starriver030515 commited on
Commit
bd4d522
·
verified ·
1 Parent(s): 6d5fb0d

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .devcontainer/Dockerfile +53 -0
  2. .devcontainer/devcontainer.env +2 -0
  3. .devcontainer/devcontainer.json +71 -0
  4. .devcontainer/postCreateCommand.sh +45 -0
  5. .editorconfig +18 -0
  6. .gitattributes +96 -35
  7. .github/ISSUE_TEMPLATE/1-usage.yaml +31 -0
  8. .github/ISSUE_TEMPLATE/2-feature-request.yaml +13 -0
  9. .github/ISSUE_TEMPLATE/3-question.yaml +13 -0
  10. .github/ISSUE_TEMPLATE/4-discussion.yaml +13 -0
  11. LICENSE +201 -0
  12. README.md +460 -0
  13. accuracy_scores.txt +140 -0
  14. checkpoints_ft/.gitattributes +55 -0
  15. checkpoints_ft/coco_gen_200k/llava-v1.5-13b-pretrain/config.json +46 -0
  16. checkpoints_ft/coco_gen_200k/llava-v1.5-13b-pretrain/mm_projector.bin +3 -0
  17. checkpoints_ft/coco_gen_200k/llava-v1.5-13b-pretrain/trainer_state.json +0 -0
  18. checkpoints_ft/coco_gen_558k/llava-v1.5-13b-pretrain/config.json +46 -0
  19. checkpoints_ft/coco_gen_558k/llava-v1.5-13b-pretrain/mm_projector.bin +3 -0
  20. checkpoints_ft/coco_gen_558k/llava-v1.5-13b-pretrain/trainer_state.json +0 -0
  21. checkpoints_ft/coco_raw_200k/llava-v1.5-13b-pretrain/config.json +46 -0
  22. checkpoints_ft/coco_raw_200k/llava-v1.5-13b-pretrain/mm_projector.bin +3 -0
  23. checkpoints_ft/coco_raw_200k/llava-v1.5-13b-pretrain/trainer_state.json +0 -0
  24. checkpoints_ft/coco_raw_558k/llava-v1.5-13b-pretrain/config.json +46 -0
  25. checkpoints_ft/coco_raw_558k/llava-v1.5-13b-pretrain/mm_projector.bin +3 -0
  26. checkpoints_ft/coco_raw_558k/llava-v1.5-13b-pretrain/trainer_state.json +0 -0
  27. checkpoints_ft/coco_select_200k/llava-v1.5-13b-pretrain/config.json +46 -0
  28. checkpoints_ft/coco_select_200k/llava-v1.5-13b-pretrain/mm_projector.bin +3 -0
  29. checkpoints_ft/coco_select_200k/llava-v1.5-13b-pretrain/trainer_state.json +0 -0
  30. checkpoints_ft/llava_coco_gen_758k/llava-v1.5-13b-pretrain/config.json +46 -0
  31. checkpoints_ft/llava_coco_gen_758k/llava-v1.5-13b-pretrain/mm_projector.bin +3 -0
  32. checkpoints_ft/llava_coco_gen_758k/llava-v1.5-13b-pretrain/trainer_state.json +0 -0
  33. checkpoints_ft/llava_coco_raw_758k/llava-v1.5-13b-pretrain/config.json +46 -0
  34. checkpoints_ft/llava_coco_raw_758k/llava-v1.5-13b-pretrain/mm_projector.bin +3 -0
  35. checkpoints_ft/llava_coco_raw_758k/llava-v1.5-13b-pretrain/trainer_state.json +0 -0
  36. checkpoints_ft/llava_gen_200k/llava-v1.5-13b-pretrain/config.json +46 -0
  37. checkpoints_ft/llava_gen_200k/llava-v1.5-13b-pretrain/mm_projector.bin +3 -0
  38. checkpoints_ft/llava_gen_200k/llava-v1.5-13b-pretrain/trainer_state.json +0 -0
  39. checkpoints_ft/llava_gen_200k/llava-v1.5-7b-pretrain/config.json +45 -0
  40. checkpoints_ft/llava_gen_200k/llava-v1.5-7b-pretrain/mm_projector.bin +3 -0
  41. checkpoints_ft/llava_gen_200k/llava-v1.5-7b-pretrain/trainer_state.json +0 -0
  42. checkpoints_ft/llava_gen_200k/llava-v1.5-7b/config.json +44 -0
  43. checkpoints_ft/llava_gen_200k/llava-v1.5-7b/trainer_state.json +0 -0
  44. checkpoints_ft/llava_gen_558k/llava-v1.5-13b-pretrain/config.json +46 -0
  45. checkpoints_ft/llava_gen_558k/llava-v1.5-13b-pretrain/mm_projector.bin +3 -0
  46. checkpoints_ft/llava_gen_558k/llava-v1.5-13b-pretrain/trainer_state.json +0 -0
