crash occurred during its saving.

Kill switch
In many SLURM environments users have no sudo access and when one user started a training and went to sleep, and then
a problem has been discovered, the other users can’t easily stop the training and restart it again.

This was the situation during BLOOM-176B training and we implemented a kill-switch to handle that. The mechanism is
very simple. The training loop polls for a specific file to appear before starting a new iteration and if the file is there the
program saves the checkpoint and exits, allowing users other than the one who started the previous training to change
things and restart it again. An additional poll was added at the very beginning of main so that if there was a long job array
queued by the user who is asleep they could be "burned through" quickly by getting each job exit quickly on start.
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This is also discussed here.

This facility helps to minimize the amount of wasted training time.

Save switch
While mentioning the kill switch, it might be good to quickly mention its cousin, a save switch. Similarly to the kill
switch the save switch is a variation of the former where instead of stopping the training, if the training loop discovers
that a save-switch file appears - it will save a checkpoint, but will continue training. It’ll also automatically remove the
save-switch from the file-system, so that it won’t accidentally start saving a checkpoint after every iteration.

This feature can be very useful for those who watch the training charts. If one sees an interesting or critical situation in
the training loss or some other training metric one can quickly ask the training program to save the checkpoint of interest
and be able to later reproduce the current situation at will.

The main use of this feature is around observing training loss spikes and divergences.

(note-to-self: better belongs to instabilities chapter)

Prevention
The easiest way to avoid losing training time is to prevent certain types of problems from happening. While one can’t
prevent a GPU from failing, other than ensuring that adequate cooling is provided, one can certainly ensure that there is
enough of disk space remaining for the next few days of training. This is typically done by running scheduled watchdogs
that monitor various resources and alert the operator of possible problems long before they occur.

Scheduled Watchdogs
Before we discuss the various watchdogs it’s critical that you have a mechanism that allows you to run scheduled jobs. In
the Unix world this is implemented by the crontab facility.

Here is an example of how ~/bin/watch-fs.sh can be launched every hour:

0 * * * * ~/bin/watch-fs.sh

The link above explains how to configure a crontab job to run at various other frequencies.

To setup a crontab, execute crontab -e and check which jobs are scheduled crontab -l.

The reason I don’t go into many details is because many SLURM environments don’t provide access to the crontab facility.
And therefore one needs to use other approaches to scheduling jobs.

The section on Crontab Emulation discusses how to implement crontab-like SLURM emulation and also Self-perpetuating
SLURM jobs.

Notification facility
Then you need to have one or more notification facilities.

The simplest one is to use email to send alerts. To make this one work you need to ensure that you have a way to send
an email from the SLURM job. If it isn’t already available you can request this feature from your sysadmin or alternatively
you might be able to use an external SMTP server provider.

In addition to email you could probably also setup other notifications, such as SMS alerting and/or if you use Slack to send
slack-notifications to a channel of your choice.
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Once you understand how to schedule watchdogs and you have a notification facility working let’s next discuss the critical
watchdogs.

Is-job-running watchdog
The most obvious watchdog is one which checks that there is a training SLURM job running or more are scheduled to run.

Here is an example slurm-status.py that was used during BLOOM-176B training. This watchdog was sending an email if a
job was detected to be neither running nor scheduled and it was also piping its check results into the main training’s log
file. As we used Crontab Emulation, we simply needed to drop slurm-status.slurm into the cron/cron.hourly/ folder and
the previously launched SLURM crontab emulating scheduler would launch this check approximately once an hour.

The key part of the SLURM job is:

tools/slurm-status.py --job-name $WATCH_SLURM_NAME 2>&1 | tee -a $MAIN_LOG_FILE

which tells the script which job name to watch for, and you can also see that it logs into a log file.

For example, if you launched the script with:

tools/slurm-status.py --job-name my-training-10b

and the current status report shows:

$ squeue -u `whoami` -o "%.10i %9P %20j %.8T %.10M %.8l %.6D %.20S %R"

JOBID    PARTITION NAME             STATE       TIME   TIME_LIM    NODES  START_TIME

NODELIST(REASON)

87     prod      my-training-10b  RUNNING 2-15:52:19 1-16:00:00  64    2023-10-07T01:26:28 node-[1-63]

then all is good. But if my-training-10b job doesn’t show the alert will be sent.

You can now adapt these scripts to your needs with minimal changes of editing the path and email addresses. And if it
wasn’t you who launched the job then replace whoami with the name of the user who launched it. whoami only works if it
was you who launched it.

Is-job-hanging watchdog
If the application is doing torch.distributed or alike and a hanging occurs during one of the collectives, it’ll eventually
timeout and throw an exception, which would restart the training and one could send an alert that the job got restarted.

However, if the hanging happens during another syscall which may have no timeout, e.g. reading from the disk, the
application could easily hang there for hours and nobody will be the wiser.

Most applications do periodic logging, e.g., most training log the stats of the last N steps every few minutes. Then one
could check if the log file has been updated during the expected time-frame - and if it didn’t - send an alert. You could
write your own, or use io-watchdog for that.

Low disk space alerts
The next biggest issue is running out of disk space. If your checkpoints are large and are saved frequently and aren’t
offloaded elsewhere it’s easy to quickly run out of disk space. Moreover, typically multiple team members share the
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same cluster and it could be that your colleagues could quickly consume a lot of disk space. Ideally, you’d have a storage
partition that is dedicated to your training only, but often this is difficult to accomplish. In either case you need to know
when disk space is low and space making action is to be performed.

Now what should be the threshold at which the alerts are triggered. They need to be made not too soon as users will start
ignoring these alerts if you start sending those at say, 50% usage. But also the percentage isn’t always applicable, because
if you have a huge disk space shared with others, 5% of that disk space could translate to many TBs of free disk space.
But on a small partition even 25% might be just a few TBs. Therefore really you should know how often you write your
checkpoints and how many TBs of disk space you need daily and how much disk space is available.

Use case: During BLOOM training we wrote a 2.3TB checkpoint every 3 hours, therefore we were consuming 2.6TB a day!

Moreover, often there will be multiple partitions - faster IO partitions dedicated to checkpoint writing, and slower
partitions dedicated to code and libraries, and possibly various other partitions that could be in use and all of those need
to be monitored if their availability is required for the training not crashing.

Here is another caveat - when it comes to distributed file systems not all filesystems can reliably give you a 100% of disk
space you acquired. In fact with some of those types you can only reliably use at most ~80% of the allocated storage space.
The problem is that these systems use physical discs that they re-balance at the scheduled periods or triggered events, and
thus any of these individual discs can reach 100% of their capacity and lead to a failed write, which would crash a training
process, even though df would report only 80% space usage on the partition. We didn’t have this problem while training
BLOOM-176B, but we had it when we trained IDEFICS-80B - 80% there was the new 100%. How do you know if you have this
issue - well, usually you discover it while you prepare for the training.

And this is not all. There is another issue of inodes availability and some storage partitions don’t have very large inode
quotas. Python packages are notorious for having hundreds to thousands of small files, which combined take very little
total space, but which add up to tens of thousands of files in one’s virtual environment and suddenly while one has TBs of
free disk space available, but runs out of free inodes and discovering their training crashing.

Finally, many distributed partitions don’t show you the disk usage stats in real time and could take up to 30min to update.

footnote: Use df -ih to see the inodes quota and the current usage.

footnote: Some filesystems use internal compression and so the reported disk usage can be less than reality if copied
elsewhere, which can be confusing.

So here is fs-watchdog.py that was used during BLOOM-176B training. This watchdog was sending an email if any of the
storage requirements thresholds hasn’t been met and here is the corresponding fs-watchdog.slurm that was driving it.

If you study the watchdog code you can see that for each partition we were monitoring both the disk usage and inodes.
We used special quota tools provided by the HPC to get instant stats for some partitions, but these tools didn’t work for all
partitions and there we had to fallback to using df and even a much slower du. As such it should be easy to adapt to your
usecase.

Dealing with slow memory leaks
Some programs develop tiny memory leaks which can be very difficult to debug. Do not confuse those with the usage
of MMAP where the program uses the CPU memory to read quickly read data from and where the memory usage could
appear to grow over time, but this is not real as this memory gets freed when needed. You can read A Deep Investigation
into MMAP Not Leaking Memory to understand why.

Of course, ideally one would analyze their software and fix the leak, but at times the leak could be coming from a 3rd party
package or can be very difficult to diagnose and there isn’t often the time to do that.

When it comes to GPU memory, there is the possible issue of memory fragmentation, where over time more and more tiny
unused memory segments add up and make the GPU appear to have a good amount of free memory, but when the program
tries to allocate a large tensor from this memory it fails with the OOM error like:
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RuntimeError: CUDA out of memory. Tried to allocate 304.00 MiB (GPU 0; 8.00 GiB total capacity;

142.76 MiB already allocated; 6.32 GiB free; 158.00 MiB reserved in total by PyTorch)

In this example if there are 6.32GB free, how comes that 304MB couldn’t be allocated.

One of the approaches my team developed during IDEFICS-80B training where there was some tiny CPU memory leak that
would often take multiple days to lead to running out of CPU memory was to install a watchdog inside the training loop
that would check the memory usage and if a threshold was reached it’d voluntarily exit the training loop. The next training
job would then resume with all the CPU memory reclaimed.

footnote: The reality of machine learning trainings is that not all problems can be fixed with limited resources and
often times a solid workaround provides for a quicker finish line, as compared to "stopping the presses" and potentially
delaying the training for weeks, while trying to figure out where the problem is. For example we trained BLOOM-176B
with CUDA_LAUNCH_BLOCKING=1 because the training would hang without it and after multiple failed attempts to diagnose
that we couldn’t afford any more waiting and had to proceed as is. Luckily this environment variable that normally is used
for debug purposes and which in theory should make some CUDA operations slower didn’t actually make any difference to
our throughput. But we have never figured out what the problem was and today it doesn’t matter at all that we haven’t, as
we moved on with other projects which aren’t impacted by that issue.

The idea is similar to the kill and save switches discussed earlier, but here instead of polling for a specific file appearance
we simply watch how much resident memory is used. For example here is how you’d auto-exit if the OS shows only 5% of
the virtual cpu memory remain:

import psutil

for batch in iterator:

total_used_percent = psutil.virtual_memory().percent

if total_used_percent > 0.95:

print(f"Exiting early since the cpu memory is almost full: ({total_used_percent}%)")

save_checkpoint()

sys.exit()

train_step(batch)

Similar heuristics could be used for setting a threshold for GPU memory usage, except one needs to be aware of cuda
tensor caching and python garbage collection scheduling, so to get the actual memory usage you’d need to do first run the
garbage collector then empty the cuda cache and only then you will get real memory usage stats and then gracefully exit
the training if the GPU is too close to being full.

import gc

import torch

for batch in iterator:

gc.collect()

torch.cuda.empty_cache()

# get mem usage in GBs and exit if less than 2GB of free GPU memory remain

free, total = map(lambda x: x/2**30, torch.cuda.mem_get_info());

if free < 2:

print(f"Exiting early since the GPU memory is almost full: ({free}GB remain)")
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save_checkpoint()

sys.exit()

train_step(batch)

footnote: don’t do this unless you really have to, since caching makes things faster. Ideally figure out the fragmentation
issue instead. For example, look up max_split_size_mb in the doc for PYTORCH_CUDA_ALLOC_CONF as it controls how memory
is allocated. Some frameworks like Deepspeed solve this by pre-allocating tensors at start time and then reuse them again
and again preventing the issue of fragmentation altogether.

footnote: this simplified example would work for a single node. For multiple nodes you’d need to gather the stats from all
participating nodes and find the one that has the least amount of memory left and act upon that.

Dealing with forced resource preemption
Earlier you have seen how the training can be gracefully stopped with a kill switch solution and it’s useful when you need
to stop or pause the training on demand.

On HPC clusters SLURM jobs have a maximum runtime. A typical one is 20 hours. This is because on HPCs resources are
shared between multiple users/groups and so each is given a time slice to do compute and then the job is forcefully
stopped, so that other jobs could use the shared resources.

footnote: this also means that you can’t plan how long the training will take unless your jobs run with the highest priority
on the cluster. If your priority is not the highest it’s not uncommon to have to wait for hours and sometimes days before
your job resumes.

One could, of course, let the job killed and hope that not many cycles were spent since the last checkpoint was saved and
then let the job resume from this checkpoint, but that’s quite wasteful and best avoided.

The efficient solution is to gracefully exit before the hard tile limit is hit and the job is killed by SLURM.

First, you need to figure out how much time your program needs to gracefully finish. This typically requires 2 durations:

1. how long does it take for a single iteration to finish if you have just started a new iteration
2. how long does it take to save the checkpoint

If, for example, the iteration takes 2 minutes at most and the checkpoint saving another 2 minutes, then you need at least
4 minutes of that grace time. To be safe I’d at least double it. There is no harm at exiting a bit earlier, as no resources are
wasted.

So, for example, let’s say your HPC allows 100 hour jobs, and then your slurm script will say:

#SBATCH --time=100:00:00

Approach AApproach A. Tell the program at launch time when it should start the exiting process:

srun ... torchrun ... --exit-duration-in-mins 5990

100h is 6000 minutes and so here we give the program 10 mins to gracefully exit.

And when you start the program you create a timer and then before every new iteration starts you check if the time limit
is reached. If it is you save the checkpoint and exit.
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case study: you can see how this was set in the BLOOM training job and then acted upon here:

# Exiting based on duration

if args.exit_duration_in_mins:

train_time = (time.time() - _TRAIN_START_TIME) / 60.0

done_cuda = torch.cuda.IntTensor(

[train_time > args.exit_duration_in_mins])

torch.distributed.all_reduce(

done_cuda, op=torch.distributed.ReduceOp.MAX)

done = done_cuda.item()

if done:

if not saved_checkpoint:

save_checkpoint_and_time(iteration, model, optimizer,

lr_scheduler)

print_datetime(’exiting program after {} minutes’.format(train_time))

sys.exit()

As you can see since the training is distributed we have to synchronize the exiting event across all ranks

You could also automate the derivation, by retrieving the EndTime for the running job:

$ scontrol show -d job $SLURM_JOB_ID | grep Time

RunTime=00:00:42 TimeLimit=00:11:00 TimeMin=N/A

SubmitTime=2023-10-26T15:18:01 EligibleTime=2023-10-26T15:18:01

AccrueTime=2023-10-26T15:18:01

StartTime=2023-10-26T15:18:01 EndTime=2023-10-26T15:18:43 Deadline=N/A

and then comparing with the current time in the program and instead setting the graceful exit period. There are other
timestamps and durations that can be retrieved as it can be seen from the output.

Approach BApproach B. Sending a signal X minutes before the end

In your sbatch script you could set

#SBATCH --signal=USR1@600

and then SLURM will send a SIGUSR1 signal to your program 10min before job’s end time.

footnote: normally SLURM schedulers send a SIGTERM signal about 30-60 seconds before the job’s time is up, and just as the
time is up it will send a SIGKILL signal if the job is still running. SIGTERM can be caught and acted upon but 30 seconds is not
enough time to gracefully exit a large model training program.

Let’s demonstrate how the signal sending and trapping works. In terminal A, run:

python -c "

import time, os, signal

def sighandler(signum, frame):
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print(’Signal handler called with signal’, signum)

exit(0)

signal.signal(signal.SIGUSR1, sighandler)

print(os.getpid())

time.sleep(1000)

"

it will print the pid of the process, e.g., 4034989 and will go to sleep (emulating real work). In terminal B now send SIGUSR1

signal to the python program in terminal A with:

kill -s USR1 4034989

The program will trap this signal, call the sighandler which will now print that it was called and exit.

Signal handler called with signal 10

10 is the numerical value of SIGUSR1.

So here is the same thing with the SLURM setup:

$ cat sigusr1.slurm

#SBATCH --job-name=sigusr1

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --time=0:03:00

#SBATCH --partition=mypartition

#SBATCH --output=%x-%j.out

#SBATCH --signal=USR1@170

srun python -c "

import time, os, signal

def sighandler(signum, frame):

print(’Signal handler called with signal’, signum)

exit(0)

signal.signal(signal.SIGUSR1, sighandler)

print(os.getpid())

time.sleep(1000)

"

In the SLURM script we told SLURM to send the program a signal 170 seconds before its end and the job itself was set to
run for 180 secs (3 mins).

When this job has been scheduled:
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sbatch sigusr1.slurm

10 seconds (180-170) after the job started, it will exit with the log:

58307

Signal handler called with signal 10

which means the job had a pid 58307 and it caught SIGUSR1 (10) and it exited.

Now that you understand how this machinery works, instead of immediate exit(0) you can set exit-asap flag, finish the
currently run iteration, check that the flag is up, save the checkpoint and exit. This is very similar to the code shown in
Approach A above.

Contributors
Adam Moody,
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Multi-node

Guides
• emulate-multi-node.md - instructions on how to emulate a multi-node setup using just a single node - we use the

deepspeed launcher here.

Tools
• printflock.py - a tiny library that makes your print calls non-interleaved in a multi-gpu environment.

• multi-gpu-non-interleaved-print.py - a flock-based wrapper around print that prevents messages from getting
interleaved when multiple processes print at the same time - which is the case with torch.distributed used with
multiple-gpus.

• all_reduce_bench.py - a tool to benchmark the real network bandwidth while performing all_reduce on a largish
amount of data. This is useful to find out what one gets in reality as compared to the promised spec.

• all_gather_object_vs_all_reduce.py - a quick benchmark showing 23x speed up when moving from
all_gather_object to all_reduce when collecting completion status from the process group. e.g. when implementing
some sort of all-processes-are-done flag. This technique is usually used for synchronizing gpus when they may
complete at different number of iterations - which one needs for inference over multiple DP channels, or when one
wants to sync a StopIteration event in DataLoader. See also all_gather_object_vs_all_gather.py.
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Emulate a multi-node setup using just a single
node

The goal is to emulate a 2-node environment using a single node with 2 GPUs (for testing purposes). This, of course, can be
further expanded to larger set ups.

We use the deepspeed launcher here. There is no need to actually use any of the deepspeed code, it’s just easier to use its
more advanced capabilities. You will just need to install pip install deepspeed.

The full setup instructions follow:

1. Create a hostfile:

$ cat hostfile

worker-0 slots=1

worker-1 slots=1

2. Add a matching config to your ssh client

$ cat ~/.ssh/config

[...]

Host worker-0

HostName localhost

Port 22

Host worker-1

HostName localhost

Port 22

Adapt the port if it’s not 22 and the hostname if localhost isn’t it.

3. As your local setup is probably password protected ensure to add your public key to ~/.ssh/authorized_keys

The deepspeed launcher explicitly uses no-password connection, e.g. on worker0 it’d run: ssh -o

PasswordAuthentication=no worker-0 hostname, so you can always debug ssh setup using:

$ ssh -vvv -o PasswordAuthentication=no worker-0 hostname

4. Create a test script to check both GPUs are used.

$ cat test1.py

import os

import time

import torch

import deepspeed

import torch.distributed as dist
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# critical hack to use the 2nd gpu (otherwise both processes will use gpu0)

if os.environ["RANK"] == "1":

os.environ["CUDA_VISIBLE_DEVICES"] = "1"

dist.init_process_group("nccl")

local_rank = int(os.environ.get("LOCAL_RANK"))

print(f’{dist.get_rank()=}, {local_rank=}’)

x = torch.ones(2**30, device=f"cuda:{local_rank}")

time.sleep(100)

Run:

$ deepspeed -H hostfile test1.py

[2022-09-08 12:02:15,192] [INFO] [runner.py:415:main] Using IP address of 192.168.0.17 for node worker-0

[2022-09-08 12:02:15,192] [INFO] [multinode_runner.py:65:get_cmd] Running on the following workers:

worker-0,worker-1

[2022-09-08 12:02:15,192] [INFO] [runner.py:504:main] cmd = pdsh -S -f 1024 -w worker-0,worker-1 export

PYTHONPATH=/mnt/nvme0/code/huggingface/multi-node-emulate-ds;  cd /mnt/nvme0/code/huggingface/

multi-node-emulate-ds; /home/stas/anaconda3/envs/py38-pt112/bin/python -u -m deepspeed.launcher.launch

--world_info=eyJ3b3JrZXItMCI6IFswXSwgIndvcmtlci0xIjogWzBdfQ== --node_rank=%n --master_addr=192.168.0.17

--master_port=29500 test1.py

worker-0: [2022-09-08 12:02:16,517] [INFO] [launch.py:136:main] WORLD INFO DICT: {’worker-0’: [0],

’worker-1’: [0]}

worker-0: [2022-09-08 12:02:16,517] [INFO] [launch.py:142:main] nnodes=2, num_local_procs=1, node_rank=0

worker-0: [2022-09-08 12:02:16,517] [INFO] [launch.py:155:main] global_rank_mapping=defaultdict(<class

’list’>, {’worker-0’: [0], ’worker-1’: [1]})

worker-0: [2022-09-08 12:02:16,517] [INFO] [launch.py:156:main] dist_world_size=2

worker-0: [2022-09-08 12:02:16,517] [INFO] [launch.py:158:main] Setting CUDA_VISIBLE_DEVICES=0

worker-1: [2022-09-08 12:02:16,518] [INFO] [launch.py:136:main] WORLD INFO DICT: {’worker-0’: [0],

’worker-1’: [0]}

worker-1: [2022-09-08 12:02:16,518] [INFO] [launch.py:142:main] nnodes=2, num_local_procs=1, node_rank=1

worker-1: [2022-09-08 12:02:16,518] [INFO] [launch.py:155:main] global_rank_mapping=defaultdict(<class

’list’>, {’worker-0’: [0], ’worker-1’: [1]})

worker-1: [2022-09-08 12:02:16,518] [INFO] [launch.py:156:main] dist_world_size=2

worker-1: [2022-09-08 12:02:16,518] [INFO] [launch.py:158:main] Setting CUDA_VISIBLE_DEVICES=0

worker-1: torch.distributed.get_rank()=1, local_rank=0

worker-0: torch.distributed.get_rank()=0, local_rank=0

worker-1: tensor([1., 1., 1.,  ..., 1., 1., 1.], device=’cuda:0’)

worker-0: tensor([1., 1., 1.,  ..., 1., 1., 1.], device=’cuda:0’)

If the ssh set up works you can run nvidia-smi in parallel and observe that both GPUs allocated ~4GB of memory from
torch.ones call.

Note that the script hacks in CUDA_VISIBLE_DEVICES to tell the 2nd process to use gpu1, but it’ll be seen as local_rank==0 in
both cases.

5. Finally, let’s test that NCCL collectives work as well
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Script adapted from torch-distributed-gpu-test.py to just tweak os.environ["CUDA_VISIBLE_DEVICES"]

$ cat test2.py

import deepspeed

import fcntl

import os

import socket

import time

import torch

import torch.distributed as dist

# a critical hack to use the 2nd GPU by the 2nd process (otherwise both processes will use gpu0)

if os.environ["RANK"] == "1":

os.environ["CUDA_VISIBLE_DEVICES"] = "1"

def printflock(*msgs):

""" solves multi-process interleaved print problem """

with open(__file__, "r") as fh:

fcntl.flock(fh, fcntl.LOCK_EX)

try:

print(*msgs)

finally:

fcntl.flock(fh, fcntl.LOCK_UN)

local_rank = int(os.environ["LOCAL_RANK"])

torch.cuda.set_device(local_rank)

device = torch.device("cuda", local_rank)

hostname = socket.gethostname()

gpu = f"[{hostname}-{local_rank}]"

try:

# test distributed

dist.init_process_group("nccl")

dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)

dist.barrier()

print(f’{dist.get_rank()=}, {local_rank=}’)

# test cuda is available and can allocate memory

torch.cuda.is_available()

torch.ones(1).cuda(local_rank)

# global rank

rank = dist.get_rank()

world_size = dist.get_world_size()

printflock(f"{gpu} is OK (global rank: {rank}/{world_size})")

dist.barrier()

if rank == 0:
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printflock(f"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}")

printflock(f"device compute capabilities={torch.cuda.get_device_capability()}")

printflock(f"pytorch compute capabilities={torch.cuda.get_arch_list()}")

except Exception:

printflock(f"{gpu} is broken")

raise

Run:

$ deepspeed -H hostfile test2.py

[2022-09-08 12:07:09,336] [INFO] [runner.py:415:main] Using IP address of 192.168.0.17 for node worker-0

[2022-09-08 12:07:09,337] [INFO] [multinode_runner.py:65:get_cmd] Running on the following workers:

worker-0,worker-1

[2022-09-08 12:07:09,337] [INFO] [runner.py:504:main] cmd = pdsh -S -f 1024 -w worker-0,worker-1 export

PYTHONPATH=/mnt/nvme0/code/huggingface/multi-node-emulate-ds;  cd /mnt/nvme0/code/huggingface/

multi-node-emulate-ds; /home/stas/anaconda3/envs/py38-pt112/bin/python -u -m deepspeed.launcher.launch

--world_info=eyJ3b3JrZXItMCI6IFswXSwgIndvcmtlci0xIjogWzBdfQ== --node_rank=%n --master_addr=192.168.0.17

--master_port=29500 test2.py

worker-0: [2022-09-08 12:07:10,635] [INFO] [launch.py:136:main] WORLD INFO DICT: {’worker-0’: [0],

’worker-1’: [0]}

worker-0: [2022-09-08 12:07:10,635] [INFO] [launch.py:142:main] nnodes=2, num_local_procs=1, node_rank=0

worker-0: [2022-09-08 12:07:10,635] [INFO] [launch.py:155:main] global_rank_mapping=defaultdict(<class

’list’>, {’worker-0’: [0], ’worker-1’: [1]})

worker-0: [2022-09-08 12:07:10,635] [INFO] [launch.py:156:main] dist_world_size=2

worker-0: [2022-09-08 12:07:10,635] [INFO] [launch.py:158:main] Setting CUDA_VISIBLE_DEVICES=0

worker-1: [2022-09-08 12:07:10,635] [INFO] [launch.py:136:main] WORLD INFO DICT: {’worker-0’: [0],

’worker-1’: [0]}

worker-1: [2022-09-08 12:07:10,635] [INFO] [launch.py:142:main] nnodes=2, num_local_procs=1, node_rank=1

worker-1: [2022-09-08 12:07:10,635] [INFO] [launch.py:155:main] global_rank_mapping=defaultdict(<class

’list’>, {’worker-0’: [0], ’worker-1’: [1]})

worker-1: [2022-09-08 12:07:10,635] [INFO] [launch.py:156:main] dist_world_size=2

worker-1: [2022-09-08 12:07:10,635] [INFO] [launch.py:158:main] Setting CUDA_VISIBLE_DEVICES=0

worker-0: dist.get_rank()=0, local_rank=0

worker-1: dist.get_rank()=1, local_rank=0

worker-0: [hope-0] is OK (global rank: 0/2)

worker-1: [hope-0] is OK (global rank: 1/2)

worker-0: pt=1.12.1+cu116, cuda=11.6, nccl=(2, 10, 3)

worker-0: device compute capabilities=(8, 0)

worker-0: pytorch compute capabilities=[’sm_37’, ’sm_50’, ’sm_60’, ’sm_70’, ’sm_75’, ’sm_80’, ’sm_86’]

worker-1: [2022-09-08 12:07:13,642] [INFO] [launch.py:318:main] Process 576485 exits successfully.

worker-0: [2022-09-08 12:07:13,642] [INFO] [launch.py:318:main] Process 576484 exits successfully.

Voila, missing accomplished.

We tested that the NCCL collectives work, but they use local NVLink/PCIe and not the IB/ETH connections like in real
multi-node, so it may or may not be good enough for testing depending on what needs to be tested.
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Larger set ups
Now, let’s say you have 4 GPUs and you want to emulate 2x2 nodes. Then simply change the hostfile to be:

$ cat hostfile

worker-0 slots=2

worker-1 slots=2

and the CUDA_VISIBLE_DEVICES hack to:

if os.environ["RANK"] in ["2", "3"]:

os.environ["CUDA_VISIBLE_DEVICES"] = "2,3"

Everything else should be the same.

Automating the process
If you want an automatic approach to handle any shape of topology, you could use something like this:

def set_cuda_visible_devices():

"""

automatically assign the correct groups of gpus for each emulated node by tweaking the

CUDA_VISIBLE_DEVICES env var

"""

global_rank = int(os.environ["RANK"])

world_size = int(os.environ["WORLD_SIZE"])

emulated_node_size = int(os.environ["LOCAL_SIZE"])

emulated_node_rank = int(global_rank // emulated_node_size)

gpus = list(map(str, range(world_size)))

emulated_node_gpus =

",".join(gpus[emulated_node_rank*emulated_node_size:(emulated_node_rank+1)*emulated_node_size])

print(f"Setting CUDA_VISIBLE_DEVICES={emulated_node_gpus}")

os.environ["CUDA_VISIBLE_DEVICES"] = emulated_node_gpus

set_cuda_visible_devices()

Emulating multiple GPUs with a single GPU
The following is an orthogonal need to the one discussed in this document, but it’s related so I thought it’d be useful to
share some insights here:

With NVIDIA A100 you can use MIG to emulate up to 7 instances of GPUs on just one real GPU, but alas you can’t use those
instances for anything but standalone use - e.g. you can’t do DDP or any NCCL comms over those GPUs. I hoped I could
use my A100 to emulate 7 instances and add one more real GPU and to have 8x GPUs to do development with - but nope it
doesn’t work. Asking NVIDIA engineers about it, there are no plans to have this use-case supported.
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Model Parallelism

Parallelism overview
In the modern machine learning the various approaches to parallelism are used to:

1. Overcome GPU memory limitations. Examples:
• fit very large models - e.g., t5-11b is 45GB in just model params
• fit very long sequences - e.g.,

2. significantly speed up training - finish training that would take a year in hours

We will first discuss in depth various 1D parallelism techniques and their pros and cons and then look at how they can be
combined into 2D and 3D parallelism to enable an even faster training and to support even bigger models. Various other
powerful alternative approaches will be presented.

While the main concepts most likely will apply to any other framework, this article is focused on PyTorch-based
implementations.

Two main approaches are used to enable training and inferring models that are bigger than the accelerator’s memory:

1. 3D parallelism - very network efficient, but can be very invasive into the modeling code and require a lot more work
to make it work correctly

2. ZeRO parallelism - not very network efficient, but requires close to zero changes to the modeling code and very easy
to make to work.

Scalability concepts
The following is the brief description of the main concepts that will be described later in depth in this document.

1. Data Parallelism (DP) - the same setup is replicated multiple times, and each being fed a slice of the data. The
processing is done in parallel and all setups are synchronized at the end of each training step.

2. TensorParallelism (TP) - each tensor is split up into multiple chunks, so instead of having the whole tensor reside on
a single gpu, each shard of the tensor resides on its designated gpu. During processing each shard gets processed
separately and in parallel on different GPUs and the results are synced at the end of the step. This is what one may
call horizontal parallelism, as the splitting happens on horizontal level.

3. PipelineParallelism (PP) - the model is split up vertically (layer-level) across multiple GPUs, so that only one or
several layers of the model are places on a single gpu. Each gpu processes in parallel different stages of the pipeline
and working on a small chunk of the batch.

4. Zero Redundancy Optimizer (ZeRO) - Also performs sharding of the tensors somewhat similar to TP, except the
whole tensor gets reconstructed in time for a forward or backward computation, therefore the model doesn’t need
to be modified. It also supports various offloading techniques to compensate for limited GPU memory. Sharded DDP
is another name for the foundational ZeRO concept as used by various other implementations of ZeRO.

5. Sequence Parallelism - training on long input sequences requires huge amounts of GPU memory. This technique
splits the processing of a single sequence across multiple GPUs.

The introduction sections of this paper is probably one of the best explanations I have found on most common parallelism
techniques Breadth-First Pipeline Parallelism.
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Data Parallelism
DDP
Most users with just 2 GPUs already enjoy the increased training speed up thanks to DataParallel (DP) and
DistributedDataParallel (DDP) that are almost trivial to use. This is a built-in feature of Pytorch.

For details see DistributedDataParallel

ZeRO Data Parallelism
ZeRO-powered data parallelism (ZeRO-DP) is described on the following diagram from this blog post

It can be difficult to wrap one’s head around it, but in reality the concept is quite simple. This is just the usual DataParallel
(DP), except, instead of replicating the full model params, gradients and optimizer states, each GPU stores only a slice of
it. And then at run-time when the full layer params are needed just for the given layer, all GPUs synchronize to give each
other parts that they miss - this is it.

Consider this simple model with 3 layers, where each layer has 3 params:

La | Lb | Lc

---|----|---

a0 | b0 | c0

a1 | b1 | c1

a2 | b2 | c2

Layer La has weights a0, a1 and a2.

If we have 3 GPUs, the Sharded DDP (= Zero-DP) splits the model onto 3 GPUs like so:

GPU0:

La | Lb | Lc

---|----|---

a0 | b0 | c0

GPU1:
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La | Lb | Lc

---|----|---

a1 | b1 | c1

GPU2:

La | Lb | Lc

---|----|---

a2 | b2 | c2

In a way this is the same horizontal slicing, as tensor parallelism, if you imagine the typical DNN diagram. Vertical slicing
is where one puts whole layer-groups on different GPUs. But it’s just the starting point.

Now each of these GPUs will get the usual mini-batch as it works in DP:

x0 => GPU0

x1 => GPU1

x2 => GPU2

The inputs are unmodified - they think they are going to be processed by the normal model.

First, the inputs hit the layer La.

Let’s focus just on GPU0: x0 needs a0, a1, a2 params to do its forward path, but GPU0 has only a0 - it gets sent a1 from GPU1
and a2 from GPU2, bringing all pieces of the model together.

In parallel, GPU1 gets mini-batch x1 and it only has a1, but needs a0 and a2 params, so it gets those from GPU0 and GPU2.

Same happens to GPU2 that gets input x2. It gets a0 and a1 from GPU0 and GPU1, and with its a2 it reconstructs the full
tensor.

All 3 GPUs get the full tensors reconstructed and a forward happens.

As soon as the calculation is done, the data that is no longer needed gets dropped - it’s only used during the calculation.
The reconstruction is done efficiently via a pre-fetch.

And the whole process is repeated for layer Lb, then Lc forward-wise, and then backward Lc -> Lb -> La.

To me this sounds like an efficient group backpacking weight distribution strategy:

1. person A carries the tent
2. person B carries the stove
3. person C carries the axe

Now each night they all share what they have with others and get from others what they don’t have, and in the morning
they pack up their allocated type of gear and continue on their way. This is Sharded DDP / Zero DP.

Compare this strategy to the simple one where each person has to carry their own tent, stove and axe, which would be far
more inefficient. This is DataParallel (DP and DDP) in Pytorch.

While reading the literature on this topic you may encounter the following synonyms: Sharded, Partitioned.

If you pay close attention the way ZeRO partitions the model’s weights - it looks very similar to tensor parallelism which
will be discussed later. This is because it partitions/shards each layer’s weights, unlike vertical model parallelism which is
discussed next.

Implementations of ZeRO-DP stages 1+2+3:

• DeepSpeed
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• PyTorch (originally it was implemented in FairScale and later it was upstreamed into the PyTorch core)

Deepspeed ZeRO Integration:

• HF Trainer integration
• Accelerate
• PyTorch Lightning
• Determined.AI

FSDP Integration:

• HF Trainer integration
• Accelerate
• PyTorch Lightning

Important papers:

Deepspeed:

• ZeRO: Memory Optimizations Toward Training Trillion Parameter Models
• ZeRO-Offload: Democratizing Billion-Scale Model Training
• ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning
• ZeRO++: Extremely Efficient Collective Communication for Giant Model Training
• DeepSpeed Ulysses: System Optimizations for Enabling Training of Extreme Long Sequence Transformer Models

PyTorch:

• PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel

Main DeepSpeed ZeRO Resources:

• Project’s github
• Usage docs
• API docs
• Blog posts

ZeRO with multiple replicas
By default ZeRO uses all GPUs to create a single model replica - that’s the model is spread out across all gpus. Which leads
to various limitations such as:

1. the global batch size is inflexible - it’s always a function of total_gpus*micro_batch_size - which on large clusters
could lead to a huge global batch size which might be detrimental for efficient convergence. Granted one could use a
tiny micro batch size to keep the global batch size in check, but this leads to smaller matrices on each GPU which
results in less efficient compute

2. the much faster intra-node networking is not being benefited from since the slower inter-node network defines the
overall speed of communications.

ZeRO++ solves the 2nd limitation by introducing Hierarchical Weight Partition for ZeRO (hpZ). In this approach instead
of spreading whole model weights across all the gpus, each model replica is restricted to a single node. This increases
the memory usage by the total number of nodes, but now the 2x all_gather calls to gather the sharded components are
performed over a much faster intra-node connection. Only the reduce_scatter to aggregate and redistribute gradients is
performed over the slower inter-node network.

The first limitation doesn’t exactly get fixed since the overall global batch size remains the same, but since each replica
is more efficient and because the additional memory pressure is likely to limit the possible micro batch size on each gpu,
this overall should improve the throughput of the system.

PyTorch FSDP has this feature implemented in shardingStrategy.HYBRID_SHARD

Papers:
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• ZeRO++: Extremely Efficient Collective Communication for Giant Model Training
• PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel

ZeRO variations
Published papers that propose modifications to the ZeRO protocol:

• MiCS: Near-linear Scaling for Training Gigantic Model on Public Cloud (2022)
• AMSP: Super-Scaling LLM Training via Advanced Model States Partitioning (2023)

Pipeline Parallelism methods
Naive Model Parallelism (Vertical)
Naive Model Parallelism (MP) is where one spreads groups of model layers across multiple GPUs. The mechanism is
relatively simple - switch the desired layers .to() the desired devices and now whenever the data goes in and out those
layers switch the data to the same device as the layer and leave the rest unmodified.

We refer to it as Vertical MP, because if you remember how most models are drawn, we slice the layers vertically. For
example, if the following diagram shows an 8-layer model:

===================  ===================

|  0 | 1 | 2 | 3  |  |  4 | 5 | 6 | 7  |

===================  ===================

gpu0                 gpu1

we just sliced it in 2 vertically, placing layers 0-3 onto GPU0 and 4-7 to GPU1.

Now while data travels from layer 0 to 1, 1 to 2 and 2 to 3 this is just the normal model. But when data needs to pass from
layer 3 to layer 4 it needs to travel from GPU0 to GPU1 which introduces a communication overhead. If the participating
GPUs are on the same compute node (e.g. same physical machine) this copying is pretty fast, but if the GPUs are located on
different compute nodes (e.g. multiple machines) the communication overhead could be significantly larger.

Then layers 4 to 5 to 6 to 7 are as a normal model would have and when the 7th layer completes we often need to send the
data back to layer 0 where the labels are (or alternatively send the labels to the last layer). Now the loss can be computed
and the optimizer can do its work.

Problems:

• the main deficiency and why this one is called "naive" MP, is that all but one GPU is idle at any given moment. So if 4
GPUs are used, it’s almost identical to quadrupling the amount of memory of a single GPU, and ignoring the rest of
the hardware. Plus there is the overhead of copying the data between devices. So 4x 6GB cards will be able to
accommodate the same size as 1x 24GB card using naive MP, except the latter will complete the training faster, since
it doesn’t have the data copying overhead. But, say, if you have 40GB cards and need to fit a 45GB model you can
with 4x 40GB cards (but barely because of the gradient and optimizer states)

• shared embeddings may need to get copied back and forth between GPUs.

Pipeline Parallelism
Pipeline Parallelism (PP) is almost identical to a naive MP, but it solves the GPU idling problem, by chunking the incoming
batch into micro-batches and artificially creating a pipeline, which allows different GPUs to concurrently participate in
the computation process.

The following illustration from the GPipe paper shows the naive MP on the top, and PP on the bottom:
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It’s easy to see from the bottom diagram how PP has less dead zones, where GPUs are idle. The idle parts are referred to as
the "bubble".

Both parts of the diagram show a parallelism that is of degree 4. That is 4 GPUs are participating in the pipeline. So there
is the forward path of 4 pipe stages F0, F1, F2 and F3 and then the return reverse order backward path of B3, B2, B1 and B0.

PP introduces a new hyper-parameter to tune and it’s chunks which defines how many chunks of data are sent in a
sequence through the same pipe stage. For example, in the bottom diagram you can see that chunks=4. GPU0 performs the
same forward path on chunk 0, 1, 2 and 3 (F0,0, F0,1, F0,2, F0,3) and then it waits for other GPUs to do their work and only
when their work is starting to be complete, GPU0 starts to work again doing the backward path for chunks 3, 2, 1 and 0
(B0,3, B0,2, B0,1, B0,0).

Note that conceptually this is the same concept as gradient accumulation steps (GAS). Pytorch uses chunks, whereas
DeepSpeed refers to the same hyper-parameter as GAS.

Because of the chunks, PP introduces the concept of micro-batches (MBS). DP splits the global data batch size into
mini-batches, so if you have a DP degree of 4, a global batch size of 1024 gets split up into 4 mini-batches of 256 each (1024/
4). And if the number of chunks (or GAS) is 32 we end up with a micro-batch size of 8 (256/32). Each Pipeline stage works
with a single micro-batch at a time.

To calculate the global batch size of the DP + PP setup we then do: mbs*chunks*dp_degree (8*32*4=1024).

Let’s go back to the diagram.

With chunks=1 you end up with the naive MP, which is very inefficient. With a very large chunks value you end up with tiny
micro-batch sizes which could be not every efficient either. So one has to experiment to find the value that leads to the
highest efficient utilization of the gpus.

While the diagram shows that there is a bubble of "dead" time that can’t be parallelized because the last forward stage has
to wait for backward to complete the pipeline, the purpose of finding the best value for chunks is to enable a high concurrent
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GPU utilization across all participating GPUs which translates to minimizing the size of the bubble.

The choice of the schedule is critical to the efficient performance, with the most common schedules being in the order of
invention:

• sequential Gpipe: Efficient training of giant neural networks using pipeline parallelism
• interleaved 1F1B Pipedream: Fast and efficient pipeline parallel dnn training
• looped, depth-first Efficient large-scale language model training on gpu clusters using Megatron-LM
• breadth-first Breadth-First Pipeline Parallelism

Here is for example an interleaved pipeline:

Here the bubble (idle time) is further minimized by prioritizing backward passes.

It’s used by DeepSpeed, Varuna and SageMaker to name a few.

Varuna further tries to improve the schedule by using simulations to discover the most efficient scheduling.

There are 2 groups of PP solutions - the traditional Pipeline API and the more modern solutions that make things much
easier for the end user by helping to partially or fully automate the process:

1. Traditional Pipeline API solutions:
• Megatron-LM
• DeepSpeed
• PyTorch

2. Modern solutions:
• PiPPy
• Varuna
• Sagemaker

Problems with traditional Pipeline API solutions:

• have to modify the model quite heavily, because Pipeline requires one to rewrite the normal flow of modules into a
nn.Sequential sequence of the same, which may require changes to the design of the model.

• currently the Pipeline API is very restricted. If you had a bunch of python variables being passed in the very first
stage of the Pipeline, you will have to find a way around it. Currently, the pipeline interface requires either a single
Tensor or a tuple of Tensors as the only input and output. These tensors must have a batch size as the very first
dimension, since pipeline is going to chunk the mini batch into micro-batches. Possible improvements are being
discussed here https://github.com/pytorch/pytorch/pull/50693

• conditional control flow at the level of pipe stages is not possible - e.g., Encoder-Decoder models like T5 require
special workarounds to handle a conditional encoder stage.

• have to arrange each layer so that the output of one model becomes an input to the other model.

I’m yet to try to experiment with Varuna and SageMaker but their papers report that they have overcome the list of
problems mentioned above and that they require much smaller changes to the user’s model.

Implementations:

• Pytorch (initial support in pytorch-1.8, and progressively getting improved in 1.9 and more so in 1.10). Some
examples

• FairScale
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• DeepSpeed
• Megatron-LM has an internal implementation - no API.
• Varuna
• SageMaker - this is a proprietary solution that can only be used on AWS.
• OSLO - this is implemented based on the Hugging Face Transformers.
• PiPPy: Pipeline Parallelism for PyTorch - automatic PP via torch.fx

• nanotron

Tensor Parallelism
In Tensor Parallelism each GPU processes only a slice of a tensor and only aggregates the full tensor for operations that
require the whole thing.

In this section we use concepts and diagrams from the Megatron-LM paper: Efficient Large-Scale Language Model Training
on GPU Clusters.

The main building block of any transformer is a fully connected nn.Linear followed by a nonlinear activation GeLU.

Following the Megatron’s paper notation, we can write the dot-product part of it as Y = GeLU(XA), where X and Y are the
input and output vectors, and A is the weight matrix.

If we look at the computation in matrix form, it’s easy to see how the matrix multiplication can be split between
multiple GPUs:
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If we split the weight matrix A column-wise across N GPUs and perform matrix multiplications XA_1 through XA_n in
parallel, then we will end up with N output vectors Y_1, Y_2, ..., Y_n which can be fed into GeLU independently:

Using this principle, we can update an MLP of arbitrary depth, without the need for any synchronization between
GPUs until the very end, where we need to reconstruct the output vector from shards. The Megatron-LM paper authors
provide a helpful illustration for that:

Parallelizing the multi-headed attention layers is even simpler, since they are already inherently parallel, due to having
multiple independent heads!

Important: TP requires very fast network, and therefore since typically intra-node networks are much faster than
inter-node networks it’s not advisable to do TP across nodes. Practically, if a node has 4 GPUs, the highest TP degree is
therefore 4. If you need a TP degree of 8, you need to use nodes that have at least 8 GPUs.
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Important: TP degree shouldn’t span across nodes. For example if the node has 8 gpus, TP degree should be no more than
8.

TP can combined with other parallelization methods.

Alternative names:

• DeepSpeed calls it tensor slicing

Implementations:

• Megatron-LM has an internal implementation, as it’s very model-specific
• PyTorch
• SageMaker - this is a proprietary solution that can only be used on AWS.
• OSLO has the tensor parallelism implementation based on the Transformers.
• nanotron
• parallelformers (only inference at the moment)

DP+PP
The following diagram from the DeepSpeed pipeline tutorial demonstrates how one combines DP with PP.

Here it’s important to see how DP rank 0 doesn’t see GPU2 and DP rank 1 doesn’t see GPU3. To DP there is just GPUs 0 and 1
where it feeds data as if there were just 2 GPUs. GPU0 "secretly" offloads some of its load to GPU2 using PP. And GPU1 does
the same by enlisting GPU3 to its aid.

Since each dimension requires at least 2 GPUs, here you’d need at least 4 GPUs.

Implementations:

• DeepSpeed
• Megatron-LM
• Varuna
• SageMaker
• OSLO
• nanotron

DP+PP+TP
To get an even more efficient training a 3D parallelism is used where PP is combined with TP and DP. This can be seen in
the following diagram.
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This diagram is from a blog post 3D parallelism: Scaling to trillion-parameter models, which is a good read as well.

Since each dimension requires at least 2 GPUs, here you’d need at least 8 GPUs.

Implementations:

• DeepSpeed - DeepSpeed also includes an even more efficient DP, which they call ZeRO-DP.
• Megatron-LM
• Varuna
• SageMaker
• OSLO
• nanotron

ZeRO DP+PP+TP
One of the main features of DeepSpeed is ZeRO, which is a super-scalable extension of DP. It has already been discussed
in ZeRO Data Parallelism. Normally it’s a standalone feature that doesn’t require PP or TP. But it can be combined with PP
and TP.

When ZeRO-DP is combined with PP (and optionally TP) it typically enables only ZeRO stage 1 (optimizer sharding).

While it’s theoretically possible to use ZeRO stage 2 (gradient sharding) with Pipeline Parallelism, it will have bad
performance impacts. There would need to be an additional reduce-scatter collective for every micro-batch to aggregate
the gradients before sharding, which adds a potentially significant communication overhead. By nature of Pipeline
Parallelism, small micro-batches are used and instead the focus is on trying to balance arithmetic intensity (micro-batch
size) with minimizing the Pipeline bubble (number of micro-batches). Therefore those communication costs are going to
hurt.

In addition, there are already fewer layers than normal due to PP and so the memory savings won’t be huge. PP already
reduces gradient size by 1/PP, and so gradient sharding savings on top of that are less significant than pure DP.

ZeRO stage 3 is not a good choice either for the same reason - more inter-node communications required.

And since we have ZeRO, the other benefit is ZeRO-Offload. Since this is stage 1 optimizer states can be offloaded to CPU.
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Implementations:

• Megatron-DeepSpeed and Megatron-Deepspeed from BigScience, which is the fork of the former repo.
• OSLO

Important papers:

• Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model

Sequence Parallelism
ML tasks, such as DNA sequencing, may require training with very long sequence lengths (e.g. 256K), and even normal
LLMs could be trained on sequences of 10k and longer.

Self-Attention, which is the key component of Transformers, suffers from quadratic memory requirements with respect to
the sequence length, therefore when sequence length gets to a certain length, even a batch size of 1 might not be able to fit
onto a single GPU and require additional partitioning along the sequence dimension. And once this is done, the sequence
can be of any length.

As this type of parallelism is orthogonal to the other parallelization types described in this document, it can be combined
with any of them, leading to 4D, ZeRO-DP+SP and other combinations.

Deepspeed-Ulysses SP
Paper: DeepSpeed Ulysses: System Optimizations for Enabling Training of Extreme Long Sequence Transformer Models

In this implementation 2 elements are sharded:

1. The multiple-head attention weights are split across the participating GPUs so that each GPU has a few sub-heads
only. This is done when the model is created/loaded. This is somewhat similar to Tensor Parallelism.

2. During training each input sequence is partitioned into chunks and each chunk is sent to one of the GPUs, which
reminds us of ZeRO-3 sharding, except instead of weights the inputs are sharded.

During compute each sequence chunk is projected onto QKV and then gathered to the full sequence QKV on each device,
computed on each device only for the subheads it owns and then gathered again into the full attention output for the MLP
block.

source

107

https://github.com/microsoft/Megatron-DeepSpeed
https://github.com/bigscience-workshop/Megatron-DeepSpeed
https://github.com/eleutherAI/Oslo
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/2309.14509
https://github.com/microsoft/DeepSpeed/tree/master/blogs/deepspeed-ulysses


On the diagram:

1. Input sequences N are partitioned across P available devices.
2. Each local N/P partition of the input sequence is projected into queries (Q), keys (K) and values (V) embeddings.
3. Next, local QKV embeddings are gathered into global QKV through highly optimized all-to-all collectives between

participating compute devices.
4. Then the attention computation per head is performed:

5. At the end another all-to-all collective transforms output context tensor of attention computation to sequence (N/P)
parallel for subsequent operators (MLP MatMul, layer norm, etc.) in the remaining modules of transformer layer
block.

Example: Let’s consider seqlen=8K, num_heads=128 and a single node of num_gpus=8

1. each GPU gets a 1K-long chunk of the original sequence (8K/8)
2. each GPU gets assigned 16 sub-heads (128/8)
3. a. on gpu0 before forward the original sequence is gathered back into 8K tokens b. the attention computation is done

on the first 16 sub-heads the same logic is performed on the remaining 7 GPUs, each computing 8k attention over its
16 sub-heads

You can read the specifics of the very efficient comms here.

DeepSpeed-Ulysses keeps communication volume consistent by increasing GPUs proportional to message size or sequence
length.

Colossal-AI’s SP
Paper: Sequence parallelism: Long sequence training from system perspective

Colossal-AI’s SP implementation uses ring self-attention, a ring-like communication collective in which query projections
are local whereas key and values projections are transmitted in a ring-style to compute global attention, resulting in
communication complexity linear in message size, M.

Megatron-LM’s SP
Paper: Reducing Activation Recomputation in Large Transformer Models

Megatron-LM’s SP is tightly integrated with its TP. Megatron-LM partitions sequence along sequence dimensions and
applies allgather and reduce scatter collective to aggregate QKV projections for attention computation. Its communication
volume increases linearly with message size (M) regardless of number of compute devices.

Implementations:

• Megatron-LM
• Deepspeed
• Colossal-AI

FlexFlow
FlexFlow also solves the parallelization problem in a slightly different approach.

Paper: "Beyond Data and Model Parallelism for Deep Neural Networks" by Zhihao Jia, Matei Zaharia, Alex Aiken
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It performs a sort of 4D Parallelism over Sample-Operator-Attribute-Parameter.

1. Sample = Data Parallelism (sample-wise parallel)
2. Operator = Parallelize a single operation into several sub-operations
3. Attribute = Data Parallelism (length-wise parallel)
4. Parameter = Model Parallelism (regardless of dimension - horizontal or vertical)

Examples:

• Sample

Let’s take 10 batches of sequence length 512. If we parallelize them by sample dimension into 2 devices, we get 10 x 512
which becomes be 5 x 2 x 512.

• Operator

If we perform layer normalization, we compute std first and mean second, and then we can normalize data. Operator
parallelism allows computing std and mean in parallel. So if we parallelize them by operator dimension into 2 devices
(cuda:0, cuda:1), first we copy input data into both devices, and cuda:0 computes std, cuda:1 computes mean at the same
time.

• Attribute

We have 10 batches of 512 length. If we parallelize them by attribute dimension into 2 devices, 10 x 512 will be 10 x 2 x 256.

• Parameter

It is similar with tensor model parallelism or naive layer-wise model parallelism.
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The significance of this framework is that it takes resources like (1) GPU/TPU/CPU vs. (2) RAM/DRAM vs. (3)
fast-intra-connect/slow-inter-connect and it automatically optimizes all these algorithmically deciding which
parallelisation to use where.

One very important aspect is that FlexFlow is designed for optimizing DNN parallelizations for models with static and fixed
workloads, since models with dynamic behavior may prefer different parallelization strategies across iterations.

So the promise is very attractive - it runs a 30min simulation on the cluster of choice and it comes up with the best strategy
to utilise this specific environment. If you add/remove/replace any parts it’ll run and re-optimize the plan for that. And
then you can train. A different setup will have its own custom optimization.

Inter-node speed requirements to use ZeRO
The ZeRO scalability protocol, be it Deepspeed ZeRO or PyTorch FSDP, requires a lot more inter-node traffic than TP+PP+DP
solutions, and sometimes it can’t take advantage of the faster intra-node connectivity, and therefore if your inter-node
network is slow your expensive GPUs might be massively bottlenecked by the comms.
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The ZeRO protocol partially overlaps comms with compute, so ideally you want to get close to comms_time <= compute_time.
The overlap is not perfect, so there will be always some network bottleneck, but we want to make sure that comms_time is
not much larger than compute_time.