  47. checkpoints_ft/llava_raw_200k/llava-v1.5-13b-pretrain/config.json +46 -0
  48. checkpoints_ft/llava_raw_200k/llava-v1.5-13b-pretrain/mm_projector.bin +3 -0
  49. checkpoints_ft/llava_raw_200k/llava-v1.5-13b-pretrain/trainer_state.json +0 -0
  50. checkpoints_ft/llava_raw_558k/llava-v1.5-13b-pretrain/config.json +46 -0
.devcontainer/Dockerfile ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM mcr.microsoft.com/devcontainers/base:ubuntu-20.04
2
+
3
+ SHELL [ "bash", "-c" ]
4
+
5
+ # update apt and install packages
6
+ RUN apt update && \
7
+ apt install -yq \
8
+ ffmpeg \
9
+ dkms \
10
+ build-essential
11
+
12
+ # add user tools
13
+ RUN sudo apt install -yq \
14
+ jq \
15
+ jp \
16
+ tree \
17
+ tldr
18
+
19
+ # add git-lfs and install
20
+ RUN curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash && \
21
+ sudo apt-get install -yq git-lfs && \
22
+ git lfs install
23
+
24
+ ############################################
25
+ # Setup user
26
+ ############################################
27
+
28
+ USER vscode
29
+
30
+ # install azcopy, a tool to copy to/from blob storage
31
+ # for more info: https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-blobs-upload#upload-a-file
32
+ RUN cd /tmp && \
33
+ wget https://azcopyvnext.azureedge.net/release20230123/azcopy_linux_amd64_10.17.0.tar.gz && \
34
+ tar xvf azcopy_linux_amd64_10.17.0.tar.gz && \
35
+ mkdir -p ~/.local/bin && \
36
+ mv azcopy_linux_amd64_10.17.0/azcopy ~/.local/bin && \
37
+ chmod +x ~/.local/bin/azcopy && \
38
+ rm -rf azcopy_linux_amd64*
39
+
40
+ # Setup conda
41
+ RUN cd /tmp && \
42
+ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && \
43
+ bash ./Miniconda3-latest-Linux-x86_64.sh -b && \
44
+ rm ./Miniconda3-latest-Linux-x86_64.sh
45
+
46
+ # Install dotnet
47
+ RUN cd /tmp && \
48
+ wget https://dot.net/v1/dotnet-install.sh && \
49
+ chmod +x dotnet-install.sh && \
50
+ ./dotnet-install.sh --channel 7.0 && \
51
+ ./dotnet-install.sh --channel 3.1 && \
52
+ rm ./dotnet-install.sh
53
+
.devcontainer/devcontainer.env ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ SAMPLE_ENV_VAR1="Sample Value"
2
+ SAMPLE_ENV_VAR2=332431bf-68bf
.devcontainer/devcontainer.json ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "LLaVA",
3
+ "build": {
4
+ "dockerfile": "Dockerfile",
5
+ "context": "..",
6
+ "args": {}
7
+ },
8
+ "features": {
9
+ "ghcr.io/devcontainers/features/docker-in-docker:2": {},
10
+ "ghcr.io/devcontainers/features/azure-cli:1": {},
11
+ "ghcr.io/azure/azure-dev/azd:0": {},
12
+ "ghcr.io/devcontainers/features/powershell:1": {},
13
+ "ghcr.io/devcontainers/features/common-utils:2": {},
14
+ "ghcr.io/devcontainers-contrib/features/zsh-plugins:0": {},
15
+ },
16
+ // "forwardPorts": [],
17
+ "postCreateCommand": "bash ./.devcontainer/postCreateCommand.sh",
18
+ "customizations": {
19
+ "vscode": {
20
+ "settings": {
21
+ "python.analysis.autoImportCompletions": true,
22
+ "python.analysis.autoImportUserSymbols": true,
23
+ "python.defaultInterpreterPath": "~/miniconda3/envs/llava/bin/python",
24
+ "python.formatting.provider": "yapf",
25
+ "python.linting.enabled": true,
26
+ "python.linting.flake8Enabled": true,
27
+ "isort.check": true,
28
+ "dev.containers.copyGitConfig": true,
29
+ "terminal.integrated.defaultProfile.linux": "zsh",
30
+ "terminal.integrated.profiles.linux": {
31