In ZeRO-3, we have all_gather on weights in forward, then all_gather on weights in backward, last is reduce_scatter on
gradients in backward. In total there are 3 global collective calls each sending a model size multiplied by how many bytes
per parameter are used. e.g. a 10B param model in bf16 under ZeRO-3 will need to send 1023=60GB of data.

In comparison DistributedDataParallel (DDP) uses a single all_reduce call, but which requires 2x data transmission, and so
a 10B param model in bf16 under DDP will need to send 1022=40GB of data.

ZeRO-1 which only shards the optimiser states, like DDP, will too need to transmit 40GB of data (one all_gather and one
reduce_scatter.)

Here is how to calculate time in seconds for communication and compute:

• comms_time = n_transmissions * n_bytes * model_size_in_B / inter-node-throughput_in_GBps

• compute_time = n_passes * n_bytes * model_size_in_B * seqlen * global_batch_size / (total_gpus * 1e3 *

tflops_wo_comms)

The compute time formula is a rough estimate which works for any Transformer-block based model. It ignores any small
computations and includes only the massive matmuls.

As an experiment let’s use the data points from IDEFICS-80B training.

When we trained IDEFICS-80B with a 340GBs EFA we were getting only 90TFLOPs w/ Deepspeed ZeRO-3 on A100s as
compared to 150+TFLOPs one was getting with Megatron’s TP+PP+DP. and moreover a big chunk of the model was frozen
as were building a new models based on one language and one vision model. So our multiplier was less than 3. On the other
hand we were using activation recomputation to save memory, so this is an additional transmission of all model weights
and to top it all off since nccl wasn’t supporting proper half-precision reduction we used fp32 for gradient reductions, so
really our multiplier wasn’t 3 but more like 4.5.

Values used for IDEFICS-80B training:

• model_size_in_B = 80

• n_bytes = 2 in case of bf16 which is 2 bytes
• n_transmissions = 3 in the case of ZeRO-3/FSDP (1x reduce_scatter + 2x all_gather (fwd + bwd)) and 2 in case of

ZeRO-1 (1x reduce_scatter + 1x all_gather),
• additionally, in the case of IDEFICS-80B we decided to reduce grads in fp32 to minimize NCCL accumulation loss, so

we actually had n_transmissions*n_bytes=3*2+2=4*2 for the additional 2 bytes but since half the model was frozen
only about half of gradients were sent, so we still have the multiplier of 3.

• n_passes = 4 with activation recomputation, or 3 w/o it. The model has to do only 1x compute per forward and 2x per
backward (since the grads are calculated twice - once wrt inputs and once wrt weights). And with activation
recomputation one more forward is done.

• total_gpus = 512

• global_batch_size = 3584

• seqlen = 1024

• inter-node-throughput_in_GBps = 42.5 (340Gbps) (AWS EFA v1) -tflops_wo_comms is the tflops w/o the communication
overhead. Not theoretical peak as that is unachievable, but perhaps 75% in the case of A100@BF16 - so 312*0.75=234

TFLOPS

We derived 340Gbps inter-node network throughput using all_reduce_bench.py which by default uses a payload of 4GB. In
the case of IDEFICS-80B we had 80 layers, so approximately each layer was 1B params large. Which means that each layer
was sending 2GB of data for bf16 tensors and 4GB of data with fp32 tensors, which matches the network benchmark. If you
were to have a much smaller layer size, I’d recommend adapting the benchmark to that size. For example, if your layer size
was only 100M param large, then your payload would be 0.2GB for bf16 tensors. As this is an order of magnitude smaller,
the network is likely to give you a lower bandwidth, and you should use that in your calculations.
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footnote: if parts of your model are frozen, then there will be less data sent in syncing the gradients. in IDEFICS we had
more than half of the model frozen, so when grads were reduced we only had about half the traffic.

Which gives us:

• comms = 3 * 2 * 80 / 42.5 = 11 sec
• compute = 4 * 2 * 80 * 1024 * 3584 / (512 * 1e3 * 250) = 18 sec

If we check against our IDEFICS-80B logs, which had each iteration at about 49 seconds.

So the good news is that the math checks out as comms + compute are in the ballpark of the measured time, except

We can do another sanity check by feeding the compute formulae 90 TFLOPS that we logged, in which case:

• compute = 4 * 2 * 80 * 1024 * 3584 / (512 * 1e3 * 90) = 51 sec

and so 49 and 51 secs are pretty close. Except this tells us nothing since the logged TFLOPS were calculated using this
formula, so, of course, it should match.

What I’d expect in the best case is where I have used close to theoretical peak TFLOPS in the formula and received the
compute estimate to be about the same as the actual compute time measured on the system. Remember that since comms
are interleaved with compute, when we measure forward+backward wallclock time it includes comms in it.

What’s the conclusion? I’d say more investigation is needed as clearly there are additional hidden bottlenecks here. I no
longer have access to this setup to investigate, so I will repeat this exercise afresh when I train another largish model and
share the updated math with you. But this workout should give you a feeling for what’s going on behind the scenes and
how all these numbers work together.

Also this discussion didn’t include into the math gradient accumulation steps (GAS). In the case of IDEFICS-80B it wasn’t
used. If GAS>1 the theoretical compute time doesn’t change, but comms time instead of 3*2*M/GBps would become
GAS*3*2*M/GBps. The weights gathering via all_gather for forward and backward would transpire as many times as there
are gradient accumulation steps. In theory for grads it’d need to happen only once, but since there is no place to store
intermediary grads of the gathered weight on each GPU it’ll have to be reduced GAS times as well. This is for ZeRO-2 and
ZeRO-3. For ZeRO-1 GAS>1 requires no additional comms.

We also didn’t discuss the DataLoader as a potential bottleneck here, but we tested that it was under 1 sec, i.e. a very small
overhead.

Going back to comms math, we also didn’t take into an account various hardware latencies, but when dealing with a large
payloads they shouldn’t add up a significant additional overhead.

And now you know how long it’ll take to transmit that many GBs over the network of your system. For example, if the
network were to be 5x slower than the one we used for IDEFICS-80B training, that is 8.5GBps (68Gbps) then:

• comms = 3 * 2 * 80 / 8.5 = 56 sec

which would definitely be a huge bottleneck compared to the faster compute.

If the network were to be 5x faster, that is 212GBs (1700Gbps) then:

• comms = 3 * 2 * 80 / 212 = 2 sec

which would be insignificant comparatively to the compute time, especially if some of it is successfully overlapped with
the commute.

Also the Deepspeed team empirically benchmarked a 176B model on 384 V100 GPUs (24 DGX-2 nodes) and found that:

1. With 100 Gbps IB, we only have <20 TFLOPs per GPU (bad)
2. With 200-400 Gbps IB, we achieve reasonable TFLOPs around 30-40 per GPU (ok)
3. For 800 Gbps IB, we reach 40+ TFLOPs per GPU (excellent)

To remind the peak TFLOPS for NVIDIA V100 at fp16 is 125 TFLOPS.
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But be careful here - this benchmark is for V100s! Which is about 2-3x slower than A100, and 4-8x slower than H100 for
half-precision. So the comms have to be at least 4-8x faster for H100 nodes to match the above table at half precision. We
need more benchmarks with more recent hardware.

footnote: the 2-3x range is because the official specs claim 3x TFLOPS increase for V100->A100, and A100->H100 each, but
users benchmarking the difference report at most 2.5x improvements.

They also noticed that when training at scale, the communication overhead is more pronounced with small micro-batch
size per GPU. And we may not be able to increase micro-batch size since global-batch size is often fixed to achieve good
model convergence rate. This is solved by the recently introduced ZeRO++.

Finally, when doing the math above you need to know the actual bandwidth you get on your setup - which changes
with payload size - the larger the payload the better the bandwidth. To get this information you need to look at your
reduce_bucket_size and prefetch_bucket_size settings in the Deepspeed configuration file for reduction and prefetch
correspondingly. The default is 0.5B params, which is 1GB in half-precision (0.5B x 2 bytes), or 2GB (0.5B x 4 bytes) if you
use fp32 precision. So in order to measure the actual throughput you need to run an all_reduce benchmark with that
payload and see what bandwidth gets reported. Then you can feed it to the calculations above.

Which Strategy To Use When
Here is a very rough outline at which parallelism strategy to use when. The first on each list is typically faster.

⇨⇨ Single GPU Single GPU

• Model fits onto a single GPU:

1. Normal use

• Model doesn’t fit onto a single GPU:

1. ZeRO + Offload CPU and optionally NVMe
2. as above plus Memory Centric Tiling (see below for details) if the largest layer can’t fit into a single GPU

• Largest Layer not fitting into a single GPU:

1. ZeRO - Enable Memory Centric Tiling (MCT). It allows you to run arbitrarily large layers by automatically splitting
them and executing them sequentially. MCT reduces the number of parameters that are live on a GPU, but it does
not affect the activation memory. As this need is very rare as of this writing a manual override of torch.nn.Linear
needs to be done by the user.

⇨⇨ Single Node / Multi-GPU Single Node / Multi-GPU

• Model fits onto a single GPU:

1. DDP - Distributed DP
2. ZeRO - may or may not be faster depending on the situation and configuration used

• Model doesn’t fit onto a single GPU:

1. PP
2. ZeRO
3. TP

With very fast intra-node connectivity of NVLINK or NVSwitch all three should be mostly on par, without these PP
will be faster than TP or ZeRO. The degree of TP may also make a difference. Best to experiment to find the winner
on your particular setup.

TP is almost always used within a single node. That is TP size <= gpus per node.

• Largest Layer not fitting into a single GPU:
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1. If not using ZeRO - must use TP, as PP alone won’t be able to fit.
2. With ZeRO see the same entry for "Single GPU" above

⇨⇨ Multi-Node / Multi-GPU Multi-Node / Multi-GPU

• If the model fits into a single node first try ZeRO with multiple replicas, because then you will be doing ZeRO over
the faster intra-node connectivity, and DDP over slower inter-node

• When you have fast inter-node connectivity:

1. ZeRO - as it requires close to no modifications to the model
2. PP+TP+DP - less communications, but requires massive changes to the model

• when you have slow inter-node connectivity and still low on GPU memory:

1. DP+PP+TP+ZeRO-1

Contributors
Samyam Rajbhandari, Horace He, Siddharth Singh, Olatunji Ruwase,
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Working in SLURM Environment

Unless you’re lucky and you have a dedicated cluster that is completely under your control chances are that you will have
to use SLURM to timeshare the GPUs with others. But, often, if you train at HPC, and you’re given a dedicated partition you
still will have to use SLURM.

The SLURM abbreviation stands for: Simple Linux Utility for Resource ManagementSimple Linux Utility for Resource Management - though now it’s called The Slurm
Workload Manager. It is a free and open-source job scheduler for Linux and Unix-like kernels, used by many of the world’s
supercomputers and computer clusters.

These chapters will not try to exhaustively teach you SLURM as there are many manuals out there, but will cover some
specific nuances that are useful to help in the training process.

• SLURM For Users - everything you need to know to do your training in the SLURM environment.
• SLURM Administration - if you’re unlucky to need to also manage the SLURM cluster besides using it, there is a

growing list of recipes in this document to get things done faster for you.
• Performance - SLURM performance nuances.
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SLURM Administration

Run a command on multiple nodes
1. to avoid being prompted with:

Are you sure you want to continue connecting (yes/no/[fingerprint])?

for every new node you haven’t logged into yet, you can disable this check with:

echo "Host *" >> ~/.ssh/config

echo "  StrictHostKeyChecking no" >> ~/.ssh/config

Of course, check if that’s secure enough for your needs. I’m making an assumption that you’re already on the SLURM
cluster and you’re not ssh’ing outside of your cluster. You can choose not to set this and then you will have to manually
approve each new node.

2. Install pdsh

You can now run the wanted command on multiple nodes.

For example, let’s run date:

$ PDSH_RCMD_TYPE=ssh pdsh -w node-[21,23-26] date

node-25: Sat Oct 14 02:10:01 UTC 2023

node-21: Sat Oct 14 02:10:02 UTC 2023

node-23: Sat Oct 14 02:10:02 UTC 2023

node-24: Sat Oct 14 02:10:02 UTC 2023

node-26: Sat Oct 14 02:10:02 UTC 2023

Let’s do something more useful and complex. Let’s kill all GPU-tied processes that didn’t exit when the SLURM job was
cancelled:

First, this command will give us all process ids that tie up the GPUs:

nvidia-smi --query-compute-apps=pid --format=csv,noheader | sort | uniq

So we can now kill all those processes in one swoop:

PDSH_RCMD_TYPE=ssh pdsh -w node-[21,23-26]  "nvidia-smi --query-compute-apps=pid --format=csv,noheader |

sort | uniq | xargs -n1 sudo kill -9"
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Slurm settings
Show the slurm settings:

sudo scontrol show config

The config file is /etc/slurm/slurm.conf on the slurm controller node.

Once slurm.conf was updated to reload the config run:

sudo scontrol reconfigure

from the controller node.

Auto-reboot
If the nodes need to be rebooted safely (e.g. if the image has been updated), adapt the list of the node and run:

scontrol reboot ASAP node-[1-64]

For each of the non-idle nodes this command will wait till the current job ends, then reboot the node and bring it back up
to idle.

Note that you need to have:

RebootProgram = "/sbin/reboot"

set in /etc/slurm/slurm.conf on the controller node for this to work (and reconfigure the SLURM daemon if you have just
added this entry to the config file).

Changing the state of the node
The change is performed by scontrol update

Examples:

To undrain a node that is ready to be used:

scontrol update nodename=node-5 state=idle

To remove a node from the SLURM’s pool:

scontrol update nodename=node-5 state=drain
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Undrain nodes killed due to slow process exit
Sometimes processes are slow to exit when a job has been cancelled. If the SLURM was configured not to wait forever it’ll
automatically drain such nodes. But there is no reason for those nodes to not be available to the users.

So here is how to automate it.

The keys is to get the list of nodes that are drained due to "Kill task failed", which is retrieved with:

sinfo -R | grep "Kill task failed"

now extract and expand the list of nodes, check that the nodes are indeed user-process free (or try to kill them first) and
then undrain them.

Earlier you learned how to run a command on multiple nodes which we will use in this script.

Here is the script that does all that work for you: undrain-good-nodes.sh

Now you can just run this script and any nodes that are basically ready to serve but are currently drained will be switched
to idle state and become available for the users to be used.

Modify a job’s timelimit
To set a new timelimit on a job, e.g., 2 days:

scontrol update JobID=$SLURM_JOB_ID TimeLimit=2-00:00:00

To add additional time to the previous setting, e.g. 3 more hours.

scontrol update JobID=$SLURM_JOB_ID TimeLimit=+10:00:00

When something goes wrong with SLURM
Analyze the events log in the SLURM’s log file:

sudo cat /var/log/slurm/slurmctld.log

This, for example, can help to understand why a certain node got its jobs cancelled before time or the node got removed
completely.
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SLURM for users

Quick start
Simply copy this example.slurm and adapt it to your needs.

SLURM partitions
In this doc we will use an example setup with these 2 cluster names:

• dev

• prod

To find out the hostname of the nodes and their availability, use:

sinfo -p dev

sinfo -p prod

Slurm configuration is at /opt/slurm/etc/slurm.conf.

Wait time for resource granting

squeue -u `whoami` --start

will show when any pending jobs are scheduled to start.

They may start sooner if others cancel their reservations before the end of the reservation.

Request allocation via dependency
To schedule a new job when one more of the currently scheduled job ends (regardless of whether it still running or
not started yet), use the dependency mechanism, by telling sbatch to start the new job once the currently running job
succeeds, using:

sbatch --dependency=CURRENTLY_RUNNING_JOB_ID tr1-13B-round1.slurm

Using --dependency may lead to shorter wait times that using --begin, since if the time passed to --begin allows even for
a few minutes of delay since the stopping of the last job, the scheduler may already start some other jobs even if their
priority is lower than our job. That’s because the scheduler ignores any jobs with --begin until the specified time arrives.

Make allocations at a scheduled time
To postpone making the allocation for a given time, use:
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salloc --begin HH:MM MM/DD/YY

Same for sbatch.

It will simply put the job into the queue at the requested time, as if you were to execute this command at this time. If
resources are available at that time, the allocation will be given right away. Otherwise it’ll be queued up.

Sometimes the relative begin time is useful. And other formats can be used. Examples:

--begin now+2hours

--begin=16:00

--begin=now+1hour

--begin=now+60  # seconds by default

--begin=2010-01-20T12:34:00

the time-units can be seconds (default), minutes, hours, days, or weeks:

Preallocated node without time 60min limit
This is very useful for running repetitive interactive experiments - so one doesn’t need to wait for an allocation to
progress. so the strategy is to allocate the resources once for an extended period of time and then running interactive srun

jobs using this allocation.

set --time to the desired window (e.g. 6h):

salloc --partition=dev --nodes=1 --ntasks-per-node=1 --cpus-per-task=96 --gres=gpu:8 --time=6:00:00 bash

salloc: Pending job allocation 1732778

salloc: job 1732778 queued and waiting for resources

salloc: job 1732778 has been allocated resources

salloc: Granted job allocation 1732778

now use this reserved node to run a job multiple times, by passing the job id of salloc:

srun --jobid $SLURM_JOBID --pty bash

if run from inside bash started via salloc. But it can be started from another shell, but then explicitly set --jobid.

if this srun job timed out or manually exited, you can re-start it again in this same reserved node.

srun can, of course, call the real training command directly and not just bash.

Important: when allocating a single node, the allocated shell is not on the node (it never is). You have to find out the
hostname of the node (reports when giving the allocation or via squeue and ssh to it.

When finished, to release the resources, either exit the shell started in salloc or scancel JOBID.

This reserved node will be counted towards hours usage the whole time it’s allocated, so release as soon as done with it.

Actually, if this is just one node, then it’s even easier to not use salloc but to use srun in the first place, which will both
allocate and give you the shell to use:
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srun --pty --partition=dev --nodes=1 --ntasks=1 --cpus-per-task=96 --gres=gpu:8 --time=60 bash

Hyper-Threads
By default, if the cpu has hyper-threads (HT), SLURM will use it. If you don’t want to use HT you have to specify
--hint=nomultithread.

footnote: HT is Intel-specific naming, the general concept is simultaneous multithreading (SMT)

For example for a cluster with with 2 cpus per node with 24 cores and 2 hyper-threads each, there is a total of 96
hyper-threads or 48 cpu-cores available. Therefore to utilize the node fully you’d need to configure either:

#SBATCH --cpus-per-task=96

or if you don’t want HT:

#SBATCH --cpus-per-task=48

#SBATCH --hint=nomultithread

This last approach will allocate one thread per core and in this mode there are only 48 cpu cores to use.

Note that depending on your application there can be quite a performance difference between these 2 modes. Therefore
try both and see which one gives you a better outcome.

On some setups like AWS the network’s performance degrades dramatically when --hint=nomultithread is used!

Reuse allocation
e.g. when wanting to run various jobs on identical node allocation.

In one shell:

salloc --partition=prod --nodes=16 --ntasks=16 --cpus-per-task=96 --gres=gpu:8 --time=3:00:00 bash

echo $SLURM_JOBID

In another shell:

export SLURM_JOBID=<JOB ID FROM ABOVE>

srun --jobid=$SLURM_JOBID ...

You may need to set --gres=gpu:0 to run some diagnostics job on the nodes. For example, let’s check shared memory of all
the hosts:

srun --jobid 631078 --gres=gpu:0 bash -c ’echo $(hostname) $(df -h | grep shm)’
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Specific nodes selection
To exclude specific nodes (useful when you know some nodes are broken, but are still in IDLE state):

sbatch --exclude nodeA,nodeB

or via: #SBATCH --exclude ...

To use specific nodes:

sbatch --nodelist= nodeA,nodeB

can also use the short -w instead of --nodelist

The administrator could also define a feature=example in slurm.conf and then a user could ask for that subset of nodes via
--constraint=example

Signal the running jobs to finish
Since each SLURM run has a limited time span, it can be configured to send a signal of choice to the program a desired
amount of time before the end of the allocated time.

--signal=[[R][B]:]<sig_num>[@<sig_time>]

TODO: need to experiment with this to help training finish gracefully and not start a new cycle after saving the last
checkpoint.

Detailed job info
While most useful information is preset in various SLURM_* env vars, sometimes the info is missing. In such cases use:

scontrol show -d job $SLURM_JOB_ID

and then parse out what’s needed.

For a job that finished its run use:

sacct -j JOBID

e.g. with more details, depending on the partition:

sacct -u `whoami` --partition=dev  -ojobid,start,end,state,exitcode --format nodelist%300  -j JOBID

sacct -u `whoami` --partition=prod -ojobid,start,end,state,exitcode --format nodelist%300  -j JOBID
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show jobs
Show only my jobs:

squeue -u `whoami`

Show jobs by job id:

squeue -j JOBID

Show jobs of a specific partition:

squeue --partition=dev

Aliases
Handy aliases

alias myjobs=’squeue -u `whoami` -o "%.16i %9P %26j %.8T %.10M %.8l %.6D %.20S %R"’

alias groupjobs=’squeue -u foo,bar,tar -o "%.16i %u %9P %26j %.8T %.10M %.8l %.6D %.20S %R"’

alias myjobs-pending="squeue -u `whoami` --start"

alias idle-nodes="sinfo -p prod -o ’%A’"

Zombies
If there are any zombies left behind across nodes, send one command to kill them all.

srun pkill python

Detailed Access to SLURM Accounting
sacct displays accounting data for all jobs and job steps in the Slurm job accounting log or Slurm database.

So this is a great tool for analysing past events.

For example, to see which nodes were used to run recent gpu jobs:

sacct -u `whoami` --partition=dev -ojobid,start,end,state,exitcode --format nodelist%300

%300 here tells it to use a 300 char width for the output, so that it’s not truncated.

See man sacct for more fields and info fields.
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Queue
Cancel job
To cancel a job:

scancel [jobid]

To cancel all of your jobs:

scancel -u <userid>

To cancel all of your jobs on a specific partition:

scancel -u <userid> -p <partition>

Tips
• if you see that salloc’ed interactive job is scheduled to run much later than you need, try to cancel the job and ask

for shorter period - often there might be a closer window for a shorter time allocation.

Logging
If we need to separate logs to different log files per node add %N (for short hostname) so that we have:

#SBATCH --output=%x-%j-%N.out

That way we can tell if a specific node misbehaves - e.g. has a corrupt GPU. This is because currently pytorch doesn’t log
which node / gpu rank triggered an exception.

Hoping it’ll be a built-in feature of pytorch https://github.com/pytorch/pytorch/issues/63174 and then one won’t need
to make things complicated on the logging side.

Show the state of nodes

sinfo -p PARTITION

Very useful command is:

sinfo -s

and look for the main stat, e.g.:
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NODES(A/I/O/T) "allocated/idle/other/total".

597/0/15/612

So here 597 out of 612 nodes are allocated. 0 idle and 15 are not available for whatever other reasons.

sinfo -p gpu_p1 -o "%A"

gives:

NODES(A/I)

236/24

so you can see if any nodes are available on the 4x v100-32g partition (gpu_p1)

To check a specific partition:

sinfo -p gpu_p1 -o "%A"

See the table at the top of this document for which partition is which.

sinfo states
• idle: no jobs running
• alloc: nodes are allocated to jobs that are currently executing
• mix: the nodes have some of the CPUs allocated, while others are idle
• drain: the node is unavailable due to an administrative reason
• drng: the node is running a job, but will after completion not be available due to an administrative reason

drained nodes
To see all drained nodes and the reason for drainage (edit %50E to make the reason field longer/shorter)

% sinfo -R -o "%50E %12U %19H %6t %N"

or just -R if you want it short:

% sinfo -R

Job arrays
To run a sequence of jobs, so that the next slurm job is scheduled as soon as the currently running one is over in 20h we
use a job array.

Let’s start with just 10 such jobs:
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sbatch --array=1-10%1 array-test.slurm

%1 limits the number of simultaneously running tasks from this job array to 1. Without it it will try to run all the jobs at
once, which we may want sometimes (in which case remove %1), but when training we need one job at a time.

Alternatively, as always this param can be part of the script:

#SBATCH --array=1-10%1

Here is toy slurm script, which can be used to see how it works:

#!/bin/bash

#SBATCH --job-name=array-test

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1          # crucial - only 1 task per dist per node!

#SBATCH --cpus-per-task=1            # number of cores per tasks

#SBATCH --time 00:02:00              # maximum execution time (HH:MM:SS)

#SBATCH --output=%x-%j.out           # output file name

#SBATCH --error=%x-%j.out            # error file name (same to watch just one file)

#SBATCH --partition=dev

echo $SLURM_JOB_ID

echo "I am job ${SLURM_ARRAY_JOB_ID}_${SLURM_ARRAY_TASK_ID}"

date

sleep 10

date

Note $SLURM_ARRAY_JOB_ID is the same as $SLURM_JOB_ID, and $SLURM_ARRAY_TASK_ID is the index of the job.

To see the jobs running:

$ squeue -u `whoami` -o "%.10i %9P %26j %.8T %.10M %.6D %.20S %R"

JOBID PARTITION                       NAME    STATE       TIME  NODES           START_TIME

NODELIST(REASON)

591970_[2-   dev             array-test  PENDING       0:00      1  2021-07-28T20:01:06

(JobArrayTaskLimit)

now job 2 is running.

To cancel the whole array, cancel the job id as normal (the number before _):

scancel 591970

To cancel a specific job:
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scancel 591970_2

If it’s important to have the log-file contain the array id, add %A_%a:

#SBATCH --output=%x-%j.%A_%a.log

More details https://slurm.schedmd.com/job_array.html

Job Array Trains and their Suspend and Release
In this recipe we accomplish 2 things:

1. Allow modification to the next job’s slurm script
2. Allow suspending and resuming job arrays w/o losing the place in the queue when not being ready to continue

running a job

SLURM is a very unforgiving environment where a small mistake can cost days of waiting time. But there are strategies to
mitigate some of this harshness.

SLURM jobs have a concept of "age" in the queue which besides project priority governs when a job gets scheduled to
run. If your have just scheduled a new job it has no "age" and will normally be put to run last compared to jobs that have
entered the queue earlier. Unless of course this new job comes from a high priority project in which case it’ll progress
faster.

So here is how one can keep the "age" and not lose it when needing to fix something in the running script or for example
to switch over to another script.

The idea is this:

1. sbatch a long job array, e.g., -array=1-50%1
2. inside the slurm script don’t have any code other than source another-script.slurm - so now you can modify the

target script or symlink to another script before the next job starts
3. if you need to stop the job array train - don’t cancel it, but suspend it without losing your place in a queue
4. when ready to continue - unsuspend the job array - only the time while it was suspended is not counted towards its

age, but all the previous age is retained.

The only limitation of this recipe is that you can’t change the number of nodes, time and hardware and partition
constraints once the job array was launched.

Here is an example:

Create a job script:

$ cat train-64n.slurm

#!/bin/bash

#SBATCH --job-name=tr8-104B

#SBATCH --nodes=64

#SBATCH --ntasks-per-node=1          # crucial - only 1 task per dist per node!

#SBATCH --cpus-per-task=96           # number of cores per tasks

#SBATCH --gres=gpu:8                 # number of gpus

#SBATCH --time 20:00:00              # maximum execution time (HH:MM:SS)

#SBATCH --output=%x-%j.out           # output file name
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#SBATCH --partition=dev

source tr8-104B-64.slurm

Start it as:

sbatch --array=1-50%1 train-64.slurm

Now you can easily edit tr8-104B-64.slurm before the next job run and either let the current job finish if it’s desired or if
you need to abort it, just kill the currently running job, e.g. 1557903_5 (not job array 1557903) and have the train pick up
where it left, but with the edited script.

The nice thing is that this requires no changes to the original script (tr8-104B-64.slurm in this example), and the latter can
still be started on its own.

Now, what if something is wrong and you need 10min or 10h to fix something. In this case we suspend the train using:

scontrol hold <jobid>

with being either a "normal" job, the id of a job array or the id for a job array step

and then when ready to continue release the job:

scontrol release <jobid>

Troubleshooting
Mismatching nodes number
If the pytorch launcher fails it often means that the number of SLURM nodes and the launcher nodes are mismatching,
e.g.:

grep -ir nodes= tr123-test.slurm

#SBATCH --nodes=40

NNODES=64

This won’t work. They have to match.

You can add a sanity check to your script:

#!/bin/bash

#SBATCH --job-name=test-mismatch

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=1          # crucial - only 1 task per dist per node!

#SBATCH --cpus-per-task=96           # number of cores per tasks
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#SBATCH --gres=gpu:8                 # number of gpus

#SBATCH --time 0:05:00               # maximum execution time (HH:MM:SS)

#SBATCH --output=%x-%j.out           # output file name

#SBATCH --partition=prod

[...]

NNODES=2

# sanity check for having NNODES and `#SBATCH --nodes` match, assuming you use NNODES variable

if [ "$NNODES" != "$SLURM_NNODES" ]; then

echo "Misconfigured script: NNODES=$NNODES != SLURM_NNODES=$SLURM_NNODES"

exit 1

fi

[...]

or you could just do:

#SBATCH --nodes=2

[...]

NNODES=$SLURM_NNODES

and then it will always be correct

Find faulty nodes and exclude them
Sometimes a node is broken, which prevents one from training, especially since restarting the job often hits the same set
of nodes. So one needs to be able to isolate the bad node(s) and exclude it from sbatch.

To find a faulty node, write a small script that reports back the status of the desired check.

For example to test if cuda is available on all nodes:

python -c ’import torch, socket; print(f"{socket.gethostname()}: {torch.cuda.is_available()}")’

and to only report the nodes that fail:

python -c ’import torch, socket; torch.cuda.is_available() or print(f"Broken node:

{socket.gethostname()}") ’

Of course, the issue could be different - e.g. gpu can’t allocate memory, so change the test script to do a small allocation on
cuda. Here is one way:

python -c "import torch; torch.ones(1000,1000).cuda()"
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But since we need to run the test script on all nodes and not just the first node, the slurm script needs to run it via srun. So
our first diagnostics script can be written as:

srun --jobid $SLURM_JOBID bash -c ’python -c "import torch, socket; print(socket.gethostname(),

torch.cuda.is_available())"’

I slightly changed it, due to an issue with quotes.

You can always convert the one liner into a real script and then there is no issue with quotes.

$ cat << EOT >> test-nodes.py

#!/usr/bin/env python

import torch, socket

print(socket.gethostname(), torch.cuda.is_available())

EOT

$ chmod a+x ./test-nodes.py

Now let’s create a driver slurm script. Use a few minutes time for this test so that SLURM yields it faster:

#!/bin/bash

#SBATCH --job-name=test-nodes

#SBATCH --nodes=4

#SBATCH --ntasks-per-node=1          # crucial - only 1 task per dist per node!

#SBATCH --cpus-per-task=96           # number of cores per tasks

#SBATCH --gres=gpu:8                 # number of gpus

#SBATCH --time 0:05:00               # maximum execution time (HH:MM:SS)

#SBATCH --output=%x-%j.out           # output file name

#SBATCH --partition=prod

source $six_ALL_CCFRWORK/start-prod

srun --jobid $SLURM_JOBID ./test-nodes.py

Once it runs check the logs to see if any reported False, those are the nodes you want to exclude.

Now once the faulty node(s) is found, feed it to sbatch:

sbatch --exclude=hostname1,hostname2 ...

and sbatch will exclude the bad nodes from the allocation.

Additionally please report the faulty nodes to #science-support so that they get replaced

Here are a few more situations and how to find the bad nodes in those cases:

Broken NCCL
If you’re testing something that requires distributed setup, it’s a bit more complex. Here is a slurm script that tests that
NCCL works. It sets up NCCL and checks that barrier works:
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#!/bin/bash

#SBATCH --job-name=test-nodes-nccl

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=1          # crucial - only 1 task per dist per node!

#SBATCH --cpus-per-task=96           # number of cores per tasks

#SBATCH --gres=gpu:8                 # number of gpus

#SBATCH --time 0:05:00               # maximum execution time (HH:MM:SS)

#SBATCH --output=%x-%j.out           # output file name

#SBATCH --partition=prod

source $six_ALL_CCFRWORK/start-prod

NNODES=2

GPUS_PER_NODE=4

MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)

MASTER_PORT=6000

export LAUNCHER="python -u -m torch.distributed.launch \

--nproc_per_node $GPUS_PER_NODE \

--nnodes $NNODES \

--master_addr $MASTER_ADDR \

--master_port $MASTER_PORT \

"

export SCRIPT=test-nodes-nccl.py

cat << EOT > $SCRIPT

#!/usr/bin/env python

import torch.distributed as dist

import torch

import socket

import os

import fcntl

def printflock(*msgs):

""" print """

with open(__file__, "r") as fh:

fcntl.flock(fh, fcntl.LOCK_EX)

try:

print(*msgs)

finally:

fcntl.flock(fh, fcntl.LOCK_UN)

local_rank = int(os.environ["LOCAL_RANK"])

torch.cuda.set_device(local_rank)

dist.init_process_group("nccl")

header = f"{socket.gethostname()}-{local_rank}"

try:

dist.barrier()

printflock(f"{header}: NCCL {torch.cuda.nccl.version()} is OK")
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except:

printflock(f"{header}: NCCL {torch.cuda.nccl.version()} is broken")

raise

EOT

echo $LAUNCHER --node_rank $SLURM_PROCID $SCRIPT

srun --jobid $SLURM_JOBID bash -c ’$LAUNCHER --node_rank $SLURM_PROCID $SCRIPT’

The script uses printflock to solve the interleaved print outputs issue.

GPU Memory Check
This tests if each GPU on the allocated nodes can successfully allocate 77Gb (e.g. to test 80GB A100s) (have to subtract a few
GBs for cuda kernels).

import torch, os

import time

import socket

hostname = socket.gethostname()

local_rank = int(os.environ["LOCAL_RANK"]);

gbs = 77

try:

torch.ones((gbs*2**28)).cuda(local_rank).contiguous() # alloc on cpu, then move to gpu

print(f"{local_rank} {hostname} is OK")

except:

print(f"{local_rank} {hostname} failed to allocate {gbs}GB DRAM")

pass

time.sleep(5)

Broken Network
Yet another issue with a node is when its network is broken and other nodes fail to connect to it.

You’re likely to experience it with an error similar to:

work = default_pg.barrier(opts=opts)

RuntimeError: NCCL error in: /opt/conda/conda-bld/pytorch_1616554793803/work/torch/lib/c10d/

ProcessGroupNCCL.cpp:825, unhandled system error, NCCL version 2.7.8

ncclSystemError: System call (socket, malloc, munmap, etc) failed.

Here is how to debug this issue:

1. Add:
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export NCCL_DEBUG=INFO

before the srun command and re-run your slurm script.

2. Now study the logs. If you find:

r11i6n2:486514:486651 [1] include/socket.h:403 NCCL WARN Connect to 10.148.3.247<56821> failed :

Connection refused

Let’s see which node refuses to accept connections. We get the IP address from the error above and reverse resolve it to its
name:

nslookup 10.148.3.247

247.3.148.10.in-addr.arpa       name = r10i6n5.ib0.xa.idris.fr.

Add --exclude=r10i6n5 to your sbatch command and report it to JZ admins.

Run py-spy or any other monitor program across all nodes
When dealing with hanging, here is how to automatically log py-spy traces for each process.

Of course, this same process can be used to run some command for all nodes of a given job. i.e. it can be used to run
something during the normal run - e.g. dump all the memory usage in each process via nvidia-smi or whatever other
program is needed to be run.

cd ~/prod/code/tr8b-104B/bigscience/train/tr11-200B-ml/

salloc --partition=prod --nodes=40 --ntasks-per-node=1 --cpus-per-task=96 --gres=gpu:8 --time 20:00:00

bash 200B-n40-bf16-mono.slurm

In another shell get the JOBID for the above salloc:

squeue -u `whoami` -o "%.16i %9P %26j %.8T %.10M %.8l %.6D %.20S %R"

adjust jobid per above and the nodes count (XXX: probably can remove --nodes=40 altogether and rely on salloc config):

srun --jobid=2180718 --gres=gpu:0 --nodes=40 --tasks-per-node=1 --output=trace-%N.out sh -c ’ps aux | grep

python | egrep -v "grep|srun" | grep `whoami` | awk "{print \$2}" | xargs -I {} py-spy dump --native --pid

{}’ || echo "failed"

now all py-spy traces go into the trace-$nodename.out files under cwd.

The key is to use --gres=gpu:0 or otherwise the 2nd srun will block waiting for the first one to release the gpus.
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Also the assumption is that some conda env that has py-spy installed got activated in ~/.bashrc. If yours doesn’t already do
that, add the instruction to load the env to the above command, before the py-spy command - it’ll fail to find it otherwise.

Don’t forget to manually release the allocation when this process is done.

Convert SLURM_JOB_NODELIST into a hostfile
Some multi-node launchers require a hostfile - here is how to generate one:

# autogenerate the hostfile for deepspeed

# 1. deals with: SLURM_JOB_NODELIST in either of 2 formats:

# r10i1n8,r10i2n0

# r10i1n[7-8]

# 2. and relies on SLURM_STEP_GPUS=0,1,2... to get how many gpu slots per node

#

# usage:

# makehostfile > hostfile

function makehostfile() {

perl -le ’$slots=split /,/, $ENV{"SLURM_STEP_GPUS"}; $_=$ENV{"SLURM_JOB_NODELIST"}; if

(/^(.*?)\[(\d+)-(\d+)\]/) { print map { "$1$_ slots=$slots\n" } $2..$3} elsif (/,/) { print map { "$1$_

slots=$slots\n" } split /,/ } ’

}

Environment variables
You can always do:

export SOMEKEY=value

from the slurm script to get a desired environment variable passed to the program launched from it.

And you can also add to the top of the slurm script:

#SBATCH --export=ALL

The launched program will see all the environment variables visible in the shell where it was launched from.

Crontab Emulation
One of the most important Unix tools is the crontab, which is essential for being able to schedule various jobs. It however
usually is absent from SLURM environment. Therefore one must emulate it. Here is how.

For this presentation we are going to use $WORK/cron/ as the base directory. And that you have an exported environment
variable WORK pointing to some location on your filesystem - if you use Bash you can set it up in your ~/.bash_profile or if
a different shell is used use whatever startup equivalent file is.
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1. A self-perpetuating scheduler job
We will use $WORK/cron/scheduler dir for scheduler jobs, $WORK/cron/cron.daily for daily jobs and $WORK/cron/cron.hourly

for hourly jobs:

$ mkdir -p $WORK/cron/scheduler

$ mkdir -p $WORK/cron/cron.daily

$ mkdir -p $WORK/cron/cron.hourly

Now copy these two slurm script in $WORK/cron/scheduler:

• cron-daily.slurm
• cron-hourly.slurm

after editing those to fit your specific environment’s account and partition information.

Now you can launch the crontab scheduler jobs:

$ cd $WORK/cron/scheduler

$ sbatch cron-hourly.slurm

$ sbatch cron-daily.slurm

This is it, these jobs will now self-perpetuate and usually you don’t need to think about it again unless there is an even that
makes SLURM lose all its jobs.

2. Daily and Hourly Cronjobs
Now whenever you want some job to run once a day, you simply create a slurm job and put it into the $WORK/cron/

cron.daily dir.

Here is an example job that runs daily to update the mlocate file index:

$ cat $WORK/cron/cron.daily/mlocate-update.slurm

#!/bin/bash

#SBATCH --job-name=mlocate-update    # job name

#SBATCH --ntasks=1                   # number of MP tasks

#SBATCH --nodes=1

#SBATCH --hint=nomultithread         # we get physical cores not logical

#SBATCH --time=1:00:00               # maximum execution time (HH:MM:SS)

#SBATCH --output=%x-%j.out           # output file name

#SBATCH --partition=PARTITION     # edit me

#SBATCH --account=GROUP@PARTITION # edit me

set -e

date

echo "updating mlocate db"

/usr/bin/updatedb -o $WORK/lib/mlocate/work.db -U $WORK --require-visibility 0

This builds an index of the files under $WORK which you can then quickly query with:
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/usr/bin/locate -d $WORK/lib/mlocate/work.db pattern

To stop running this job, just move it out of the $WORK/cron/cron.daily dir.

The same principle applies to jobs placed into the $WORK/cron/cron.hourly dir. These are useful for running something
every hour.

Please note that this crontab implementation is approximate timing-wise, due to various delays in SLURM scheduling they
will run approximately every hour and every day. You can recode these to ask SLURM to start something at a more precise
time if you have to, but most of the time the just presented method works fine.

Additionally, you can code your own variations to meet specific needs of your project, e.g., every-30min or every-12h jobs.

3. Cleanup
Finally, since every cron launcher job will leave behind a log file (which is useful if for some reason things don’t work), you
want to create a cronjob to clean up these logs. Otherwise you may run out of inodes - these logs files are tiny, but there
could be tens of thousands of those.

You could use something like this in a daily job.

find $WORK/cron -name "*.out" -mtime +7 -exec rm -f {} +

Please note that it’s set to only delete files that are older than 7 days, in case you need the latest logs for diagnostics.

Nuances
The scheduler runs with Unix permissions of the person who launched the SLRUM cron scheduler job and so all other
SLURM scripts launched by that cron job.

Self-perpetuating SLURM jobs
The same approach used in building a scheduler can be used for creating stand-alone self-perpetuating jobs.

For example:

#!/bin/bash

#SBATCH --job-name=watchdog          # job name

#SBATCH --ntasks=1                   # number of MP tasks

#SBATCH --nodes=1

#SBATCH --time=0:30:00               # maximum execution time (HH:MM:SS)

#SBATCH --output=%x-%j.out           # output file name

#SBATCH --partition=PARTITION        # edit me

# ensure to restart self first 1h from now

RUN_FREQUENCY_IN_HOURS=1

sbatch --begin=now+${RUN_FREQUENCY_IN_HOURS}hour watchdog.slurm

... do the watchdog work here ...
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and you launch it once with:

sbatch watchdog.slurm

This then will immediately schedule itself to be run 1 hour from the launch time and then the normal job work will be
done. Regardless of whether the rest of the job will succeed or fail, this job will continue relaunching itself approximately
once an hour. This is imprecise due to scheduler job starting overhead and node availability issues. But if there is a least
one spare node available and the job itself is quick to finish the requirement to run at an approximate frequency should
be sufficient.

As the majority of SLURM environment in addition to the expensive GPU nodes also provide much cheaper CPU-only
nodes, you should choose a CPU-only SLURM partition for any jobs that don’t require GPUs to run.

Getting information about the job
From within the slurm file one can access information about the current job’s allocations.

Getting allocated hostnames and useful derivations based on that:

export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST")

export NUM_NODES=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l)

export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)

Convert compact node list to expanded node list
Sometimes you get SLURM tools give you a string like: node-[42,49-51] which will require some coding to expand it into
node-42,node-49,node-50,node-51, but there is a special tool to deal with that:

$ scontrol show hostnames node-[42,49-51]

node-42

node-49

node-50

node-51

Voila!

case study: this is for example useful if you want get a list of nodes that were drained because the job was too slow to exit,
but really there is no real problem with the nodes. So this one-liner will give you the list of such nodes in an expanded
format which you can then script to loop over this list to undrain these nodes after perhaps checking that the processes
have died by this time:

sinfo -R | grep "Kill task failed" | perl -lne ’/(node-.*[\d\]]+)/ && print $1’ | xargs -n1 scontrol show

hostnames
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Overcoming the lack of group SLURM job ownership
SLURM runs on Unix, but surprisingly its designers haven’t adopted the concept of group ownership with regards to
SLURM jobs. So if a member of your team started an array of 10 jobs 20h each, and went on vacation - unless you have sudo

access you now can’t do anything to stop those jobs if something is wrong.

I’m yet to find why this is so, but so far we have been using a kill switch workaround. You have to code it in your
framework. For example, see how it was implemented in Megatron-Deepspeed (Meg-DS). The program polls for a
pre-configured at start up path on the filesystem and if it finds a file there, it exits.

So if we start Meg-DS with --kill-switch-path $WORK/tmp/training17-kill-switch and then at any point we need to kill
the SLURM job, we simply do:

touch $WORK/tmp/training17-kill-switch

and the next time the program gets to check for this file it’ll detect the event and will exit voluntarily. If you have a job
array, well, you will have to wait until each job starts, detects the kill switch and exits.

Of course, don’t forget to remove it when you’re done stopping the jobs.

rm $WORK/tmp/training17-kill-switch

Now, this doesn’t always work. If the job is hanging, it’ll never come to the point of checking for kill-switch and the
only solution here is to contact the sysadmins to kill the job for you. Sometimes if the hanging is a simple case pytorch’s
distributed setup will typically auto-exit after 30min of preset timeout time, but it doesn’t always work.
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SLURM Performance

Here you will find discussions of SLURM-specific settings that impact performance.

srun’s --cpus-per-task may need to be explicit
You need to make sure that the launched by srun program receives as many cpu-cores as intended. For example, in a
typical case of a ML training program, each gpu needs at least one cpu-core for the process driving it plus a few more
cores for the DataLoader. You need multiple cores so that each task can be performed in parallel. If you have 8 gpus and 2
DataLoader workers per gpu, you need at least 3*8=24 cpu-cores per node.

The number of cpus per task is defined by --cpus-per-task, which is passed to sbatch or salloc and originally srun would
inherit this setting. However, recently this behavior has changed:

A quote from the sbatch manpage:

NOTE: Beginning with 22.05, srun will not inherit the --cpus-per-task value requested by salloc or sbatch. It must
be requested again with the call to srun or set with the SRUN_CPUS_PER_TASK environment variable if desired
for the task(s).

Which means that if in the past your SLURM script could have been:

#SBATCH --cpus-per-task=48

[...]

srun myprogram

and the program launched by srun would have received 48 cpu-cores because srun used to inherit the --cpus-per-task=48

settings from sbatch or salloc settings, according to the quoted documentation since SLURM 22.05 this behavior is no
longer true.

footnote: I tested with SLURM@22.05.09 and the old behavior was still true, but this is definitely the case with 23.x series
as reported here. So the change might have happened in the later 22.05 series.

So if you leave things as is, now the program will receive just 1 cpu-core (unless the srun default has been modified).

You can easily test if your SLURM setup is affected, using os.sched_getaffinity(0)), as it shows which cpu-cores are
eligible to be used by the current process. So it should be easy to count those with len(os.sched_getaffinity(0)).

Here is how you can test if you’re affected:

$ cat test.slurm

#!/bin/bash

#SBATCH --job-name=test-cpu-cores-per-task

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --cpus-per-task=48   # adapt to your env if you have less than 48 cpu cores

#SBATCH --time=0:10:00
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#SBATCH --partition=x        # adapt to your env to the right partition name

#SBATCH --output=%x-%j.out

srun python -c ’import os; print(f"visible cpu cores: {len(os.sched_getaffinity(0))}")’

If you get

visible cpu cores: 48

then you don’t need to do anything, if however you get:

visible cpu cores: 1

or another value smaller than 48 then you’re affected.

To fix that you need to change your SLURM script to either:

#SBATCH --cpus-per-task=48

[...]

srun --cpus-per-task=48 myprogram

or:

#SBATCH --cpus-per-task=48

[...]

SRUN_CPUS_PER_TASK=48

srun myprogram

To enable Hyper-Threads or not
As explained in the Hyper-Threads section you should be able to double the number of available cpu-cores if your CPUs
support hyper-threading and for some workloads this may lead to an overall faster performance.

However, you should test the performance w/ and w/o HT, compare the results and choose the setting that gives the best
outcome.

case study: on AWS p4 nodes I discovered that enabling HT made the network throughput 4x slower. Since then we were
careful to have HT disabled on that particular setup.
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Selecting Training Hyper-Parameters And Model
Initializations

The easiest way to find a good hparam and model init starter set is to steal it from a similar training that you know has
succeeded. Here is a collection of public training LLM/VLM logbooks to get you started. The other common source is
papers if they disclose that information. You can also try to reach out to the authors and ask them for these details if they
didn’t publish it.

Glossary
Training jargon uses a multitude of abbreviations and terms, so here are some important for this chapter.

• BS: Batch Size - here we mean batch size per gpu, often it is also referred to as MBS (micro-batch-size)
• GBS: Global Batch Size - total batch size per iteration - may include gradient accumulation
• GAS: Gradient Accumulation Steps - how many forward/backward cycles to perform before one full iteration is

complete
• TFLOPs: Trillion FLOPs per second - FLOPS
• PP: Pipeline Parallelism

Global Batch Size Ramp Up
If you intend to train with a very large GBS, with say 1024, or 2048 samples and even higher, when you just start training,
it’s very wasteful to feed such large batch sizes to the model. At this point it’s totally random and can’t benefit from having
too refined data. Therefore to save data and resources, one often ramps up the global batch size over some period of time.

It’s also important to not start with GBS that is too small, since otherwise the progress won’t be efficient. When there
is too little data the compute (TFLOPS) is inefficient and will slow everything down. This is especially so when Pipeline
Parallelism (PP) is used, since the most important thing about PP tuneup is a small GPU idleness bubble, and the smaller
the GBS the larger the bubble is.

For example, for BLOOM-176B, where we did use PP, after doing throughput benchmarking we found that starting with
GBS=16 was incredibly slow (8 TFLOPs), so we eventually started with GBS=192 (73 TFLOPs) and then we ramped up to
GBS=2048 (150 TFLOPs) - we increased GBS by 16 every 9_765_625 samples.

STD Init
This hyper parameter is super-important and it requires math to get it right. For details see STD Init.
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Avoiding, Recovering From and Understanding
Instabilities

Sub-sections:

• Understanding Training Loss Patterns - types of spikes, divergences, grokking moments, resumes, etc.

Learning from Training Logbooks
The best learning is to read Publicly available training LLM/VLM logbooks because there you can see exactly what
happened and how the problem has been overcome.

STD Init
Correctly initializing the initial distribution of the tensors can have a tremendous impact on training’s stability. The std

value isn’t fixed and depends on the hidden dimension size.

This proved to be a very crucial setting in our pre-BLOOM 104B experiments and we couldn’t break past the first few
thousands iterations until we figured out that the 0.02 default --init-method-std in Megatron-LM was a way too big for
our model.

We referred to these two sources:

1. "Transformers without Tears" paper https://arxiv.org/abs/1910.05895 prescribes: sqrt(2/(NHIDDEN*5))

2. The 530B training paper https://arxiv.org/abs/2201.11990 they used an even smaller init formula:
sqrt(1/(NHIDDEN*3))

and decided to go with the 530B one as it leads to an even smaller init value.

To make it easier to compare the two formulas, they can be rewritten as:

1. sqrt(0.4000/NHIDDEN)

2. sqrt(0.3333/NHIDDEN)

Thus for NHIDDEN=14336 the math was sqrt(1/(14336*3)) = 0.00482 and that’s what we used. It surely wasn’t the only reason
why we had no stability issues during BLOOM-176B training, but I think it was one of the crucial ones.

Numerical instabilities
Certain mathematical operations could be unstable when dealing with low precision numbers.

For example, please see this very interesting PyTorch guide on numerical stability.

Now let’s look at a specific example of this concept in action.

During 104B training experiments where fp16 mixed precision was used - the following improvement was proposed by
Corby Rosset to make self-attention more stable.

Specifically this line shows that the norm_factor may be multiplied after the Query * Key matrix multiplication. If the dim
of Q and K are very large, the output may blow up and the norm_factor won’t be able to save it.

Proposal: move the norm_factor inward, so Q and K are scaled down before matrix multiply:
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matmul_result = torch.baddbmm(

matmul_result,

1.0/math.sqrt(self.norm_factor) * query_layer.transpose(0, 1),   # [b * np, sq, hn]

1.0/math.sqrt(self.norm_factor) * key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn,

sk]

beta=0.0 if alibi is None else 1.0, alpha=1.0)

# change view to [b, np, sq, sk]

attention_scores = matmul_result.view(*output_size)

To make the operation mathematically equivalent, moving the norm factor inward requires taking sqrt again if n is a
scalar, A and B matrices:

n * (A dot B) === (sqrt(n) * A) dot (sqrt(n) * B)

Now A and B dimensions can be significantly larger.

For CUDA kernel writers CuBlas’s GemmStridedBatchedEx at the time of this writing has a similar issue. It is defined as:

C+i*strideC=αop(A+i*strideA)op(B+i*strideB)+β(C+i*strideC), for i ∈[0,batchCount−1]

The issue is that alpha is multiplied after the matrix-matrix multiplication is done so it can cause instability.

"Bad" combination of data batch and model parameter state
PaLM team observed dozens of loss spikes at "highly irregular intervals" when training larger models. While they were
not able to track down the root cause, they mitigated the issue by restarting from an earlier checkpoint and skipping
potentially problematic data batches. Section 5.1 Training instability
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Understanding Training Loss Patterns

Training loss plot is similar to the heart beat pattern - there is the good, the bad and you-should-worry one. After studying
many training loss trajectories one develops an intuition to explain various loss behaviors during one’s training and how
to act on those.

I warn you that the "Understanding" in the title of this section is overloaded since very often we don’t really understand
why certain types of spikes happen. Here "understanding" refers to recognizing various patterns. We then usually have
techniques to overcome the bad patterns and bring the training successfully to the finish line.

Thus you will find here a gallery of training loss patterns sometimes with real explanations, but more often than not
educated guesses to what might be happening.

Please excuse the plot snapshots looking wildly different from each other as they have come from many sources over
multiple years.

The good, the bad and the unexpected
Let’s look at some good, bad and unusual patterns.

A very failed training
Prior to starting BLOOM-176B training we did multiple experiments with the 104B model. We failed to figure out how to
not diverge very early on.

As you can see many attempts were made, many techniques were applied (see chronicles. We think the 2 main obstacles
were using fp16 and data that had a lot of garbage in it. For BLOOM-176B we switched to bf16, used much cleaner data and
also added an embedding layer-norm and that made all the difference.
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An almost perfect training

The BLOOM-176B training had a close to perfect training loss trajectory, with a single spike that has recovered in 200 steps.

You can inspect the TB to zoom in and check other plots.

This was the almost perfect training indeed. Lots of hard work was put into achieving this.

The grokking moment
Recently I was doing some performance testing and run a tiny global batch size of 8 on 8x A100 nodes on llama-2-7b trained
from scratch. (w/ Deepspeed ZeRO-3 DP using HF Transformers Llama implementation)
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Here one can observe a rapid loss improvement from 4 to 2.5 in just 480 samples after a very steady much slower
improvements. My colleague Gautam Mittal called it the grokking moment. In just a handful of steps the model suddenly
generalized to much better predict the masked tokens.