+ "zsh": {
32
+ "path": "/usr/bin/zsh"
33
+ },
34
+ }
35
+ },
36
+ "extensions": [
37
+ "aaron-bond.better-comments",
38
+ "eamodio.gitlens",
39
+ "EditorConfig.EditorConfig",
40
+ "foxundermoon.shell-format",
41
+ "GitHub.copilot-chat",
42
+ "GitHub.copilot-labs",
43
+ "GitHub.copilot",
44
+ "lehoanganh298.json-lines-viewer",
45
+ "mhutchie.git-graph",
46
+ "ms-azuretools.vscode-docker",
47
+ "ms-dotnettools.dotnet-interactive-vscode",
48
+ "ms-python.flake8",
49
+ "ms-python.isort",
50
+ "ms-python.python",
51
+ "ms-python.vscode-pylance",
52
+ "njpwerner.autodocstring",
53
+ "redhat.vscode-yaml",
54
+ "stkb.rewrap",
55
+ "yzhang.markdown-all-in-one",
56
+ ]
57
+ }
58
+ },
59
+ "mounts": [],
60
+ "runArgs": [
61
+ "--gpus",
62
+ "all",
63
+ // "--ipc",
64
+ // "host",
65
+ "--ulimit",
66
+ "memlock=-1",
67
+ "--env-file",
68
+ ".devcontainer/devcontainer.env"
69
+ ],
70
+ // "remoteUser": "root"
71
+ }
.devcontainer/postCreateCommand.sh ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ git config --global safe.directory '*'
2
+ git config --global core.editor "code --wait"
3
+ git config --global pager.branch false
4
+
5
+ # Set AZCOPY concurrency to auto
6
+ echo "export AZCOPY_CONCURRENCY_VALUE=AUTO" >> ~/.zshrc
7
+ echo "export AZCOPY_CONCURRENCY_VALUE=AUTO" >> ~/.bashrc
8
+
9
+ # Activate conda by default
10
+ echo ". /home/vscode/miniconda3/bin/activate" >> ~/.zshrc
11
+ echo ". /home/vscode/miniconda3/bin/activate" >> ~/.bashrc
12
+
13
+ # Use llava environment by default
14
+ echo "conda activate llava" >> ~/.zshrc
15
+ echo "conda activate llava" >> ~/.bashrc
16
+
17
+ # Add dotnet to PATH
18
+ echo 'export PATH="$PATH:$HOME/.dotnet"' >> ~/.bashrc
19
+ echo 'export PATH="$PATH:$HOME/.dotnet"' >> ~/.zshrc
20
+
21
+ # Create and activate llava environment
22
+ source /home/vscode/miniconda3/bin/activate
23
+ conda create -y -q -n llava python=3.10
24
+ conda activate llava
25
+
26
+ # Install Nvidia Cuda Compiler
27
+ conda install -y -c nvidia cuda-compiler
28
+
29
+ pip install pre-commit==3.0.2
30
+
31
+ # Install package locally
32
+ pip install --upgrade pip # enable PEP 660 support
33
+ pip install -e .
34
+
35
+ # Install additional packages for training
36
+ pip install -e ".[train]"
37
+ pip install flash-attn --no-build-isolation
38
+
39
+ # Download checkpoints to location outside of the repo
40
+ git clone https://huggingface.co/liuhaotian/llava-v1.5-7b ~/llava-v1.5-7b
41
+
42
+ # Commented because it is unlikely for users to have enough local GPU memory to load the model
43
+ # git clone https://huggingface.co/liuhaotian/llava-v1.5-13b ~/llava-v1.5-13b
44
+
45
+ echo "postCreateCommand.sh COMPLETE!"
.editorconfig ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ root = true
2
+
3
+ # Unix-style newlines with a newline ending every file
4
+ [*]
5
+ end_of_line = lf
6
+ insert_final_newline = true
7
+ trim_trailing_whitespace = true
8
+ charset = utf-8
9
+
10
+ # 4 space indentation
11
+ [*.{py,json}]
12
+ indent_style = space
13
+ indent_size = 4
14
+
15
+ # 2 space indentation
16
+ [*.{md,sh,yaml,yml}]
17
+ indent_style = space
18
+ indent_size = 2
.gitattributes CHANGED
@@ -1,35 +1,96 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://git-scm.com/docs/gitattributes
2
+
3
+ # Set the default behavior, in case people don't have core.autocrlf set.