Normally one doesn’t see such a dramatic improvement when using a much larger batch size.

If we zoom in it took about 60 8-sample per iteration steps:

Main types of loss spikes
In general there are 3 types of loss spikes:

1. Fast recovering spikes
2. Slow recovering spikes
3. Not fully recovering spikes

The spikes usually happen because of a bad data pocket, either due to badly shuffled data or because it hasn’t been cleaned
from some garbage scraped from the websites.

While one would suspect that the batch before the spike was the trigger, but if you were to study that batch’s contents
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you are likely to find nothing unusual - quite often the problem starts developing many steps before and then most of the
sudden it happens. But also it might not be easy to study the batch, since it could amount to a size of a book when the
global batch size and the sequence lengths are huge.

Fast recovering spikes
Loss spikes can happen often and as long as they quickly bounce back to where they left off the training usually continues
as if nothing happened:

Here is an example of the 13B pre-BLOOM training experiment:

As you can see there are many spikes, some of a huge magnitude but they have all quickly recovered.

Slow recovering spikes
Here is a slow recovering spike from the IDEFICS-80B training:

Not fully recovering spikes
This 104B model attempt spiked, started recovering but decided to not recover fully and instead started diverging
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Here is another example from the IDEFICS-80B training:

Non-spike diverging
Here are a few examples of diverging that didn’t go through a spike
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and here are a few more:

as you can see each restart makes a bit of progress and then the model diverges.

All these are from the 104B model attempts.

Multiple datasets spikes
During the IDEFICS-80B training we were using 2 different dataset types mixed together:

Legend: cm4 (high), average (mid) and pmd (low)

You can see that the loss spikes were sometimes happening simultaneously on both datasets and at other times only one
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of the datasets loss would spike.

Here the model was learning two different data distributions and as you can see it was not reporting the same loss and the
spike behaviors on both data distributions. The pmd datasets loss was much easier for the model than the cm4 one.

Resume-related spikes
Training resume due to a hardware crash or because a need to rollback to an earlier checkpoint due to encountering a
divergence is pretty much guaranteed to happen. If your training software doesn’t resume perfectly so that the model
doesn’t notice there was a resume various problems could be encountered.

The most complicated challenge of resume is restoring various RNGs, getting to the DataLoader index where the previous
training was restored, and dealing with various other requirements if you use complex DataLoaders that are specific to
your setup.

DataSampler related issues
During IDEFICS-80B training we had a very complicated DataLoader which was suffering from image to text ratio
fluctuations when the DataLoader was getting restored on resume, so we ended up having a small spike on each resume
which would then recover:

You can see the loss and ratio plots correlation here. As we had to resume about a dozen times we saw a lot of those spikes.
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Impacts of repeat data
I was training a variation of Llama2 and saw this super unusual spike that didn’t diverge or recover but which switched to
a new higher loss level:

I rolled back to just before the weird behavior occurred and restarted. The loss training progressed at the same loss level
for a bit and then again spiked and shifted to a higher loss.
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I have never seen this type of divergence before. I was scratching my head for a while and then decided to look at the
bigger picture.

As of this writing Wandb doesn’t handle resume data plotting correctly if a rollback was performed, that is it ignores all
new data after the rollback until the steps of the old data have been overcome. This forces us to start a new wandb plot
for every resume with a rollback so that new data is shown. And if you needs to see the whole plot you have to stitch them
and which includes dead data points that are no longer true. So I did the stitching and saw this puzzle:

There was no real spike in the two earlier runs. The loss never went up in the first place. In both resumes it was
under-reporting loss due to an exactly repeated data and then it reached data it hasn’t seen before and started reporting
correctly. In other words it was overfitting and reporting a false loss.

The cause of the problem is data repetition, and since it clearly memorised some of it it was reporting a better loss.

The problem comes from pytorch-lightning not handling resumes correctly wrt DataSampler automatically - basically
every time you resume you start your data stream from scratch. This, of course, requires a user to somehow fix the
situation. You could change the seed to somewhat ameliorate the situation and avoid the exact data sequence, but it
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still leaves you with repeat data, which isn’t what you want for any serious training (or ablation experiments, since your
observation will be invalid, if they assume IID data distribution.

footnote: I discussed this issue with the PTL developers and they said that they tried hard to come up with a generic
solution but it wasn’t meant to be. So the user needs to figure it out.

Make sure to check your training framework documentation whether it handles the DataSampler resuming correctly.
Make sure you didn’t discover this problem after the training has finished and you ended up training 6x times the same
50B of tokens from the planned 300B tokens seen only once each.

Doing a couple of resumes early on before embarking on the real training should also expose if there is a problem. Albeit,
if the data gets reshuffled on each resume you are unlikely to see it. It’ll only be seen if the seed is the same.
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Checkpoints

• torch-checkpoint-convert-to-bf16 - converts an existing fp32 torch checkpoint to bf16. If safetensors are found
those are converted as well. Should be easily adaptable to other similar use cases.

• torch-checkpoint-shrink.py - this script fixes checkpoints which for some reason stored tensors with storage larger
than their view at the moment of saving. It clones the current view and re-saves them with just the storage of the
current view.
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Debugging and Troubleshooting

Guides
• Debugging PyTorch programs

• Diagnosing Hangings and Deadlocks in Multi-Node Multi-GPU Python Programs

• Troubleshooting NVIDIA GPUs

• Underflow and Overflow Detection

• NCCL Debug and Performance - notes for debugging NCCL-based software and tuning it up for the peak performance

Tools
• Debug Tools

• torch-distributed-gpu-test.py - this a torch.distributed diagnostics script that checks that all GPUs in the cluster
(one or many nodes) can talk to each other and allocate gpu memory.

• NicerTrace - this is an improved trace python module with multiple additional flags added to the constructor and
more useful output.
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NCCL: Debug and Performance

Notes for debugging NCCL-based software and tuning it up for the peak performance

NCCL Environment Variables
The full list can be found here. That list is long but many of those variables are no longer in use.

Debug Environment Variables
The following env vars are most useful during debugging NCCL-related issues such as hanging and crashing.

NCCL_DEBUG

This is the most commonly used env var to debug networking issues.

Values:

• VERSION - Prints the NCCL version at the start of the program.
• WARN - Prints an explicit error message whenever any NCCL call errors out.
• INFO - Prints debug information
• TRACE - Prints replayable trace information on every call.

For example:

NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1

torch-distributed-gpu-test.py

This will dump a lot of NCCL-related debug information, which you can then search online if you find that some problems
are reported.

And NCCL_DEBUG_FILE should be very useful when using NCCL_DEBUG as the information is copious especially if using many
nodes.

NCCL_DEBUG_FILE

When using NCCL_DEBUG env var, redirect all NCCL debug logging output to a file.

The default is stdout. When using many GPUs it can be very useful to save each process’ debug info into its own log file,
which can be done like so:

NCCL_DEBUG_FILE=/path/to/nccl-log.%h.%p.txt

• %h is replaced with the hostname
• %p is replaced with the process PID.

If you then need to analyse hundreds of these at once, here are some useful shortcuts:

• grep for a specific match and also print the file and line number where it was found:
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grep -n "Init COMPLETE" nccl-log*

• show tail -1 of all nccl log files followed by the name of each file

find . -name "nccl*" -exec sh -c ’echo "$(tail -1 "$1") ($1)"’ _ {} \;

NCCL_DEBUG_SUBSYS

NCCL_DEBUG_SUBSYS used in combination with NCCL_DEBUG tells the latter which subsystems to show. Normally you don’t
have to specify this variable, but sometimes the developers helping you may ask to limit the output to only some
sub-systems, for example:

NCCL_DEBUG_SUBSYS=INIT,GRAPH,ENV,TUNING

NCCL_P2P_DISABLE

Disables P2P comms - e.g. NVLink won’t be used if there is one and the performance will be much slower as a result of that.

NCCL_SOCKET_IFNAME

This one is very useful if you have multiple network interfaces and you want to choose a specific one to be used.

By default NCCL will try to use the fastest type of an interface, which is typically ib (InfiniBand).

But say you want to use an Ethernet interface instead then you can override with:

NCCL_SOCKET_IFNAME=eth

This env var can be used at times to debug connectivity issues, if say one of the interfaces is firewalled, and perhaps the
others aren’t and can be tried instead. Or if you are not sure whether some problem is related to the network interface or
something else, so it helps to test other interfaces to invalidate that the issue comes from network.

Performance-Oriented Environment Variables
The following env vars are used primarily to tune up performance.

NCCL_ALGO

This one defines which algorithms NCCL will use. Typically it’s one of tree, ring, collnetdirect and collnetchain.

I was asking questions about how a user can do the optimization and was told at this NCCL Issue that basically the user
shouldn’t try to optimize anything as NCCL has a ton of smart algorithms inside that will try to automatically switch from
one algorithm to another depending on a concrete situation.

Sylvain Jeaugey shared:

There used to be a static threshold, but it’s been replaced by a more complex tuning system. The new system
builds a model of the latency and bandwidth of each algorithm/protocol combination (that’s many, many
combinations) and decides which one should perform best depending on the size. So there is no longer an env
var and a static value, which is good because the performance of each algorithm depends on the number of nodes
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and number of GPUs per node and therefore we need to navigate a 2D space of algo/protocols which isn’t easy.
You can always force one algorithm with NCCL_ALGO=TREE and NCCL_ALGO=RING and see what performance you get
and whether NCCL switches at the right point. I know it’s hard to understand, but it’s also the best solution we
found to have the best performance across all platforms and users without users having to manually tune the
switch points. Downside is, if you want to manually tune things, you can’t.

If you use NCCL_ALGO you need to list the algorithms to consider, but otherwise you have no control over it. So, really, this
is only useful if you want to make sure that one of the algorithms isn’t used.

When asking about which algorithm is better, I received:

Roughly speaking, ring is superior in terms of peak bandwidth (except on 2 nodes), tree is superior in terms of
base latency (especially as we scale). Bandwidth = Size / Time, so whether you look at the time or the bandwidth
for a given size, it will be a combination of both the peak bandwidth and the base latency. For a fixed size, as you
scale, the base latency of ring will become prevalent and tree will be better.

NCCL_CROSS_NIC

The NCCL_CROSS_NIC variable controls whether NCCL should allow rings/trees to use different NICs, causing inter-node
communication to use different NICs on different nodes.

To maximize inter-node communication performance when using multiple NICs, NCCL tries to communicate between
same NICs between nodes, to allow for network design where each NIC from each node connects to a different network
switch (network rail), and avoid any risk of traffic flow interference. The NCCL_CROSS_NIC setting is therefore dependent
on the network topology, and in particular depending on whether the network fabric is rail-optimized or not.

This has no effect on systems with only one NIC.

Values accepted:

• 0: Always use the same NIC for the same ring/tree, to avoid crossing network rails. Suited for networks with per NIC
switches (rails), with a slow inter-rail connection. Note there are corner cases for which NCCL may still cause cross-
rail communication, so rails still need to be connected at the top.

• 1: Do not attempt to use the same NIC for the same ring/tree. This is suited for networks where all NICs from a node
are connected to the same switch, hence trying to communicate across the same NICs does not help avoiding flow
collisions.

• 2: (Default) Try to use the same NIC for the same ring/tree, but still allow for it if it would result in better
performance.

Extrapolating benchmarks from several nodes to many
As it’s often not easy to benchmark hundreds of nodes, often we try to benchmark interconnect performance using, say, 4
nodes. I wasn’t sure whether this would give the correct indication for when 40 or 400 nodes will be used so I asked about
it here and the answer was:

Extrapolating at scale is not that hard for ring and tree (we have a function in tuning.cc predicting it, based on
the ring linear latency and the tree log latency with reduced BW). Now as you scale, there are many factors which
may cause your real performance to be very far off the prediction, like routing. Also note on an IB network you’ll
be able to use SHARP; that way your latency stays mostly constant as you scale, your bandwidth doesn’t degrade
much either, and you’re always better than both ring and tree.
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Counting NCCL calls
Enable NCCL debug logging for subsystems - collectives:

export NCCL_DEBUG=INFO

export NCCL_DEBUG_SUBSYS=COLL

if you’re working in a slurm environment with many nodes you probably want to perform this only on rank 0, like so:

if [[ $SLURM_PROCID == "0" ]]; then

export NCCL_DEBUG=INFO

export NCCL_DEBUG_SUBSYS=COLL

fi

Assuming your logs were all sent to main_log.txt, you can then count how many of each collective call were performed
with:

grep -a "NCCL INFO Broadcast" main_log.txt     | wc -l

2590

grep -a "NCCL INFO AllReduce" main_log.txt     | wc -l

5207

grep -a "NCCL INFO AllGather" main_log.txt     | wc -l

1849749

grep -a "NCCL INFO ReduceScatter" main_log.txt | wc -l

82850

It might be a good idea to first isolate a specific stage of the training, as loading and saving will have a very different
pattern from training iterations.

So I typically first slice out one iteration. e.g. if each iteration log starts with: iteration: ... then I’d first do:

csplit main_log.txt ’/iteration: /’ "{*}"

and then analyse one of the resulting files that correspond to the iterations. By default it will be named something like
xx02.
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Debugging PyTorch programs

Getting nodes to talk to each other
Once you need to use more than one node to scale your training, e.g., if you want to use DDP to train faster, you have to
get the nodes to talk to each other, so that communication collectives could send data to each other. This is typically done
via a comms library like NCCL. And in our DDP example, at the end of training step all GPUs have to perform an all_reduce

call to synchronize the gradients across all ranks.

In this section we will discuss a very simple case of just 2 nodes (with 8 GPUs each) talking to each other and which can
then be easily extended to as many nodes as needed. Let’s say that these nodes have the IP addresses 10.0.0.1 and 10.0.0.2.

Once we have the IP addresses we then need to choose a port for communications.

In Unix there are 64k ports. The first 1k are reserved for common services so that any computer on the Internet could
connect to any other computer knowing ahead of time which port to connect to. For example, port 22 is reserved for SSH.
So that whenever you do ssh example.com in fact the program open a connection to example.com:22.

As there are thousands of services out there, the reserved 1k ports is not enough, and so various services could use
pretty much any port. But fear not, when you get your Linux box on the cloud or an HPC, you’re unlikely to have many
preinstalled services that could use a high number port, so most ports should be available.

Therefore let’s choose port 6000.

Now we have: 10.0.0.1:6000 and 10.0.0.2:6000 that we want to be able to communicate with each other.

The first thing to do is to open port 6000 for incoming and outgoing connections on both nodes. It might be open already
or you might have to read up the instructions of your particular setup on how to open a given port.

Here are multiple ways that you could use to test whether port 6000 is already open.

telnet localhost:6000

nmap -p 6000 localhost

nc -zv localhost 6000

curl -v telnet://localhost:6000

Most of these should be available via apt install or whatever your package manager uses.

Let’s use nmap in this example. If I run:

$ nmap -p 22 localhost

[...]

PORT   STATE SERVICE

22/tcp open  ssh

We can see the port is open and it tells us which protocol and service is allocated as a bonus.

Now let’s run:

$ nmap -p 6000 localhost
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[...]

PORT     STATE  SERVICE

6000/tcp closed X11

Here you can see port 6000 is closed.

Now that you understand how to test, you can proceed to test the 10.0.0.1:6000 and 10.0.0.2:6000.

First ssh to the first node in terminal A and test if port 6000 is opened on the second node:

ssh 10.0.0.1

nmap -p 6000 10.0.0.2

if all is good, then in terminal B ssh to the second node and do the same check in reverse:

ssh 10.0.0.2

nmap -p 6000 10.0.0.1

If both ports are open you can now use this port. If either or both are closed you have to open these ports. Since most
clouds use a proprietary solution, simply search the Internet for "open port" and the name of your cloud provider.

The next important thing to understand is that compute nodes will typically have multiple network interface cards (NICs).
You discover those interfaces by running:

$ sudo ifconfig

One interface is typically used by users to connecting to nodes via ssh or for various other non-compute related services -
e.g., sending an email or download some data. Often this interface is called eth0, with eth standing for Ethernet, but it can
be called by other names.

Then there is the inter-node interface which can be Infiniband, EFA, OPA, HPE Slingshot, etc. (more information). There
could be one or dozens of those interfaces.

Here are some examples of ifconfig’s output:

$ sudo ifconfig

enp5s0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500

inet 10.0.0.23  netmask 255.255.255.0  broadcast 10.0.0.255

[...]

I removed most of the output showing only some of the info. Here the key information is the IP address that is listed after
inet. In the example above it’s 10.0.0.23. This is the IP address of interface enp5s0.

If there is another node, it’ll probably be 10.0.0.24 or 10.0.0.21 or something of sorts - the last segment will be the one
with a different number.

Let’s look at another example:
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$ sudo ifconfig

ib0     Link encap:UNSPEC  HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00

inet addr:172.0.0.50  Bcast: 172.0.0.255  Mask:255.255.255.0

[...]

Here ib typically tells us it’s an InfiniBand card, but really it can be any other vendor. I have seen OmniPath using ib for
example. Again inet tells us the IP of this interface is 172.0.0.50.

If you lost me, we want the IP addresses so that we could test if ip:port is open on each node in question.

Finally, going back to our pair of 10.0.0.1:6000 and 10.0.0.2:6000 let’s do an all_reduce test using 2 terminals, where we
choose 10.0.0.1 as the master host which will coordinate other nodes. For testing we will use this helper debug program
torch-distributed-gpu-test.py.

In terminal A:

$ ssh 10.0.0.1

$ python -m torch.distributed.run --role $(hostname -s): --tee 3 --nnodes 2 --nproc_per_node 8 \

--master_addr 10.0.0.1 --master_port 6000 torch-distributed-gpu-test.py

In terminal B:

$ ssh 10.0.0.2

$ python -m torch.distributed.run --role $(hostname -s): --tee 3 --nnodes 2 --nproc_per_node 8 \

--master_addr 10.0.0.1 --master_port 6000 torch-distributed-gpu-test.py

Note that I’m using the same --master_addr 10.0.0.1 --master_port 6000 in both cases because we checked port 6000 is
open and we use 10.0.0.1 as the coordinating host.

This approach of running things manually from each node is painful and so there are tools that automatically launch the
same command on multiple nodes

pdshpdsh

pdsh is one such solution - which is like ssh but will automatically run the same command on multiple nodes:

PDSH_RCMD_TYPE=ssh pdsh -w 10.0.0.1,10.0.0.2 \

"python -m torch.distributed.run --role $(hostname -s): --tee 3 --nnodes 2 --nproc_per_node 8 \

--master_addr 10.0.0.1 --master_port 6000 torch-distributed-gpu-test.py"

You can see how I folded the 2 sets of commands into 1. If you have more nodes, just add more nodes as -w argument.

SLURMSLURM

If you use SLURM, it’s almost certain that whoever set things up already have all the ports opened for you, so it should just
work. But if it doesn’t the information in this section should help debug things.

Here is how you’d use this with SLURM.

#!/bin/bash
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#SBATCH --job-name=test-nodes        # name

#SBATCH --nodes=2                    # nodes

#SBATCH --ntasks-per-node=1          # crucial - only 1 task per dist per node!

#SBATCH --cpus-per-task=10           # number of cores per tasks

#SBATCH --gres=gpu:8                 # number of gpus

#SBATCH --time 0:05:00               # maximum execution time (HH:MM:SS)

#SBATCH --output=%x-%j.out           # output file name

#

export GPUS_PER_NODE=8

export MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)

export MASTER_PORT=6000

#

srun --jobid $SLURM_JOBID bash -c ’python -m torch.distributed.run \

--nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \

--master_addr $MASTER_ADDR --master_port $MASTER_PORT \

torch-distributed-gpu-test.py’

If you have more than 2 nodes you just need to change the number of nodes and the above script will automatically work
for any number of them.

MPIMPI:

Another popular way is to use Message Passing Interface (MPI). There are a few open source implementations of it
available.

To use this tool you first create a hostfile that contains your target nodes and the number of processes that should be run
on each host. In the example of this section, with 2 nodes and 8 gpus each it’d be:

$ cat hostfile

10.0.0.1:8

10.0.0.2:8

and to run, it’s just:

$ mpirun --hostfile  -np 16 -map-by ppr:8:node python my-program.py

Note that I used my-program.py here because torch-distributed-gpu-test.py was written to work with
torch.distributed.run (also known as torchrun). With mpirun you will have to check your specific implementation to see
which environment variable it uses to pass the rank of the program and replace LOCAL_RANK with it, the rest should be
mostly the same.

Nuances:

• You might have to explicitly tell it which interface to use by adding --mca btl_tcp_if_include 10.0.0.0/24 to match
our example. If you have many network interfaces it might use one that isn’t open or just the wrong interface.

• You can also do the reverse and exclude some interfaces. e.g. say you have docker0 and lo interfaces - to exclude
those add --mca btl_tcp_if_exclude docker0,lo.

mpirun has a gazillion of flags and I will recommend reading its manpage for more information. My intention was only to
show you how you could use it. Also different mpirun implementations may use different CLI options.
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Solving the Infiniband connection between multiple nodes
In one situation on Azure I got 2 nodes on a shared subnet and when I tried to run the 2 node NCCL test:

NCCL_DEBUG=INFO python -u -m torch.distributed.run --nproc_per_node=1 --nnodes 2 --rdzv_endpoint

10.2.0.4:6000  --rdzv_backend c10d torch-distributed-gpu-test.py

I saw in the debug messages that Infiniband interfaces got detected:

node-2:5776:5898 [0] NCCL INFO NET/IB : Using [0]ibP111p0s0:1/IB [1]rdmaP1111p0s2:1/RoCE [RO]; OOB

eth0:10.2.0.4<0>

But the connection would then time out with the message:

node-2:5776:5902 [0] transport/net_ib.cc:1296 NCCL WARN NET/IB : Got completion from peer 10.2.0.5<33092>

with error 12, opcode 0, len

0, vendor err 129 (Recv)

node-2:5776:5902 [0] NCCL INFO transport/net.cc:1134 -> 6

node-2:5776:5902 [0] NCCL INFO proxy.cc:679 -> 6

node-2:5776:5902 [0] NCCL INFO proxy.cc:858 -> 6 [Proxy Thread]

and nothing works. So here the Ethernet connectivity between 2 nodes works but not the IB interface.

There could be a variety of reason for this failing, but of the most likely one is when you’re on the cloud and the 2
nodes weren’t provisioned so that their IB is connected. So your Ethernet inter-node connectivity works, but it’s too slow.
Chances are that you need to re-provision the nodes so that they are allocated together. For example, on Azure this means
you have to allocate nodes within a special availability set

Going back to our case study, once the nodes were deleted and recreated within an availability set the test worked out of
the box.

The individual nodes are often not meant for inter-node communication and often the clouds have the concept of clusters,
which are designed for allocating multiple nodes as a group and are already preconfigured to work together.

Prefixing logs with node:rank, interleaved asserts
In this section we will use torchrun (torch.distributed.run) during the demonstration and at the end of this section similar
solutions for other launchers will be listed.

When you have warnings and tracebacks (or debug prints), it helps a lot to prefix each log line with its hostname:rank

prefix, which is done by adding --role $(hostname -s): --tee 3 to torchrun:

python -m torch.distributed.run --role $(hostname -s): --tee 3 --nnodes 1 --nproc_per_node 2 \

torch-distributed-gpu-test.py

Now each log line will be prefixed with [hostname:rank]

Note that the colon is important.
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If you’re in a SLURM environment the above command line becomes:

srun --jobid $SLURM_JOBID bash -c ’python -m torch.distributed.run \

--nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \

--master_addr $MASTER_ADDR --master_port $MASTER_PORT \

--role $(hostname -s): --tee 3 \

torch-distributed-gpu-test.py’

Of course adjust your environment variables to match, this was just an example.

Important! Note, that I’m using a single quoted string of commands passed to bash -c. This way hostname -s command is
delayed until it’s run on each of the nodes. If you’d use double quotes above, hostname -s will get executed on the starting
node and then all nodes will get the same hostname as the prefix, which defeats the purpose of using these flags. So if you
use double quotes you need to rewrite the above like so:

srun --jobid $SLURM_JOBID bash -c "python -m torch.distributed.run \

--nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank \$SLURM_PROCID \

--master_addr $MASTER_ADDR --master_port $MASTER_PORT \

--role \$(hostname -s): --tee 3 \

torch-distributed-gpu-test.py"

$SLURM_PROCID is escaped too as it needs to be specific to each node and it’s unknown during the launch of the slurm job on
the main node. So there are 2 \$ escapes in this version of the command.

This prefixing functionality is also super-helpful when one gets the distributed program fail and which often results in
interleaved tracebacks that are very difficult to interpret. So by greping for one node:rank string of choice, it’s now possible
to reconstruct the real error message.

For example, if you get a traceback that looks like:

File "/path/to/training/dataset.py", line 785, in __init__

File "/path/to/training/dataset.py", line 785, in __init__

if self.dataset_proba.sum() != 1:

AttributeError: ’list’ object has no attribute ’sum’

if self.dataset_proba.sum() != 1:

File "/path/to/training/dataset.py", line 785, in __init__

File "/path/to/training/dataset.py", line 785, in __init__

if self.dataset_proba.sum() != 1:

if self.dataset_proba.sum() != 1:

AttributeError: ’list’ object has no attribute ’sum’

AttributeError: ’list’ object has no attribute ’sum’

AttributeError: ’list’ object has no attribute ’sum’

and when it’s dozens of frames over 8 nodes it can’t be made sense of, but the above -tee + --role addition will generate:

[host1:0]  File "/path/to/training/dataset.py", line 785, in __init__

[host1:1]  File "/path/to/training/dataset.py", line 785, in __init__
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[host1:0]    if self.dataset_proba.sum() != 1:

[host1:0]AttributeError: ’list’ object has no attribute ’sum’

[host1:1]    if self.dataset_proba.sum() != 1:

[host1:2]  File "/path/to/training/dataset.py", line 785, in __init__

[host1:3]  File "/path/to/training/dataset.py", line 785, in __init__

[host1:3]    if self.dataset_proba.sum() != 1:

[host1:2]    if self.dataset_proba.sum() != 1:

[host1:1]AttributeError: ’list’ object has no attribute ’sum’

[host1:2]AttributeError: ’list’ object has no attribute ’sum’

[host1:3]AttributeError: ’list’ object has no attribute ’sum’

and you can grep this output for just one host:rank prefix, which gives us:

$ grep "[host1:0]" log.txt

[host1:0]  File "/path/to/training/dataset.py", line 785, in __init__

[host1:0]    if self.dataset_proba.sum() != 1:

[host1:0]AttributeError: ’list’ object has no attribute ’sum’

and voila, you can now tell what really happened. And as I mentioned earlier there can be easily a hundred to thousands
of interleaved traceback lines there.

Also, if you have just one node, you can just pass -tee 3 and there is no need to pass --role.

If hostname -s is too long, but you have each host with its own sequence number like:

[really-really-really-long-hostname-5:0]

[really-really-really-long-hostname-5:1]

[really-really-really-long-hostname-5:2]

you can of course make it shorter by replacing hostname -s with hostname -s | tr -dc ’0-9’, which would lead to much
shorter prefixes:

[5:0]

[5:1]

[5:2]

And, of course, if you’re doing debug prints, then to solve this exact issue you can use printflock.

Here is how you accomplish the same feat with other launchers:

• srun in SLURM: add --label

• openmpi: add --tag-output

• accelerate: you can just pass the same -tee + --role flags as in torchrun

Dealing with Async CUDA bugs
When using CUDA, failing pytorch programs very often produce a python traceback that makes no sense or can’t be acted
upon. This is because due to CUDA’s async nature - when a CUDA kernel is executed, the program has already moved on

166



and when the error happened the context of the program isn’t there. The async functionality is there to make things
faster, so that while the GPU is churning some matmul the program on CPU could already start doing something else.

At other times some parts of the system will actually tell you that they couldn’t generate the correct traceback, as in this
error:

[E ProcessGroupNCCL.cpp:414] Some NCCL operations have failed or timed out. Due to the

asynchronous nature of CUDA kernels, subsequent GPU operations might run on corrupted/

incomplete data. To avoid this inconsistency, we are taking the entire process down.

There are a few solutions.

If the failure is instant and can be reproduced on CPU (not all programs work on CPU), simply re-rerun it after hiding your
GPUs. This is how you do it:

CUDA_VISIBLE_DEVICES="" python my-pytorch-program.py

The env var CUDA_VISIBLE_DEVICES is used to manually limit the visibility of GPUs to the executed program. So for example
if you have 8 gpus and you want to run program1.py with first 4 gpus and program2.py with the remaining 2 gpus you can
do:

CUDA_VISIBLE_DEVICES="0,1,2,3" python my-pytorch-program1.py

CUDA_VISIBLE_DEVICES="4,5,6,7" python my-pytorch-program2.py

and the second program won’t be the wiser that it’s not using GPUs 0-3.

But in the case of debug we are hiding all GPUs, by setting CUDA_VISIBLE_DEVICES="".

Now the program runs on CPU and you will get a really nice traceback and will fix the problem in no time.

But, of course, if you your program requires multiple GPUs this won’t work. And so here is another solution.

Rerun your program after setting this environment variable:

CUDA_LAUNCH_BLOCKING=1 python my-pytorch-program.py

This variable tells pytorch (or any other CUDA-based program) to turn its async nature off everywhere and now all
operations will be synchronous. So when the program crashes you should now get a perfect traceback and you will know
exactly what ails your program.

In theory enabling this variable should make everything run really slow, but in reality it really depends on your software.
We did the whole of BLOOM-176B training using CUDA_LAUNCH_BLOCKING=1 with Megatron-Deepspeed](https://github.com/
bigscience-workshop/Megatron-DeepSpeed) and had zero slowdown - we had to use it as pytorch was hanging without it
and we had no time to figure the hanging out.

So, yes, when you switch from async to sync nature, often it can hide some subtle race conditions, so there are times
that a hanging disappears as in the example I shared above. So measure your throughput with and without this flag and
sometimes it might actual not only help with getting an in-context traceback but actually solve your problem altogether.

Note: NCCL==2.14.3 coming with pytorch==1.13 hangs when CUDA_LAUNCH_BLOCKING=1 is used. So don’t use it with that
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version of pytorch. The issue has been fixed in nccl>=2.17 which should be included in pytorch==2.0.

segfaults and getting a backtrace from a core file
It’s not uncommon for a complex pytorch program to segfault and drop a core file. Especially if you’re using complex
extensions like NCCL.

The corefile is what the program generates when it crashes on a low-level - e.g. when using a python extension - such as
a CUDA kernel or really any library that is coded directly in some variant of C or another language and made accessible
in python through some binding API. The most common cause of a segfault is when such software accesses memory it has
not allocated. For example, a program may try to free memory it hasn’t allocated. But there could be many other reasons.

When a segfault event happens Python can’t do anything, as the proverbial carpet is pulled out from under its feet, so it
can’t generate an exception or even write anything to the output.

In these situation one must go and analyse the libC-level calls that lead to the segfault, which is luckily saved in the core
file.

If your program crashed, you will often find a file that will look something like: core-python-3097667-6

Before we continue make sure you have gdb installed:

sudo apt-get install gdb

Now make sure you know the path to the python executable that was used to run the program that crashed. If you have
multiple python environment you have to activate the right environment first. If you don’t gdb may fail to unpack the core
file.

So typically I’d go:

conda activate my-env

gdb python core-python-3097667-6

• adjust my-env to whatever env you use, or instead of conda use whatever way you use to activate your python
environment - and perhaps you’re using the system-wise python and then you don’t need to activate anything.

• adjust the name of the core file to the file you have gotten - it’s possible that there are many - pick the latest then.

Now gdb will churn for a bit and will give you a prompt where you type: bt. We will use an actual core file here:

(gdb) bt

#0  0x0000147539887a9f in raise () from /lib64/libc.so.6

#1  0x000014753985ae05 in abort () from /lib64/libc.so.6

#2  0x000014751b85a09b in __gnu_cxx::__verbose_terminate_handler() [clone .cold.1] () from /lib64/

libstdc++.so.6

#3  0x000014751b86053c in __cxxabiv1::__terminate(void (*)()) () from /lib64/libstdc++.so.6

#4  0x000014751b860597 in std::terminate() () from /lib64/libstdc++.so.6

#5  0x000014751b86052e in std::rethrow_exception(std::__exception_ptr::exception_ptr) () from /lib64/

libstdc++.so.6

#6  0x000014750bb007ef in c10d::ProcessGroupNCCL::WorkNCCL::handleNCCLGuard() ()

from .../python3.8/site-packages/torch/lib/libtorch_cuda_cpp.so

#7  0x000014750bb04c69 in c10d::ProcessGroupNCCL::workCleanupLoop() ()
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from.../python3.8/site-packages/torch/lib/libtorch_cuda_cpp.so

#8  0x000014751b88cba3 in execute_native_thread_routine () from /lib64/libstdc++.so.6

#9  0x000014753a3901cf in start_thread () from /lib64/libpthread.so.0

#10 0x0000147539872dd3 in clone () from /lib64/libc.so.6

and there you go. How do you make sense of it?

Well, you go from the bottom of the stack to the top. You can tell that a clone call was made in libc which then called
start_thread in libpthread and then if you keep going there are a bunch of calls in the torch libraries and finally we can
see that the program terminated itself, completing with raise from libc which told the Linux kernel to kill the program
and create the core file.

This wasn’t an easy to understand backtrace.

footnote: Yes, python calls it a traceback and elsewhere it’s called a backtrace - it’s confusing, but it’s more or less the same
thing.

Actually I had to ask pytorch devs for help and received:

• PyTorch ProcessGroup watchdog thread caught an asynchronous error from NCCL
• This error is an “unhandled system error” which in this particular case turned out to be an IB-OPA error
• The ProcessGroup’s WorkCleanUp thread rethrew the error so that the main process would crash and the user would

get notified (otherwise this async error would not surface)

Trust me there are times when even if you’re inexperienced the backtrace can give you enough of a hint to where you
should look for troubleshooting.

But fear not - most of the time you won’t need to understand the traceback. Ideally you’d just attach the core file to your
filed Issue. But it can easily be 5GB large. So the developers that will be trying to help you will ask you to generate a gdb

backtrace and now you know how to do that.

I didn’t promise it’ll be easy, I just showed you where to start.

Now another useful details is that many programs these days run multiple threads. And bt only shows the main thread of
the process. But, often, it can be helpful to see where other threads in the process were when segfault has happened. For
that you simply type 2 commands at the (gdb) prompt:

(gdb) thread apply all bt

(gdb) bt

and this time around you typically will get a massive report, one backtrace per thread.

py-spy
This is a super-useful tool for analysing hanging programs. For example, when a you have a resource deadlock or there is
an issue with a network connection.

You will find an exhaustive coverage of this tool here.

strace
Similar to py-spy, strace is a super-useful tool which traces any running application at the low-level system calls - e.g. libC
and alike.
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For example, run:

strace python -c "print(’strace’)"

and you will see everything that is done at the system call level as the above program runs.

But usually it’s more useful when you have a stuck program that spins all CPU cores at 100% but nothing happens and you
want to see what’s it doing. In this situation you simply attached to the running program like so:

strace --pid PID

where you get the PID for example from the output of top or ps. Typically I just copy-n-paste the PID of the program that
consumes the most CPU - top usually shows it at the very top of its listing.

Same as py-spy you may need sudo perms to attached to an already running process - it all depends on your system setup.
But you can always start a program with strace as I have shown in the original example.

Let’s look at a small sub-snippet of the output of strace python -c "print(’strace’)"

write(1, "strace\n", 7strace

)                 = 7

Here we can see that a write call was executed on filedescriptor 1, which almost always is stdout (stdin being 0, and stderr

being 2).

If you’re not sure what a filedescriptor is pointing to, normally you can tell from strace’s output itself. But you can also do:

ls -l /proc/PID/fd

where PID is the pid of the currently running program you’re trying to investigate.

For example, when I run the above while running a pytest test with gpus, I got (partial output):

l-wx------ 1 stas stas 64 Mar  1 17:22 5 -> /dev/null

lr-x------ 1 stas stas 64 Mar  1 17:22 6 -> /dev/urandom

lrwx------ 1 stas stas 64 Mar  1 17:22 7 -> /dev/nvidiactl

lrwx------ 1 stas stas 64 Mar  1 17:22 8 -> /dev/nvidia0

lr-x------ 1 stas stas 64 Mar  1 17:22 9 -> /dev/nvidia-caps/nvidia-cap2

so you can see that a device /dev/null is open as FD (file descriptor) 5, /dev/urandom as FD 6, etc.

Now let’s go look at another snippet from our strace run.

access("/etc/ld.so.preload", R_OK)      = -1 ENOENT (No such file or directory)
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Here it tried to see if file /etc/ld.so.preload exists, but as we can see it doesn’t - this can be useful if some shared library
is missing - you can see where it’s trying to load it from.

Let’s try another one:

openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libpthread.so.0", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\0\0\0\0\0\0\0\0"..., 832) = 832

newfstatat(3, "", {st_mode=S_IFREG|0644, st_size=21448, ...}, AT_EMPTY_PATH) = 0

mmap(NULL, 16424, PROT_READ, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f8028807000

mmap(0x7f8028808000, 4096, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1000) =

0x7f8028808000

mmap(0x7f8028809000, 4096, PROT_READ, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x2000) = 0x7f8028809000

mmap(0x7f802880a000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x2000) =

0x7f802880a000

close(3)

here we can see that it opens /lib/x86_64-linux-gnu/libpthread.so.0 and assigns it FD 3, it then reads 832 chars from FD
3, (we can also see that the first chars are ELF - which stands for a shared library format), then memory maps it and closes
that file.

In this following example, we see a python cached file is opened, its filepointer is moved to 0, and then it’s read and closed.

openat(AT_FDCWD, "/home/stas/anaconda3/envs/py38-pt113/lib/python3.8/__pycache__/abc.cpython-38.pyc",

O_RDONLY|O_CLOEXEC) = 3

fstat(3, {st_mode=S_IFREG|0664, st_size=5329, ...}) = 0

lseek(3, 0, SEEK_CUR)                   = 0

lseek(3, 0, SEEK_CUR)                   = 0

fstat(3, {st_mode=S_IFREG|0664, st_size=5329, ...}) = 0

brk(0x23bf000)                          = 0x23bf000

read(3, "U\r\r\n\0\0\0\0\24\216\177c\211\21\0\0\343\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 5330) = 5329

read(3, "", 1)                          = 0

close(3)

It’s important to notice that file descriptors are re-used, so we have seen the same FD 3 twice, but each time it was open to
a different file.

If your program is for example trying to reach to the Internet, you can also tell these calls from strace as the program
would be reading from a socket file descriptor.

So let’s run an example on a program that downloads files from the HF hub:

strace python -c ’import sys; from transformers import AutoConfig;

AutoConfig.from_pretrained(sys.argv[1])’ t5-small

here is some relevant to this discussion snippet:

socket(AF_INET6, SOCK_STREAM|SOCK_CLOEXEC, IPPROTO_TCP) = 3

setsockopt(3, SOL_TCP, TCP_NODELAY, [1], 4) = 0
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ioctl(3, FIONBIO, [1])                  = 0

connect(3, {sa_family=AF_INET6, sin6_port=htons(443), sin6_flowinfo=htonl(0), inet_pton(AF_INET6,

"2600:1f18:147f:e850:e203:c458:10cd:fc3c

", &sin6_addr), sin6_scope_id=0}, 28) = -1 EINPROGRESS (Operation now in progress)

poll([{fd=3, events=POLLOUT|POLLERR}], 1, 10000) = 1 ([{fd=3, revents=POLLOUT}])

getsockopt(3, SOL_SOCKET, SO_ERROR, [0], [4]) = 0

[...]

write(3, "\26\3\3\0F\20\0\0BA\4\373m\244\16\354/\334\205\361j\225\356\202m*\305\332\275\251\17J"..., 126)

= 126

read(3, 0x2f05c13, 5)                   = -1 EAGAIN (Resource temporarily unavailable)

poll([{fd=3, events=POLLIN}], 1, 9903)  = 1 ([{fd=3, revents=POLLIN}])

read(3, "\24\3\3\0\1", 5)               = 5

read(3, "\1", 1)                        = 1

read(3, "\26\3\3\0(", 5)                = 5

read(3, "\0\0\0\0\0\0\0\0\344\v\273\225`\4\24m\234~\371\332%l\364\254\34\3472<\0356s\313"..., 40) = 40

ioctl(3, FIONBIO, [1])                  = 0

poll([{fd=3, events=POLLOUT}], 1, 10000) = 1 ([{fd=3, revents=POLLOUT}])

write(3, "\27\3\3\1.\0\374$\361\217\337\377\264g\215\364\345\256\260\211$\326pkR\345\276,\321\221`-"...,

307) = 307

ioctl(3, FIONBIO, [1])                  = 0

read(3, 0x2ef7283, 5)                   = -1 EAGAIN (Resource temporarily unavailable)

poll([{fd=3, events=POLLIN}], 1, 10000) = 1 ([{fd=3, revents=POLLIN}])

You can see where that again it uses FD 3 but this time it opens a INET6 socket instead of a file. You can see that it then
connects to that socket, polls, reads and writes from it.

There are many other super useful understandings one can derive from using this tool.

BTW, if you don’t want to scroll up-down, you can also save the output to a file:

strace -o strace.txt python -c "print(’strace’)"

Now, since you’re might want to strace the program from the very beginning, for example to sort out some race condition
on a distributed filesystem, you will want to tell it to follow any forked processes. This what the -f flag is for:

strace -o log.txt -f python -m torch.distributed.run --nproc_per_node=4 --nnodes=1 --tee 3 test.py

So here we launch 4 processes and will end up running strace on at least 5 of them - the launcher plus 4 processes (each of
which may spawn further child processes).

It will conveniently prefix each line with the pid of the program so it should be easy to tell which system was made by
which process.

But if you want separate logs per process, then use -ff instead of -f.

The strace manpage has a ton of other useful options.

Invoke pdb on a specific rank in multi-node training
Once pytorch 2.2 is released you will have a new handy debug feature:
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import torch.distributed as dist

[...]

def mycode(...):

dist.breakpoint(0)

This is the same as ForkedPdb (below) but will automatically break for you on the rank of your choice - rank0 in the example
above. Just make sure to call up;;n right away when the breakpoint hits to get into your normal code.

Here is what it does underneath:

import sys

import pdb

class ForkedPdb(pdb.Pdb):

"""

PDB Subclass for debugging multi-processed code

Suggested in: https://stackoverflow.com/questions/4716533/

how-to-attach-debugger-to-a-python-subproccess

"""

def interaction(self, *args, **kwargs):

_stdin = sys.stdin

try:

sys.stdin = open(’/dev/stdin’)

pdb.Pdb.interaction(self, *args, **kwargs)

finally:

sys.stdin = _stdin

def mycode():

if dist.get_rank() == 0:

ForkedPdb().set_trace()

dist.barrier()

so you can code it yourself as well.

And you can use that ForkedPdb code for normal forked applications, minus the dist calls.

Floating point math discrepancies on different devices
It’s important to understand that depending on which device the floating point math is performed on the outcomes can
be different. For example doing the same floating point operation on a CPU and a GPU may lead to different outcomes,
similarly when using 2 different GPU architectures, and even more so if these are 2 different types of accelerators (e.g.
NVIDIA vs. AMD GPUs).

Here is an example of discrepancies I was able to get doing the same simple floating point math on an 11 Gen Intel i7 CPU
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and an NVIDIA A100 80GB (PCIe) GPU:

import torch

def do_math(device):

inv_freq = (10 ** (torch.arange(0, 10, device=device) / 10))

print(f"{inv_freq[9]:.20f}")

return inv_freq.cpu()

a = do_math(torch.device("cpu"))

b = do_math(torch.device("cuda"))

torch.testing.assert_close(a, b, rtol=0.0, atol=0.0)

when we run it we get 2 out of 10 elements mismatch:

7.94328212738037109375

7.94328308105468750000

[...]

AssertionError: Tensor-likes are not equal!

Mismatched elements: 2 / 10 (20.0%)

Greatest absolute difference: 9.5367431640625e-07 at index (9,)

Greatest relative difference: 1.200604771156577e-07 at index (9,)

This was a simple low-dimensional example, but in reality the tensors are much bigger and will typically end up having
more mismatches.

Now you might say that the 1e-6 discrepancy can be safely ignored. And it’s often so as long as this is a final result. If this
tensor from the example above is now fed through a 100 layers of matmuls, this tiny discrepancy is going to compound and
spread out to impact many other elements with the final outcome being quite different from the same action performed
on another type of device.

For example, see this discussion - the users reported that when doing Llama-2-7b inference they were getting quite
different logits depending on how the model was initialized. To clarify the initial discussion was about Deepspeed
potentially being the problem, but in later comments you can see that it was reduced to just which device the model’s
buffers were initialized on. The trained weights aren’t an issue they are loaded from the checkpoint, but the buffers are
recreated from scratch when the model is loaded, so that’s where the problem emerges.

It’s uncommon that small variations make much of a difference, but sometimes the difference can be clearly seen, as in
this example where the same image is produced on a CPU and an MPS device.
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This snapshot and the commentary come from this PyTorch Issue thread.

If you’re curious where I pulled this code from - this is a simplified reduction of this original code in modeling_llama.py:

class LlamaRotaryEmbedding(nn.Module):

def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):

super().__init__()

self.dim = dim

self.max_position_embeddings = max_position_embeddings

self.base = base

inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))

self.register_buffer("inv_freq", inv_freq, persistent=False)
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Debug Tools

git-related tools
Useful aliases
Show a diff of all files modified in the current branch against HEAD:

alias brdiff="def_branch=\$(git symbolic-ref refs/remotes/origin/HEAD | sed ’s@^refs/remotes/origin/@@’);

git diff origin/\$def_branch..."

Same, but ignore white-space differences, adding --ignore-space-at-eol or -w:

alias brdiff-nows="def_branch=\$(git symbolic-ref refs/remotes/origin/HEAD | sed ’s@^refs/remotes/

origin/@@’); git diff -w origin/\$def_branch..."

List all the files that were added or modified in the current branch compared to HEAD:

alias brfiles="def_branch=\$(git symbolic-ref refs/remotes/origin/HEAD | sed ’s@^refs/remotes/origin/@@’);

git diff --name-only origin/\$def_branch..."

Once we have the list, we can now automatically open an editor to load just added and modified files:

alias bremacs="def_branch=\$(git symbolic-ref refs/remotes/origin/HEAD | sed ’s@^refs/remotes/origin/@@’);

emacs \$(git diff --name-only origin/\$def_branch...) &"

git-bisect
(note to self: this is a sync from the-art-of-debugging/methodology.md which is the true source)

The discussed next approach should work for any revision control system that supports bisecting. We will use git bisect

in this discussion.

git bisect helps to quickly find the commit that caused a certain problem.

Use case: Say, you were using transformers==4.33.0 and then you needed a more recent feature so you upgraded to the
bleed-edge transformers@main and your code broke. There could have been hundreds of commits between the two versions
and it’d be very difficult to find the right commit that lead to the breakage by going through all the commits. Here is how
you can quickly find out which commit was the cause.

footnote: HuggingFace Transformers is actually pretty good at not breaking often, but given its complexity and enormous
size it happens nevertheless and the problems are fixed very quickly once reported. Since it’s a very popular Machine
Learning library it makes for a good debugging use case.

Solution: Bisecting all the commits between the known good and bad commits to find the one commit that’s to blame.
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We are going to use 2 shell terminals: A and B. Terminal A will be used for git bisect and terminal B for testing your
software. There is no technical reason why you couldn’t get away with a single terminal but it’s easier with 2.

1. In terminal A fetch the git repo and install it in devel mode (pip install -e .) into your Python environment.

git clone https://github.com/huggingface/transformers

cd transformers

pip install -e .

Now the code of this clone will be used automatically when you run your application, instead of the version you previously
installed from PyPi or Conda or elsewhere.

Also for simplicity we assume that all the dependencies have already been installed.

2. next we launch the bisecting - In terminal A, run:

git bisect start

3. Discover the last known good and the first known bad commits

git bisect needs just 2 data points to do its work. It needs to know one earlier commit that is known to work (good) and
one later commit that is know to break (bad). So if you look at the sequence of commits on a given branch it’d have 2 known
points and many commits around these that are of an unknown quality:

...... orig_good ..... .... .... .... ..... orig_bad ....

------------->---------------->----------------> time

So for example if you know that transformers==4.33.0 was good and transformers@main (HEAD) is bad, find which commit
is corresponding to the tag 4.33.0 by visiting the releases page and searching for 4.33.0. We find that it was commit with
SHA 5a4f340d.

footnote: typically the first 8 hex characters are enough to have a unique identifier for a given repo, but you can use the
full 40 character string.

So now we specify which is the first known good commit:

git bisect good 5a4f340d

and as we said we will use HEAD (latest commit) as the bad one, in which case we can use HEAD instead finding out the
corresponding SHA string:

git bisect bad HEAD

If however you know it broke in 4.34.0 you can find its latest commit as explained above and use that instead of HEAD.

We are now all set at finding out the commit that broke things for you.

And after you told git bisect the good and the bad commits it has already switched to a commit somewhere in the middle:
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...... orig_good ..... .... current .... .... ..... orig_bad ........

------------->--------------->---------------->----------------> time

You can run git log to see which commit it has switched to.

And to remind, we installed this repo as pip install -e . so the Python environment is instantly updated to the current
commit’s code version.

4. Good or bad

The next stage is telling git bisect if the current commit is good or bad:

To do so in terminal B run your program once.

Then in terminal A run:

git bisect bad

If it fails, or:

git bisect good

if it succeeds.

If, for example, if the result was bad, git bisect will internally flag the last commit as new bad and will half the commits
again, switching to a new current commit:

...... orig_good ..... current .... new_bad .... ..... orig_bad ....

------------->--------------->---------------->----------------> time

And, vice versa, if the result was good, then you will have:

...... orig_good ..... .... new_good .... current ..... orig_bad ....

------------->--------------->---------------->----------------> time

5. Repeat until no more commits left

Keep repeating step 4 step until the problematic commit is found.

Once you finished bisecting, git bisect will tell you which commit was responsible for breaking things.

...... orig_good ..... .... last_good first_bad .... .. orig_bad ....

------------->--------------->---------------->----------------> time

If you followed the little commit diagrams, it’d correspond for thefirst_bad commit.

You can then go to https://github.com/huggingface/transformers/commit/ and append the commit SHA to that url which
will take you to the commit, (e.g. https://github.com/huggingface/transformers/commit/
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57f44dc4288a3521bd700405ad41e90a4687abc0 and which will then link to the PR from which it originated. And then you can
ask for help by following up in that PR.

If your program doesn’t take too long to run even if there are thousands of commits to search, you are facing n bisecting
steps from 2**n so 1024 commits can be searched in 10 steps.

If your program is very slow, try to reduce it to something small - ideally a small reproduction program that shows the
problem really fast. Often, commenting out huge chunks of code that you deem irrelevant to the problem at hand, can be
all it takes.

If you want to see the progress, you can ask it to show the current range of remaining commits to check with:

git bisect visualize --oneline

6. Clean up

So now restore the git repo clone to the same state you started from (most likely `HEAD) with:

git bisect reset

and possible reinstall the good version of the library while you report the issue to the maintainers.

Sometimes, the issue emerges from intentional backward compatibility breaking API changes, and you might just need
to read the project’s documentation to see what has changed. For example, if you switched from transformers==2.0.0 to
transformers==3.0.0 it’s almost guaranteed that your code will break, as major numbers difference are typically used to
introduce major API changes.

7. Possible problems and their solutions:

a. skipping

If for some reason the current commit cannot be tested - it can be skipped with:

git bisect skip

and it git bisect will continue bisecting the remaining commits.

This is often helpful if some API has changed in the middle of the commit range and your program starts to fail for a totally
different reason.

You might also try to make a variation of the program that adapts to the new API, and use it instead, but it’s not always
easy to do.

b. reversing the order

Normally git expects bad to be after good.

...... orig_good ..... .... .... .... ..... orig_bad ....

------------->--------------->---------------->----------------> time

Now, if bad happens before good revision order-wise and you want to find the first revision that fixed a previously existing
problem - you can reverse the definitions of good and bad - it’d be confusing to work with overloaded logic states, so it’s
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recommended to use a new set of states instead - for example, fixed and broken - here is how you do that.

git bisect start --term-new=fixed --term-old=broken

git bisect fixed

git bisect broken 6c94774

and then use:

git fixed / git broken

instead of:

git good / git bad

c. complications

There are sometimes other complications, like when different revisions’ dependencies aren’t the same and for example
one revision may require numpy=1.25 and the other numpy=1.26. If the dependency package versions are backward
compatible installing the newer version should do the trick. But that’s not always the case. So sometimes one has to
reinstall the right dependencies before re-testing the program.

Sometimes, it helps when there is a range of commits that are actually broken in a different way, you can either find a
range of good...bad commits that isn’t including the other bad range, or you can try to git bisect skip the other bad
commits as explained earlier.
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Diagnosing Hangings and Deadlocks in Multi-Node
Multi-GPU Python Programs

While the methodologies found in this article were developed while working with multi-node multi-gpu pytorch-based
training, they, of course, can help with any multi-process multi-node Python programs.

Helper tools
Try to use the following script torch-distributed-gpu-test.py to diagnose the situation.

This will help primarily with discovering network-related issues. And also to quickly understand how multi-gpu
communications work.

For code-related issues read the rest of this document.

Approaches to diagnosing multi-gpu hanging / deadlocks
py-spy
First do pip install py-spy.

Now you can attach to each process with:

py-spy dump -n -p PID

and it will tell you where the process hangs (very often it’s a nccl collective function or a barrier).

• PID is the process id of the hanging python process.
• -n is useful if you want to see stack traces from python extensions written in C, C++, etc., as the program may hang in

one of the extensions
• you may need to add sudo before the command - for more details see this note.

If you have no sudo access your sysadmin might be able to perform this for you:

sudo echo 0 > /proc/sys/kernel/yama/ptrace_scope

which will allow you running py-spy (and strace) without needing sudo. Beware of the possible security implications - but
typically if your compute node is inaccessible from the Internet it’s less likely to be a risk.

To make this change permanent edit /etc/sysctl.d/10-ptrace.conf and set:

kernel.yama.ptrace_scope = 0

Here is an example of py-spy dump python stack trace:
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Thread 835995 (active): "MainThread"

broadcast (torch/distributed/distributed_c10d.py:1191)

_aggregate_total_loss (deepspeed/runtime/pipe/engine.py:540)

train_batch (deepspeed/runtime/pipe/engine.py:330)

train_step (megatron/training.py:436)

train (megatron/training.py:851)

pretrain (megatron/training.py:187)

<module> (pretrain_gpt.py:239)

The very first line is where the program is stuck.

If the hanging happens inside a CPP extension, add --native py-spy and it’ll show the non-python code if any.

multi-process py-spy
Now, how do you do it for multiple processes. Doing it one-by-one is too slow. So let’s do it at once.

If the launch command was python, what you do is:

pgrep -P $(pgrep -o python) | xargs -I {} py-spy dump --pid {}

if deepspeed:

pgrep -P $(pgrep -o deepspeed) | xargs -I {} py-spy dump --pid {}

for accelerate:

pgrep -P $(pgrep -o accelerate) | xargs -I {} py-spy dump --pid {}

you get the idea.

This particular approach will only analyse the main processes and not various other sub-processes/threads spawned by
these processes. So if you have 8 gpus and 8 processes, the above will generate 8 stack traces.

If you want all processes and their subprocesses, then you’d just run:

pgrep -f python | xargs -I {} py-spy dump --pid {}

(and as before replace python with the name of the launcher program if it’s not python)

multi-node py-spy via srun
What if you have multiple nodes?

You can of course ssh to each node interactively and dump the stack traces.

If you’re using the SLURM environment you can use srun to do it on all nodes for you.

Now in another console get the SLURM_JOBID (or get it from salloc log):
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squeue -u `whoami` -o "%.16i %9P %26j %.8T %.10M %.8l %.6D %.20S %R"

Now use the following srun command after adjusting jobid with SLURM_JOBID from the outcome of the command above this
sentence:

srun --jobid=2180718 --gres=gpu:0 --nodes=40 --tasks-per-node=1 --output=trace-%N.out sh -c ’ps aux | grep

python | egrep -v "grep|srun" | grep `whoami` | awk "{print \$2}" | xargs -I {} py-spy dump --native --pid

{}’ || echo "failed"

Notes:

• One must use --gres=gpu:0 for the monitor srun or otherwise it will block until the main srun (the one running the
training) exits.

• Each node will generate its unique log file named trace-nodename.out - so this would help to identify which node(s)
are problematic. You can remove --output=trace-%N.out if you want it all being dumped to stdout

• In some SLURM versions you may also need to add --overlap

• In some SLURM versions the jobid might not match that of reported in squeue, so you have to get the correct
SLURM_JOB_ID from the logs of the job you’re trying to "attach" to - i.e. your srun job that allocated the GPUs.

• Sometimes bash doesn’t work, but sh does. I think it has to do with what dot files get sourced
• You might need to also activate a custom python environment, which you can do like so:

srun --jobid=2180718 --gres=gpu:0 --nodes=40 --tasks-per-node=1 --output=trace-%N.out sh -c ’conda

activate myenvname; ps auxc | ... ’ || echo "failed"

or you can do it inside ~/.bashrc or whatever shell’s rc file you decide to use.

As mentioned before if you want just the main processes you’d use this instead:

srun --jobid=2180718 --gres=gpu:0 --nodes=40 --tasks-per-node=1 --output=trace-%N.out sh -c ’pgrep -P

$(pgrep -o python) | xargs -I {} py-spy dump --pid {}’ || echo "failed"

Adjust python if need be as explained in the multi-gpu section above.

The previous longer command will deliver traces for all python processes.

If you’re not getting anything, start with the basic debug like:

srun --jobid=2180718 --gres=gpu:0 --nodes=40 --tasks-per-node=1 --output=trace-%N.out sh -c ’date’

once you know you’re talking to all the nodes, then you can progressively unravel the depth of calls, as in:

srun --jobid=2180718 --gres=gpu:0 --nodes=40 --tasks-per-node=1 sh -c ’date’

srun --jobid=2180718 --gres=gpu:0 --nodes=40 --tasks-per-node=1 sh -c ’pgrep -o python’

srun --jobid=2180718 --gres=gpu:0 --nodes=40 --tasks-per-node=1 sh -c ’pgrep -P $(pgrep -o python) ’

srun --jobid=2180718 --gres=gpu:0 --nodes=40 --tasks-per-node=1 sh -c ’pgrep -P $(pgrep -o python) | xargs

-I {} py-spy dump --pid {}’
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and at each stage check that the output makes sense - e.g. the 2nd and 3rd call you should be getting the PIDs of the
processes.

multi-node py-spy via pdsh
pdsh seems to be a good easy tool to use to accomplish remote work on multiple nodes. Say, you’re running on 2 nodes
with hostnames nodename-5 and nodename-8, then you can quickly test that remote execution is working by getting the date

on all of these hosts with just:

$ PDSH_RCMD_TYPE=ssh pdsh -w nodename-[5,8] "date"

nodename-5: Wed Oct 25 04:32:43 UTC 2023

nodename-8: Wed Oct 25 04:32:45 UTC 2023

footnote: pdsh should be available via a normal OS package installer

Once you tested that date works it’s time to move to py-spy.

To do py-spy on all python processes that are sub-processes, it’d be:

PDSH_RCMD_TYPE=ssh pdsh -w nodename-[5,8] ’pgrep -P $(pgrep -o python) | xargs -I {} py-spy dump --pid {}’

but as you’re likely to need to have the ~/.bashrc run, you will need to clone it into ~/.pdshrc, reduce that clone to what is
needed to be run (e.g. modify PATH, activate conda) and then source it, like:

PDSH_RCMD_TYPE=ssh pdsh -w nodename-[5,8] ’source ~/.pdshrc; pgrep -P $(pgrep -o python) | xargs -I {}

py-spy dump --pid {}"’

The reason you need a startup script is because usually ~/.bashrc starts with:

# If not running interactively, don’t do anything

case $- in

*i*) ;;

*) return;;

esac

so when you run such non-interactive workflows Bash won’t process its ~/.bashrc normally (exit early) and thus anything
relying on this startup script won’t work. So you can either remove the non-interactive exiting code above or fork
~/.bashrc into a startup file that only contains what’s needed for the remote command to succeed.

footnote: there is nothing special about ~/.pdshrc - any other name would do, since you’re manually sourceing it.

And if your system isn’t setup to run py-spy w/o sudo as explained a few sections up, you’d need something like this:

PDSH_RCMD_TYPE=ssh pdsh -w nodename-[5,8] ’sudo bash -c "source ~/.pdshrc; pgrep -P $(pgrep -o python) |

xargs -I {} py-spy dump --pid {}"’
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Of course, you may need to edit the pgrep section to narrow down which processes you want to watch.

Additionally, to avoid being prompted with:

Are you sure you want to continue connecting (yes/no/[fingerprint])?

for every new node you haven’t logged into yet, you can disable this check with:

echo "Host *" >> ~/.ssh/config

echo "  StrictHostKeyChecking no" >> ~/.ssh/config

Here I assume you’re on an isolated cluster so you don’t need to worry about security issues and thus bypassing such check
is most likely OK.

multi-node py-spy via ds_ssh
This is yet another way, but please make sure to read the pdsh section above first.

The following notes require pip install deepspeed.

In one SLURM environment I also attempted using pdsh via ds_ssh, but somehow I wasn’t able to run py-spy remotely - the
main issue was that remote ssh command wasn’t giving the same env as when I was logged in interactively via ssh. But if
you have sudo access on the compute nodes then you could do:

First prepare hostfile:

function makehostfile() {

perl -e ’$slots=split /,/, $ENV{"SLURM_STEP_GPUS"};

$slots=8 if $slots==0; # workaround 8 gpu machines

@nodes = split /\n/, qx[scontrol show hostnames $ENV{"SLURM_JOB_NODELIST"}];

print map { "$_ slots=$slots\n" } @nodes’

}

makehostfile > hostfile

Adapt $slots to the number of gpus per node. You may have to adapt this script if your scontrol produces a different
output.

Now run the py-spy extraction command over all participating nodes:

ds_ssh -f hostfile "source ~/.pdshrc; ps aux | grep python | grep -v grep | grep `whoami` | awk ’{print

\$2}’ | xargs -I {} sudo py-spy dump --pid {} "

Notes:

• Put inside ~/.pdshrc whatever init code that you may need to run. If you don’t need any you can remove source

~/.pdshrc; from the command line.
• If you don’t have it already ds_ssh is installed when you do pip install deepspeed.
• you might need to export PDSH_RCMD_TYPE=ssh if you get rcmd: socket: Permission denied error
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Network-level hanging
The hanging could be happening at the network level. NCCL_DEBUG=INFO can help here.

Run the script with NCCL_DEBUG=INFO env var and try to study the outcome for obvious errors. It will tell you which device
it’s using, e.g.:

DeepWhite:21288:21288 [0] NCCL INFO NET/Socket : Using [0]enp67s0:192.168.50.21<0>

So it’s using interface enp67s0 over 192.168.50.21

Is your 192.168.50.21 firewalled? or is it somehow a misconfigured network device?

Does it work if you use a loopback device 127.0.0.1?

NCCL_DEBUG=INFO NCCL_SOCKET_IFNAME=lo python -m torch.distributed.run --nproc_per_node 4 --nnodes 1

torch-distributed-gpu-test.py

if not, see what other local network devices you have via ifconfig - try that instead of lo if any.

It’s currently using enp67s0 in the above example.

Isolate problematic GPUs
You can also try to see if only some GPUs fail

For example, does it work if you use the first 2 or the last 2 gpus:

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.run --nproc_per_node 2 --nnodes 1

torch-distributed-gpu-test.py

then the 2nd pair:

CUDA_VISIBLE_DEVICES=2,3 python -m torch.distributed.run --nproc_per_node 2 --nnodes 1

torch-distributed-gpu-test.py

python trace

Now what happens when the training doesn’t just hang, but the hanging process stops responding? e.g. this happens when
there is a serious hardware issue. But what if it is recurrent and py-spy won’t help here, since it won’t be able to attach to
a process that is not responding.

So next came the idea of tracing all calls like one does with strace(1), I researched python calls tracing facilities and have
discovered that python has a trace sub-system.

The following code will trace all python calls and log them to the console and into a dedicated per process log file, via a
custom Tee module I added.

This then can help to understand where some processes stopped responding, since we will have the log of the last call and
all the previous calls before it went unresponsive.
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$ cat train.py

[...]

def main():

# [...]

train()

import re

class Tee:

"""

A helper class to tee print’s output into a file.

Usage:

sys.stdout = Tee(filename)

"""

def __init__(self, filename):

self.stdout = sys.stdout

self.file = open(filename, "a")

def __getattr__(self, attr):

return getattr(self.stdout, attr)

def write(self, msg):

self.stdout.write(msg)

self.file.write(msg)

self.file.flush()

def flush(self):

self.stdout.flush()

self.file.flush()

if __name__ == "__main__":

import sys

import trace

import socket

import os

# enable the trace

if 0:

cwd = os.path.realpath(’.’)

pid = os.getpid()

hostname = socket.gethostname()

local_rank = int(os.environ["LOCAL_RANK"])

trace_output_file = f"{cwd}/trace-{hostname}-{local_rank}-{pid}.txt"

# create a Trace object, telling it what to ignore, and whether to

# do tracing or line-counting or both.

tracer = trace.Trace(

ignoredirs=[sys.prefix, sys.exec_prefix],

trace=1,
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count=1,

timing=True,

)

# run the new command using the given tracer

sys.stdout = Tee(trace_output_file)

tracer.run(’main()’)

else:

main()

This code doesn’t require any special handing other than enabling the trace by changing if 0 to if 1.

If you don’t set ignoredirs, this will now dump all python calls. Which means expect a lot of GBs of data logged, especially
if you have hundreds of GPUs.

Of course, you don’t have to start tracing from main - if you suspect a specific are you can start tracing there instead and
it’ll be much faster and less data to save.

I wish I could tell trace which packages to follow, but alas it only supports dirs to ignore, which is much more difficult
to set, and thus you end up with a lot more data than needrf. But still this is a super useful tool for debugging hanging
processes.

Also, your code will now run much much slower and the more packages you trace the slower it will become.

NicerTrace
As Trace proved to provide very limited usability when debugging a complex multi-node multi-hour run crash, I have
started on working on a better version of the trace python module.

You can find it here: NicerTrace

I added multiple additional flags to the constructor and made the output much more useful. You fill find a full working
example in that same file, just run:

python trace/NicerTrace.py

and you should see:

trace/NicerTrace.py:1 <module>

0:00:00 <string>:     1:         trace/NicerTrace.py:185 main

0:00:00 NicerTrace.py:   186:     img = Image.new("RGB", (4, 4))

PIL.Image:2896 new

0:00:00 Image.py:  2912:     _check_size(size)

PIL.Image:2875 _check_size

0:00:00 Image.py:  2883:     if not isinstance(size, (list, tuple)):

0:00:00 Image.py:  2886:     if len(size) != 2:

0:00:00 Image.py:  2889:     if size[0] < 0 or size[1] < 0:

as you will see in the example I set:

189

https://github.com/stas00/ml-engineering/blob/master/debug/NicerTrace.py


packages_to_include=["PIL"],

so it’ll trace PIL plus anything that is not under site-packages. If you need to trace another package, just add it to that list.

This is a very fresh work-in-progress package, so it’s evolving as we are trying to make it help us resolve a very complex
crashing situation.

Working with generated trace files
When the per-node-rank trace files has been generated the following might be helpful to quickly analyse the situation:

• grep for a specific match and also print the file and line number where it was found:

grep -n "backward" trace*

• show tail -1 of all trace files followed by the name of each file:

find . -name "trace*" -exec sh -c ’echo "$1: $(tail -3 "$1")"’ _ {} \;

• or similar to the above, but print 5 last lines with the leading filename and some vertical white space for an easier
reading:

find . -name "trace*" -exec sh -c ’echo; echo $1; echo "$(tail -5 "$1")"’ _ {} \;

• count how many times grep matched a given pattern in each ifle and print the matched file (in this example
matching the pattern backward):

find . -name "trace*" -exec sh -c ’echo "$1: $(grep "backward" $1 | wc -l)"’ _ {} \;

good old print

Now once you discovered where the hanging happens to further understand why this is happening, a debugger would
ideally be used, but more often than not debugging multi-process (multi-node) issues can be very difficult.

In such situations a good old print works. You just need to add some debug prints before the calls where things hang,
things that would help understand what lead to the deadlock. For example, some barrier was missing and one or a few
processes skipped some code and while the rest of processes are still blocking waiting for everybody to send some data
(for example in NCCL collective functions like gather or reduce).

You of course, want to prefix each print with the rank of the process so that you could tell which is which. For example:

import torch.distributed as dist

print(f"{dist.get_rank()}: passed stage 0")

What you will quickly discover is that if you have multiple GPUs these prints will be badly interleaved and you will have
a hard time making sense of the debug data. So let’s fix this. We are going to override print with a custom version of the
same, but which uses flock to ensure that only one process can write to stdout at the same time.
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The helper module printflock.py is included here. To activate it just run this at the top of the module you’re debugging:

from printflock import printflock as print

and now all your print calls in that module will magically be non-iterleaved. You can of course, just use printflock directly:

from printflock import printflock

import torch.distributed as dist

printflock(f"{dist.get_rank()}: passed stage 0")

core files
If the hanging happens inside non-python code, and py-spy --native isn’t enough for some reason you can make the
hanging program dump a core file, which is done with one of these approaches:

gcore <pid>

kill -ABRT <pid>

and then you can introspect the core file as explained here.

If you don’t get the core file dumped you need to configure your system to allow so and also specify where the core files
should be saved to.

To ensure the file is dumped in bash run (other shells may use a different command):

ulimit -c unlimited

To make this persistent run:

echo ’* soft core unlimited’ >> /etc/security/limits.conf

On some systems like Ubuntu the core files are hijacked by apport, check the contents of /proc/sys/kernel/core_pattern
to see where they are sent. You can override where they are sent with:

sudo sysctl -w kernel.core_pattern=/tmp/core-%e.%p.%h.%t

Change the directory if you want to, but make sure that the user the program is running under can write to that directory.
To make this change permanent edit /etc/sysctl.conf and add kernel.core_pattern=/tmp/core-%e.%p.%h.%t (or modify if
it’s already there).

footnote: see man core for all the different templates available

If on Ubuntu by default it sends core files to apport, which may save the core to /var/lib/apport/coredump or /var/crash.
But you can change it explained above.
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A quick way to test if your setup can generate a core file is:

sleep 10 &

killall -SIGSEGV sleep

Normally SIGSEGV isn’t recommended for a real situation of diagnosing a hanging program, because SIGSEGV is likely to
launch a sighandler, but for this test it’s good enough.

Code loops
Code loops can be tricky to debug in hanging scenarios. If you have code like the following:

for i, d in enumerate(data):

some_hanging_call(d)

it’s possible that one process hangs in the first iteration, and another process in the second iteration, which makes things
very confusing. But the stack trace won’t give such indication, as the line numbers would be the same, even though the
processes aren’t in the same place code progression-wise.

In such situations unroll the loop to be:

d_iter = iter(data)

some_hanging_call(next(d_iter)

some_hanging_call(next(d_iter)

and now when you run py-spy the line numbers will be correct. The processes hanging in the first iteration will report the
first some_hanging_call and those in the second iteration in the second call - as each now has its own line.

Hardware-specific issues
AMD/ROCm hangs or slow with IOMMU enabled
AMD Instinct users may need to either Disable IOMMU or set it to:

GRUB_CMDLINE_LINUX_DEFAULT="iommu=soft"

in /etc/default/grub (the grub config file could be elsewhere depending on the OS).

Disabling is GRUB_CMDLINE_LINUX="amd_iommu=off"
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Underflow and Overflow Detection

For this section we are going to use the underflow_overflow library.

If you start getting loss=NaN or the model inhibits some other abnormal behavior due to inf or nan in activations or weights
one needs to discover where the first underflow or overflow happens and what led to it. Luckily you can accomplish that
easily by activating a special module that will do the detection automatically.

Let’s use a t5-large model for this demonstration.

from .underflow_overflow import DebugUnderflowOverflow

from transformers import AutoModel

model = AutoModel.from_pretrained("t5-large")

debug_overflow = DebugUnderflowOverflow(model)

[underflow_overflow.DebugUnderflowOverflow] inserts hooks into the model that immediately after each forward call will
test input and output variables and also the corresponding module’s weights. As soon as inf or nan is detected in at least
one element of the activations or weights, the program will assert and print a report like this (this was caught with google/

mt5-small under fp16 mixed precision):

Detected inf/nan during batch_number=0

Last 21 forward frames:

abs min  abs max  metadata

encoder.block.1.layer.1.DenseReluDense.dropout Dropout

0.00e+00 2.57e+02 input[0]

0.00e+00 2.85e+02 output

[...]

encoder.block.2.layer.0 T5LayerSelfAttention

6.78e-04 3.15e+03 input[0]

2.65e-04 3.42e+03 output[0]

None output[1]

2.25e-01 1.00e+04 output[2]

encoder.block.2.layer.1.layer_norm T5LayerNorm

8.69e-02 4.18e-01 weight

2.65e-04 3.42e+03 input[0]

1.79e-06 4.65e+00 output

encoder.block.2.layer.1.DenseReluDense.wi_0 Linear

2.17e-07 4.50e+00 weight

1.79e-06 4.65e+00 input[0]

2.68e-06 3.70e+01 output

encoder.block.2.layer.1.DenseReluDense.wi_1 Linear

8.08e-07 2.66e+01 weight

1.79e-06 4.65e+00 input[0]

1.27e-04 2.37e+02 output

encoder.block.2.layer.1.DenseReluDense.dropout Dropout

0.00e+00 8.76e+03 input[0]

193

https://github.com/stas00/ml-engineering/blob/master/debug/underflow_overflow.py


0.00e+00 9.74e+03 output

encoder.block.2.layer.1.DenseReluDense.wo Linear

1.01e-06 6.44e+00 weight

0.00e+00 9.74e+03 input[0]

3.18e-04 6.27e+04 output

encoder.block.2.layer.1.DenseReluDense T5DenseGatedGeluDense

1.79e-06 4.65e+00 input[0]

3.18e-04 6.27e+04 output

encoder.block.2.layer.1.dropout Dropout

3.18e-04 6.27e+04 input[0]

0.00e+00      inf output

The example output has been trimmed in the middle for brevity.

The second column shows the value of the absolute largest element, so if you have a closer look at the last few frames, the
inputs and outputs were in the range of 1e4. So when this training was done under fp16 mixed precision the very last step
overflowed (since under fp16 the largest number before inf is 64e3). To avoid overflows under fp16 the activations must
remain way below 1e4, because 1e4 * 1e4 = 1e8 so any matrix multiplication with large activations is going to lead to a
numerical overflow condition.

At the very start of the trace you can discover at which batch number the problem occurred (here Detected inf/nan during

batch_number=0 means the problem occurred on the first batch).

Each reported frame starts by declaring the fully qualified entry for the corresponding module this frame is reporting for.
If we look just at this frame:

encoder.block.2.layer.1.layer_norm T5LayerNorm

8.69e-02 4.18e-01 weight

2.65e-04 3.42e+03 input[0]

1.79e-06 4.65e+00 output

Here, encoder.block.2.layer.1.layer_norm indicates that it was a layer norm for the first layer, of the second block of the
encoder. And the specific calls of the forward is T5LayerNorm.

Let’s look at the last few frames of that report:

Detected inf/nan during batch_number=0

Last 21 forward frames:

abs min  abs max  metadata

[...]

encoder.block.2.layer.1.DenseReluDense.wi_0 Linear

2.17e-07 4.50e+00 weight

1.79e-06 4.65e+00 input[0]

2.68e-06 3.70e+01 output

encoder.block.2.layer.1.DenseReluDense.wi_1 Linear

8.08e-07 2.66e+01 weight

1.79e-06 4.65e+00 input[0]

1.27e-04 2.37e+02 output

encoder.block.2.layer.1.DenseReluDense.wo Linear

1.01e-06 6.44e+00 weight
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0.00e+00 9.74e+03 input[0]

3.18e-04 6.27e+04 output

encoder.block.2.layer.1.DenseReluDense T5DenseGatedGeluDense

1.79e-06 4.65e+00 input[0]

3.18e-04 6.27e+04 output

encoder.block.2.layer.1.dropout Dropout

3.18e-04 6.27e+04 input[0]

0.00e+00      inf output

The last frame reports for Dropout.forward function with the first entry for the only input and the second for the only
output. You can see that it was called from an attribute dropout inside DenseReluDense class. We can see that it happened
during the first layer, of the 2nd block, during the very first batch. Finally, the absolute largest input elements was 6.27e+04
and same for the output was inf.

You can see here, that T5DenseGatedGeluDense.forward resulted in output activations, whose absolute max value was
around 62.7K, which is very close to fp16’s top limit of 64K. In the next frame we have Dropout which renormalizes the
weights, after it zeroed some of the elements, which pushes the absolute max value to more than 64K, and we get an
overflow (inf).

As you can see it’s the previous frames that we need to look into when the numbers start going into very large for fp16
numbers.

Let’s match the report to the code from models/t5/modeling_t5.py:

class T5DenseGatedGeluDense(nn.Module):

def __init__(self, config):

super().__init__()

self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)

self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)

self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)

self.dropout = nn.Dropout(config.dropout_rate)

self.gelu_act = ACT2FN["gelu_new"]

def forward(self, hidden_states):

hidden_gelu = self.gelu_act(self.wi_0(hidden_states))

hidden_linear = self.wi_1(hidden_states)

hidden_states = hidden_gelu * hidden_linear

hidden_states = self.dropout(hidden_states)

hidden_states = self.wo(hidden_states)

return hidden_states

Now it’s easy to see the dropout call, and all the previous calls as well.

Since the detection is happening in a forward hook, these reports are printed immediately after each forward returns.

Going back to the full report, to act on it and to fix the problem, we need to go a few frames up where the numbers started
to go up and most likely switch to the fp32 mode here, so that the numbers don’t overflow when multiplied or summed up.
Of course, there might be other solutions. For example, we could turn off amp temporarily if it’s enabled, after moving the
original forward into a helper wrapper, like so:

import torch
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def _forward(self, hidden_states):

hidden_gelu = self.gelu_act(self.wi_0(hidden_states))

hidden_linear = self.wi_1(hidden_states)

hidden_states = hidden_gelu * hidden_linear

hidden_states = self.dropout(hidden_states)

hidden_states = self.wo(hidden_states)

return hidden_states

def forward(self, hidden_states):

if torch.is_autocast_enabled():

with torch.cuda.amp.autocast(enabled=False):

return self._forward(hidden_states)

else:

return self._forward(hidden_states)

Since the automatic detector only reports on inputs and outputs of full frames, once you know where to look, you
may want to analyse the intermediary stages of any specific forward function as well. In such a case you can use the
detect_overflow helper function to inject the detector where you want it, for example:

from underflow_overflow import detect_overflow

class T5LayerFF(nn.Module):

[...]

def forward(self, hidden_states):

forwarded_states = self.layer_norm(hidden_states)

detect_overflow(forwarded_states, "after layer_norm")

forwarded_states = self.DenseReluDense(forwarded_states)

detect_overflow(forwarded_states, "after DenseReluDense")

return hidden_states + self.dropout(forwarded_states)

You can see that we added 2 of these and now we track if inf or nan for forwarded_states was detected somewhere in
between.

Actually, the detector already reports these because each of the calls in the example above is a nn.Module, but let’s say if
you had some local direct calculations this is how you’d do that.

Additionally, if you’re instantiating the debugger in your own code, you can adjust the number of frames printed from its
default, e.g.:

from .underflow_overflow import DebugUnderflowOverflow

debug_overflow = DebugUnderflowOverflow(model, max_frames_to_save=100)
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Specific batch absolute mix and max value tracing
The same debugging class can be used for per-batch tracing with the underflow/overflow detection feature turned off.

Let’s say you want to watch the absolute min and max values for all the ingredients of each forward call of a given batch,
and only do that for batches 1 and 3. Then you instantiate this class as:

debug_overflow = DebugUnderflowOverflow(model, trace_batch_nums=[1, 3])

And now full batches 1 and 3 will be traced using the same format as the underflow/overflow detector does.

Batches are 0-indexed.

This is helpful if you know that the program starts misbehaving after a certain batch number, so you can fast-forward
right to that area. Here is a sample truncated output for such configuration:

*** Starting batch number=1 ***

abs min  abs max  metadata

shared Embedding

1.01e-06 7.92e+02 weight

0.00e+00 2.47e+04 input[0]

5.36e-05 7.92e+02 output

[...]

decoder.dropout Dropout

1.60e-07 2.27e+01 input[0]

0.00e+00 2.52e+01 output

decoder T5Stack

not a tensor output

lm_head Linear

1.01e-06 7.92e+02 weight

0.00e+00 1.11e+00 input[0]

6.06e-02 8.39e+01 output

T5ForConditionalGeneration

not a tensor output

*** Starting batch number=3 ***

abs min  abs max  metadata

shared Embedding

1.01e-06 7.92e+02 weight

0.00e+00 2.78e+04 input[0]

5.36e-05 7.92e+02 output

[...]

Here you will get a huge number of frames dumped - as many as there were forward calls in your model, so it may or may
not what you want, but sometimes it can be easier to use for debugging purposes than a normal debugger. For example,
if a problem starts happening at batch number 150. So you can dump traces for batches 149 and 150 and compare where
numbers started to diverge.

You can also specify the batch number after which to stop the training, with:
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debug_overflow = DebugUnderflowOverflow(model, trace_batch_nums=[1, 3], abort_after_batch_num=3)
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Tensor precision / Data types

Quarter, Half and Mixed Precision
fp16

bf16

mixed fp16

mixed bf16

fp8

General OPs
LayerNorm-like operations must not do their work in half-precision, or they may lose a lot of data. Therefore when these
operations are implemented correctly they do efficient internal work in fp32 and then their outputs are downcast to
half-precision. Very often it’s just the accumulation that is done in fp32, since adding up half-precision numbers is very
lossy.

example:

Reduction collectives
fp16: ok to do in fp16 if loss scaling is in place

bf16: only ok in fp32

Gradient accumulation
best done in fp32 for both, but definitely for bf16

Optimizer step / Vanishing gradients
when adding a tiny gradient to a large number, that addition is often nullified

fp32 master weights and fp32 optim states

bf16 master weights and optim states can be done when using Kahan Summation and/or Stochastic rounding

Using fp16-pretrained model in bf16 regime
usually fails

Using bf16-pretrained model in fp16 regime
will lose some performance on conversion, but should work - best to finetune a bit

FP8
Main paper: FP8 Formats for Deep Learning
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Reproducibility

Achieve determinism in randomness based software
When debugging always set a fixed seed for all the used Random Number Generators (RNG) so that you get the same data
/ code path on each re-run.

Though with so many different systems it can be tricky to cover them all. Here is an attempt to cover a few:

import random, torch, numpy as np

def enforce_reproducibility(use_seed=None):

seed = use_seed if use_seed is not None else random.randint(1, 1000000)

print(f"Using seed: {seed}")

random.seed(seed)    # python RNG

np.random.seed(seed) # numpy RNG

# pytorch RNGs

torch.manual_seed(seed)          # cpu + cuda

torch.cuda.manual_seed_all(seed) # multi-gpu - can be called without gpus

if use_seed: # slower speed! https://pytorch.org/docs/stable/notes/

randomness.html#cuda-convolution-benchmarking

torch.backends.cudnn.deterministic = True

torch.backends.cudnn.benchmark     = False

return seed

a few possible others if you use those subsystems/frameworks instead:

torch.npu.manual_seed_all(seed)

torch.xpu.manual_seed_all(seed)

tf.random.set_seed(seed)

When you rerun the same code again and again to solve some problem set a specific seed at the beginning of your code
with:

enforce_reproducibility(42)

But as it mentions above this is for debug only since it activates various torch flags that help with determinism but can
slow things down so you don’t want this in production.

However, you can call this instead to use in production:

enforce_reproducibility()
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i.e. w/o the explicit seed. And then it’ll pick a random seed and log it! So if something happens in production you can now
reproduce the same RNGs the issue was observed in. And no performance penalty this time, as the torch.backends.cudnn

flags are only set if you provided the seed explicitly. Say it logged:

Using seed: 1234

you then just need to change the code to:

enforce_reproducibility(1234)

and you will get the same RNGs setup.

As mentioned in the first paragraphs there could be many other RNGs involved in a system, for example, if you want the
data to be fed in the same order for a DataLoader you need to have its seed set as well.

Additional resources:

• Reproducibility in pytorch

Reproduce the software and system environment
This methodology is useful when discovering some discrepancy in outcomes - quality or a throughput for example.

The idea is to log the key components of the environment used to launch a training (or inference) so that if at a later stage
it needs to be reproduced exactly as it was it can be done.

Since there is a huge variety of systems and components being used it’s impossible to prescribe a way that will always
work. So let’s discuss one possible recipe and you can then adapt it to your particular environment.

This is added to your slurm launcher script (or whatever other way you use to launch the training) - this is Bash script:

SAVE_DIR=/tmp # edit to a real path

export REPRO_DIR=$SAVE_DIR/repro/$SLURM_JOB_ID

mkdir -p $REPRO_DIR

# 1. modules (writes to stderr)

module list 2> $REPRO_DIR/modules.txt

# 2. env

/usr/bin/printenv | sort > $REPRO_DIR/env.txt

# 3. pip (this includes devel installs SHA)

pip freeze > $REPRO_DIR/requirements.txt

# 4. uncommitted diff in git clones installed into conda

perl -nle ’m|"file://(.*?/([^/]+))"| && qx[cd $1; if [ ! -z "\$(git diff)" ]; then git diff >

\$REPRO_DIR/$2.diff; fi]’ $CONDA_PREFIX/lib/python*/site-packages/*.dist-info/direct_url.json

As you can see this recipe is used in a SLURM environment, so every new training will dump the environment specific to
the SLURM job.

1. We save which modules were loaded, e.g. in cloud cluster/HPC setups you’re like to be loading the CUDA and cuDNN
libraries using this

If you don’t use modules then remove that entry
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2. We dump the environment variables. This can be crucial since a single env var like LD_PRELOAD or LD_LIBRARY_PATH

could make a huge impact on performance in some environments

3. We then dump the conda environment packages and their versions - this should work with any virtual python
environment.

4. If you use a devel install with pip install -e . it doesn’t know anything about the git clone repository it was
installed from other than its git SHA. But the issue is that it’s likely that you have modified the files locally and now
pip freeze will miss those changes. So this part will go through all packages that are not installed into the conda
environment (we find them by looking inside site-packages/*.dist-info/direct_url.json)

An additionally useful tool is conda-env-compare.pl which helps you to find out the exact differences 2 conda
environments have.

Anecdotally, me and my colleague were getting very different training TFLOPs on a cloud cluster running the exact
same code - literally launching the same slurm script from the same shared directory. We first compared our conda
environments using conda-env-compare.pl and found some differences - I installed the exact packages she had to match
her environment and it was still showing a huge performance difference. We then compared the output of printenv and
discovered that I had LD_PRELOAD set up and she didn’t - and that made a huge difference since this particular cloud
provider required multiple env vars to be set to custom paths to get the most of their hardware.
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HuggingFace Transformers notes

As this is one of the moment popular ML libraries this section will share some useful tools with HF transformers and others
of their libraries.

(Disclaimer: I worked at HF for 3 years so I’m biased - for good :)

• Faster debug and development with tiny models, tokenizers and datasets
• Re-train hub models from scratch using finetuning examples
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Faster debug and development with tiny models,
tokenizers and datasets

If you’re debugging problems and develop with full sized models and tokenizers you’re likely not working in a very
efficient way. Not only it’s much more difficult to solve problem, the amount of waiting to get the program to restart and
to get to the desirable point can be huge - and cumulatively this can be a huge drain on one’s motivation and productivity,
not talking about the resolution taking much longer, if at all.

The solution is simple:

Unless you’re testing the quality of a model, always use a tiny random model with potentially tiny tokenizer.Unless you’re testing the quality of a model, always use a tiny random model with potentially tiny tokenizer.

Moreover, large models often require massive resources, which are typically expensive and can also can make a debugging
process super complicated. For example any debugger can handle a single process, but if your model doesn’t fit and require
some sort of parallelization that requires multiple processes - most debuggers will either break or have issue giving you
what you need. The ideal development environment is one process and a tiny model is guaranteed to fit on an even
cheapest single smallest consumer GPU available. You could even use the free Google Colab to do development in a pinch
if you have no GPUs around.

So the updated ML development mantra then becomes:

• the larger the model the better the final product generates
• the smaller the model the quicker the final product’s training can be started

footnote: the recent research shows that larger isn’t always better, but it’s good enough to convey the importance of my
communication.

Once your code is working, do switch to the real model to test the quality of your generation. But even in this case still try
first the smallest model that produces a quality result. Only when you can see that the generation is mostly right use the
largest model to validate if your work has been perfect.

Making a tiny model
Important: given their popularity and the well designed simple API I will be discussing HF transformers models. But the
same principle can be applied to any other model.

TLDR: it’s trivial to make a tiny HF transformers model:

1. Fetch the config object of a full size models
2. Shrink the hidden size and perhaps a few other parameters
3. Create a model from that shrunken config
4. Save this model. Done!

footnote: It’s critical to remember that this will generate a random model, so don’t expect any quality from its output.

Now let’s go through the actual code and convert "google/mt5-small" into its tiny random counterpart.

from transformers import MT5Config, MT5ForConditionalGeneration

mname_from = "google/mt5-small"

mname_very_small = "mt5-tiny-random"
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config = MT5Config.from_pretrained(mname_from)

config.update(dict(

d_model=64,

d_ff=256,

))

print("new config", config)

very_small_model = MT5ForConditionalGeneration(config)

print(f"num of params {very_small_model.num_parameters()}")

very_small_model.save_pretrained(mname_very_small)

As you can see it’s trivial to do. And you can make it even smaller if you don’t need the hidden size to be at least 64. For
example try 8 - you just need to make sure that the number of attention heads isn’t larger than hidden size.

Also please note that you don’t need any GPUs to do that and you could do this even on a huge 176B parameter model like
BLOOM-176B. Since you never load the actual original model, except its config object.

Before modifying the config you can dump the original parameters and choose to shrinks more dimensions. For example,
using less layers makes it even smaller and easier to debug. So here is what you can do instead:

config.update(dict(

vocab_size=keep_items+12,

d_model=64,

d_ff=256,

d_kv=8,

num_layers=8,

num_decoder_layers=8,

num_heads=4,

relative_attention_num_buckets=32,

))

The original "google/mt5-small" model file was 1.2GB. With the above changes we got it down to 126MB.

We can then half its size by converting the model to fp16 (or bf16) before saving it:

very_small_model.half()

very_small_model.save_pretrained(mname_very_small)

this takes us to 64M file.

So you could stop here and your program will start much much faster already.

And there is one more step you could do to make it truly tiny.

What we haven’t shrunken so far is the vocabulary dimension so 64x250k (hidden*vocab) is still huge. Granted this 250k
vocab model is not typical - normally models models’ vocab is ~30-50k, but even 30k is a lot if we want the model to be
truly tiny.

So next we will look into various techniques to shrinking the tokenizer, as it defines our vocab size.
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Making a tiny tokenizer
This task varies between a relatively simple procedure and a much more complex workout depending on the underlying
tokenizer.

The following recipes have come from a few awesome tokenizer experts at Hugging Face, which I then adapted to my
needs.

You probably don’t really need to understand how these work until you actually need them, therefore if you’re reading
this for the first time you can safely jump over these to Making a tiny model with a tiny tokenizer.

Anthony Moi’s version
Anthony Moi’s tokenizer shrinker:

import json

from transformers import AutoTokenizer

from tokenizers import Tokenizer

vocab_keep_items = 5000

mname = "microsoft/deberta-base"

tokenizer = AutoTokenizer.from_pretrained(mname, use_fast=True)

assert tokenizer.is_fast, "This only works for fast tokenizers."

tokenizer_json = json.loads(tokenizer._tokenizer.to_str())

vocab = tokenizer_json["model"]["vocab"]

if tokenizer_json["model"]["type"] == "BPE":

new_vocab = { token: i for token, i in vocab.items() if i < vocab_keep_items }

merges = tokenizer_json["model"]["merges"]

new_merges = []

for i in range(len(merges)):

a, b = merges[i].split()

new_token = "".join((a, b))

if a in new_vocab and b in new_vocab and new_token in new_vocab:

new_merges.append(merges[i])

tokenizer_json["model"]["merges"] = new_merges

elif tokenizer_json["model"]["type"] == "Unigram":

new_vocab = vocab[:vocab_keep_items]

elif tokenizer_json["model"]["type"] == "WordPiece" or tokenizer_json["model"]["type"] == "WordLevel":

new_vocab = { token: i for token, i in vocab.items() if i < vocab_keep_items }

else:

raise ValueError(f"don’t know how to handle {tokenizer_json[’model’][’type’]}")

tokenizer_json["model"]["vocab"] = new_vocab

tokenizer._tokenizer = Tokenizer.from_str(json.dumps(tokenizer_json))

tokenizer.save_pretrained(".")

I later discovered that gpt2 seems to have a special token "<|endoftext|>" stashed at the very end of the vocab, so it gets
dropped and code breaks. So I hacked it back in with:

if "gpt2" in mname:
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new_vocab = { token: i for token, i in vocab.items() if i < vocab_keep_items-1 }

new_vocab["<|endoftext|>"] = vocab_keep_items-1

else:

new_vocab = { token: i for token, i in vocab.items() if i < vocab_keep_items }

Lysandre Debut’s version
Lysandre Debut’ shrinker using train_new_from_iterator:

from transformers import AutoTokenizer

mname = "microsoft/deberta-base" # or any checkpoint that has a fast tokenizer.

vocab_keep_items = 5000

tokenizer = AutoTokenizer.from_pretrained(mname)

assert tokenizer.is_fast, "This only works for fast tokenizers."

tokenizer.save_pretrained("big-tokenizer")

# Should be a generator of list of texts.

training_corpus = [

["This is the first sentence.", "This is the second one."],

["This sentence (contains #) over symbols and numbers 12 3.", "But not this one."],

]

new_tokenizer = tokenizer.train_new_from_iterator(training_corpus, vocab_size=vocab_keep_items)

new_tokenizer.save_pretrained("small-tokenizer")

but this one requires a training corpus, so I had an idea to cheat and train the new tokenizer on its own original vocab
which gave me:

from transformers import AutoTokenizer

mname = "microsoft/deberta-base"

vocab_keep_items = 5000

tokenizer = AutoTokenizer.from_pretrained(mname)

assert tokenizer.is_fast, "This only works for fast tokenizers."

vocab = tokenizer.get_vocab()

training_corpus = [ vocab.keys() ] # Should be a generator of list of texts.

new_tokenizer = tokenizer.train_new_from_iterator(training_corpus, vocab_size=vocab_keep_items)

new_tokenizer.save_pretrained("small-tokenizer")

which is almost perfect, except it now doesn’t have any information about the frequency for each word/char (that’s how
most tokenizers compute their vocab, which if you need this info you can fix by having each key appearing len(vocab) -

ID times, i.e.:

training_corpus = [ (k for i in range(vocab_len-v)) for k,v in vocab.items() ]
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which will make the script much much longer to complete.

But for the needs of a tiny model (testing) the frequency doesn’t matter at all.

Hack the tokenizer file approach
Some tokenizers can be be just manually truncated at the file level, e.g. let’s shrink Llama2’s tokenizer to 3k items:

# Shrink the orig vocab to keep things small (just enough to tokenize any word, so letters+symbols)

# ElectraTokenizerFast is fully defined by a tokenizer.json, which contains the vocab and the ids,

# so we just need to truncate it wisely

import subprocess

import shlex

from transformers import LlamaTokenizerFast

mname = "meta-llama/Llama-2-7b-hf"

vocab_keep_items = 3000

tokenizer_fast = LlamaTokenizerFast.from_pretrained(mname)

tmp_dir = f"/tmp/{mname}"

tokenizer_fast.save_pretrained(tmp_dir)

# resize tokenizer.json (vocab.txt will be automatically resized on save_pretrained)

# perl  -0777 -pi -e ’s|(2999).*|$1},"merges": []}}|msg’ tokenizer.json # 0-indexed, so

vocab_keep_items-1!

closing_pat = ’},"merges": []}}’

cmd = (f"perl -0777 -pi -e ’s|({vocab_keep_items-1}).*|$1{closing_pat}|msg’ {tmp_dir}/tokenizer.json")

#print(f"Running:\n{cmd}")

result = subprocess.run(shlex.split(cmd), capture_output=True, text=True)

# reload with modified tokenizer

tokenizer_fast_tiny = LlamaTokenizerFast.from_pretrained(tmp_dir)

tokenizer_fast_tiny.save_pretrained(".")

Please remember that the outcome is only useful for functional testing - not quality work.

Here is the full version of make_tiny_model.py which includes both the model and the tokenizer shrinking.

SentencePiece vocab shrinking
First clone SentencePiece into a parent dir:

git clone https://github.com/google/sentencepiece

Now to the shrinking:

# workaround for fast tokenizer protobuf issue, and it’s much faster too!

os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"

from transformers import XLMRobertaTokenizerFast
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mname = "xlm-roberta-base"

# Shrink the orig vocab to keep things small

vocab_keep_items = 5000

tmp_dir = f"/tmp/{mname}"

vocab_orig_path = f"{tmp_dir}/sentencepiece.bpe.model" # this name can be different

vocab_short_path = f"{tmp_dir}/spiece-short.model"

# HACK: need the sentencepiece source to get sentencepiece_model_pb2, as it doesn’t get installed

sys.path.append("../sentencepiece/python/src/sentencepiece")

import sentencepiece_model_pb2 as model

tokenizer_orig = XLMRobertaTokenizerFast.from_pretrained(mname)

tokenizer_orig.save_pretrained(tmp_dir)

with open(vocab_orig_path, ’rb’) as f: data = f.read()

# adapted from https://blog.ceshine.net/post/trim-down-sentencepiece-vocabulary/

m = model.ModelProto()

m.ParseFromString(data)

print(f"Shrinking vocab from original {len(m.pieces)} dict items")

for i in range(len(m.pieces) - vocab_keep_items): _ = m.pieces.pop()

print(f"new dict {len(m.pieces)}")

with open(vocab_short_path, ’wb’) as f: f.write(m.SerializeToString())

m = None

tokenizer_fast_tiny = XLMRobertaTokenizerFast(vocab_file=vocab_short_path)

tokenizer_fast_tiny.save_pretrained(".")

Making a tiny model with a tiny tokenizer
So now you can shrink the vocab size to as small as the tokenizer allows, that is you need to have at least enough tokens to
cover the target alphabet and special characters, and usually 3-5k tokens is more than enough. Sometimes you could make
it even small, after all the original ASCII charset has only 128 characters.

If we continue the MT5 code from earlier in this chapter and add the tokenizer shrinking code from the previous section,
we end up with this script mt5-make-tiny-model.py and when we run it - our end model file is truly tiny - 3.34 MB in
size! As you can see the script also has code to validate that the model can actually work with the modified tokenizer. The
results will be garbage, but the intention is to test that the new model and the tokenizer are functional.

Here is another example fsmt-make-super-tiny-model.py - here you can see I’m creating a totally new tiny vocab from
scratch.

I also recommend to always store the building scripts with the model, so that you could quickly fix things or make similar
versions of the model.

Also be aware that since HF transformers needs tiny models for their testing, you are very likely to already find one for
each architecture available mostly from https://huggingface.co/hf-internal-testing (except they didn’t include the code
of how they were made, but you can now figure it out based on these notes).

Another hint: if you need a slightly different tiny model, you can also start with an already existing tiny model and adapt
it instead. Since it’s random it’s really only about getting the right dimensions. For example if the tiny model you found
has 2 layers but you need 8, just resave it with this larger dimension and you’re done.

Making a tiny dataset
Similar to models and tokenizers it helps to have a handy tiny version of a dataset you work with a lot. As usual this won’t
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help with quality testing, but it’s perfect for launching your program really fast.

footnote: the impact of using a tiny dataset won’t be as massive as using a tiny model, if you’re using already pre-indexed
Arrow file datasets, since those are already extremely fast. But say you want the iterator to finish an epoch in 10 steps.
Instead of editing your code to truncate the dataset, you could just use a tiny dataset instead.

This process of making a tiny dataset is somewhat more difficult to explain because it’d depend on the builder of the
original model, which can be quite different from each other, but perhaps you can correlate my recipes to your datasets.

But the concept is still very simple:

1. Clone the full dataset git repo
2. Replace its full data tarball with a tiny one that contains just a few samples
3. Save it - Done!

Here are some examples:

• stas/oscar-en-10k
• stas/c4-en-10k
• stas/openwebtext-10k

In all of these I took the original tarball, grabbed the first 10k records, tarred it back, used this smaller tarball and that was
that. The rest of the builder script remained mostly the same.

And here are some examples of synthetic datasets, where instead of just shrinking the original tarball, I untar’ed it,
manually chose the representative examples and then wrote a script to build any size of desired dataset based on those
few representative samples:

• stas/general-pmd-synthetic-testing and the unpacker
• stas/cm4-synthetic-testing - and the unpacker

These are also the complex examples where each sample is more than a text entry, but may have multiple text entries and
images as well.

The unpacker is what expands each complex multi-record sample into its own sub-directory, so that now you can easily
go and tweak it to your liking. You can add image, remove them, make text records smaller, etc.. You will also notice that
I’m shrinking the large images into tiny 32x32 images, so again I’m applying the important principle of tiny across all
dimensions that don’t break the requirements of the target codebase.

And then the main script uses that structure to build a dataset of any desired length.

And here is for example the instructions of deploying these scripts for stas/general-pmd-synthetic-testing:

# prep dataset repo

https://huggingface.co/new-dataset => stas/general-pmd-synthetic-testing

git clone https://huggingface.co/datasets/stas/general-pmd-synthetic-testing

cd general-pmd-synthetic-testing

# select a few seed records so there is some longer and shorter text, records with images and without,

# a few variations of each type

rm -rf data

python general-pmd-ds-unpack.py --dataset_name_or_path \

general_pmd/image/localized_narratives__ADE20k/train/00000-00002 --ids 1-10 --target_path data

cd data

# shrink to 32x32 max, keeping ratio
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mogrify -format jpg -resize 32x32\> */*jpg

# adjust one record to have no image and no text

cd 1

rm image.jpg text.txt

touch image.null text.null

cd -

cd ..

# create tarball

tar -cvzf data.tar.gz data

# complete the dataset repo

echo "This dataset is designed to be used in testing. It’s derived from general-pmd/

localized_narratives__ADE20k \

dataset" >> README.md

# test dataset

cd ..

datasets-cli test general-pmd-synthetic-testing/general-pmd-synthetic-testing.py --all_configs

I also recommend to always store the building scripts with the dataset, so that you could quickly fix things or make similar
versions of the dataset.

Similar to tiny models, you will find many tiny datasets under https://huggingface.co/hf-internal-testing.

Conclusion
While in the domain of ML we have the dataset, the model and the tokenizer - each of which can be made tiny and enable
super-speed development with low resource requirements, if you’re coming from a different industry you can adapt the
ideas discussed in this chapter to your particular domain’s artifacts/payloads.

Backup of all scripts in this chapter
Should the original scripts this chapter is pointing to disappear or the HF hub is down while you’re reading this, here is
the local back up of all of them.

note-to-self: to make the latest backup of files linked to in this chapter run:

perl -lne ’while (/(https.*?.py)\)/g) { $x=$1; $x=~s/blob/raw/; print qq[wget $x] }’ make-tiny-models.md
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Re-train Hub Models From Scratch Using
Finetuning Examples

HF Transformers has awesome finetuning examples https://github.com/huggingface/transformers/tree/main/
examples/pytorch, that cover pretty much any modality and these examples work out of box.

But what if you wanted to re-train from scratch rather than finetune.But what if you wanted to re-train from scratch rather than finetune.

Here is a simple hack to accomplish that.

We will use facebook/opt-1.3b and we will plan to use bf16 training regime as an example here:

cat << EOT > prep-bf16.py

from transformers import AutoConfig, AutoModel, AutoTokenizer

import torch

mname = "facebook/opt-1.3b"

config = AutoConfig.from_pretrained(mname)

model = AutoModel.from_config(config, torch_dtype=torch.bfloat16)

tokenizer = AutoTokenizer.from_pretrained(mname)

path = "opt-1.3b-bf16"

model.save_pretrained(path)

tokenizer.save_pretrained(path)

EOT

now run:

python prep-bf16.py

This will create a folder: opt-1.3b-bf16 with everything you need to train the model from scratch. In other words you have
a pretrained-like model, except it only had its initializations done and none of the training yet.

Adjust to script above to use torch.float16 or torch.float32 if that’s what you plan to use instead.

Now you can proceed with finetuning this saved model as normal:

python -m torch.distributed.run \

--nproc_per_node=1 --nnode=1 --node_rank=0 \

--master_addr=127.0.0.1 --master_port=9901 \

examples/pytorch/language-modeling/run_clm.py --bf16 \

--seed 42 --model_name_or_path opt-1.3b-bf16 \

--dataset_name wikitext --dataset_config_name wikitext-103-raw-v1 \

--per_device_train_batch_size 12 --per_device_eval_batch_size 12 \

212



--gradient_accumulation_steps 1 --do_train --do_eval --logging_steps 10 \

--save_steps 1000 --eval_steps 100 --weight_decay 0.1 --num_train_epochs 1 \

--adam_beta1 0.9 --adam_beta2 0.95 --learning_rate 0.0002 --lr_scheduler_type \

linear --warmup_steps 500 --report_to tensorboard --output_dir save_dir

The key entry being:

--model_name_or_path opt-1.3b-bf16

where opt-1.3b-bf16 is your local directory you have just generated in the previous step.

Sometimes it’s possible to find the same dataset that the original model was trained on, sometimes you have to use an
alternative dataset.

The rest of the hyper-parameters can often be found in the paper or documentation that came with the model.

To summarize, this recipe allows you to use finetuning examples to re-train whatever model you can find on the hub.
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A Back up of scripts

This is a backup of scripts discussed in Faster debug and development with tiny models, tokenizers and datasets.

• c4-en-10k.py
• cm4-synthetic-testing.py
• fsmt-make-super-tiny-model.py
• general-pmd-ds-unpack.py
• general-pmd-synthetic-testing.py
• m4-ds-unpack.py
• mt5-make-tiny-model.py
• openwebtext-10k.py
• oscar-en-10k.py
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Resources

Publicly available training LLM/VLM logbooks
Logbooks and chronicles of training LLM/VLM are one of the best sources to learn from about dealing with training
instabilities and choosing good hyper parameters.

If you know of a public LLM/VLM training logbook that is not on this list please kindly let me know or add it via a PR.
Thank you!

The listing is in no particular order other than being grouped by the year.

2021
• BigScience pre-BLOOM 108B training experiments (2021): chronicles | the full spec and discussions (backup: 1 | 2)

2022
• BigScience BLOOM-176B (2022): chronicles-prequel | chronicles | the full spec and discussions (backup: 1 | 2 | 3)

• Meta OPT-175B (2022): logbook | Video (backup: 1)

• THUDM GLM-130B (2022): en logbook | Mandarin version (backup: 1 | 2)

2023
• HuggingFace IDEFICS-80B multimodal (Flamingo repro) (2023): Learning log | Training Chronicles (backup: 1 | 2)

• BloombergGPT 50B LLM - section C in BloombergGPT: A Large Language Model for Finance
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Book Building

Important: this is still a WIP - it mostly works, but stylesheets need some work to make the pdf really nice. Should be
complete in a few weeks.

This document assumes you’re working from the root of the repo.

Installation requirements
1. Install python packages used during book build

pip install -r build/requirements.txt

2. Download the free version of Prince XML. It’s used to build the pdf version of this book.

Build html

make html

Build pdf

make pdf

It will first build the html target and then will use it to build the pdf version.

Check links and anchors
To validate that all local links and anchored links are valid run:

make check-links-local

To additionally also check external links

make check-links-all

use the latter sparingly to avoid being banned for hammering servers.

Move md files/dirs and adjust relative links
e.g. slurm => orchestration/slurm
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src=slurm

dst=orchestration/slurm

mkdir -p orchestration

git mv $src $dst

perl -pi -e "s|$src|$dst|" chapters-md.txt

python build/mdbook/mv-links.py $src $dst

git checkout $dst

make check-links-local
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