4
+ # https://git-scm.com/docs/gitattributes#_end_of_line_conversion
5
+ * text=auto
6
+
7
+ # common python attributes, taken from https://github.com/alexkaratarakis/gitattributes/blob/710900479a2bedeec7003d381719521ffbb18bf8/Python.gitattributes
8
+ # Source files
9
+ # ============
10
+ *.pxd text diff=python
11
+ *.py text diff=python
12
+ *.py3 text diff=python
13
+ *.pyw text diff=python
14
+ *.pyx text diff=python
15
+ *.pyz text diff=python
16
+ *.pyi text diff=python
17
+
18
+ # Binary files
19
+ # ============
20
+ *.db binary
21
+ *.p binary
22
+ *.pkl binary
23
+ *.pickle binary
24
+ *.pyc binary export-ignore
25
+ *.pyo binary export-ignore
26
+ *.pyd binary
27
+
28
+ # Jupyter notebook
29
+ *.ipynb text eol=lf
30
+ checkpoints_ft/coco_gen_200k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
31
+ checkpoints_ft/coco_gen_558k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
32
+ checkpoints_ft/coco_raw_200k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
33
+ checkpoints_ft/coco_raw_558k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
34
+ checkpoints_ft/coco_select_200k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
35
+ checkpoints_ft/llava_coco_gen_758k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
36
+ checkpoints_ft/llava_coco_raw_758k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
37
+ checkpoints_ft/llava_gen_200k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
38
+ checkpoints_ft/llava_gen_200k/llava-v1.5-7b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
39
+ checkpoints_ft/llava_gen_558k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
40
+ checkpoints_ft/llava_raw_200k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
41
+ checkpoints_ft/llava_raw_558k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
42
+ checkpoints_ft/llava_raw_558k/llava-v1.5-7b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
43
+ checkpoints_ft/pure_gen_200k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
44
+ checkpoints_ft/pure_gen_558k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
45
+ checkpoints_ft/random/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
46
+ checkpoints_ft/select_gen_100k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
47
+ checkpoints_ft/select_gen_100k/llava-v1.5-7b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
48
+ checkpoints_ft/select_gen_200k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
49
+ checkpoints_ft/select_raw_100k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
50
+ checkpoints_ft/select_raw_100k/llava-v1.5-7b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
51
+ checkpoints_ft/select_raw_200k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
52
+ checkpoints_ft/sharegpt4v_100k/llava-v1.5-7b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
53
+ checkpoints_pt/coco_gen_200k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
54
+ checkpoints_pt/coco_gen_558k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
55
+ checkpoints_pt/coco_raw_200k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
56
+ checkpoints_pt/coco_raw_558k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
57
+ checkpoints_pt/coco_select_200k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
58
+ checkpoints_pt/llava_coco_gen_758k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
59
+ checkpoints_pt/llava_coco_raw_758k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
60
+ checkpoints_pt/llava_gen_200k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
61
+ checkpoints_pt/llava_raw_200k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
62
+ checkpoints_pt/llava_raw_558k/llava-v1.5-13b-pretrain/mm_projector.bin filter=lfs diff=lfs merge=lfs -text
63
+ images/demo_cli.gif filter=lfs diff=lfs merge=lfs -text
64
+ playground/data/LLaVA-Pretrain/coco_annotations_500k.json filter=lfs diff=lfs merge=lfs -text
65
+ playground/data/LLaVA-Pretrain/coco_gen_200k.json filter=lfs diff=lfs merge=lfs -text
66
+ playground/data/LLaVA-Pretrain/coco_gen_200k_2.json filter=lfs diff=lfs merge=lfs -text
67
+ playground/data/LLaVA-Pretrain/coco_raw_200k.json filter=lfs diff=lfs merge=lfs -text
68
+ playground/data/LLaVA-Pretrain/llava_coco_gen_758k.json filter=lfs diff=lfs merge=lfs -text
69
+ playground/data/LLaVA-Pretrain/llava_coco_raw_758k.json filter=lfs diff=lfs merge=lfs -text
70
+ playground/data/LLaVA-Pretrain/llava_gen_200k.json filter=lfs diff=lfs merge=lfs -text
71
+ playground/data/LLaVA-Pretrain/llava_gen_558k.json filter=lfs diff=lfs merge=lfs -text
72
+ playground/data/LLaVA-Pretrain/llava_raw_200k.json filter=lfs diff=lfs merge=lfs -text
73
+ playground/data/LLaVA-Pretrain/llava_raw_558k.json filter=lfs diff=lfs merge=lfs -text
74
+ playground/data/LLaVA-Pretrain/mixed_200k.json filter=lfs diff=lfs merge=lfs -text
75
+ playground/data/LLaVA-Pretrain/select_gen_100k.json filter=lfs diff=lfs merge=lfs -text
76
+ playground/data/LLaVA-Pretrain/select_gen_200k.json filter=lfs diff=lfs merge=lfs -text
77
+ playground/data/LLaVA-Pretrain/select_mscoco_200k.json filter=lfs diff=lfs merge=lfs -text
78
+ playground/data/LLaVA-Pretrain/select_raw_100k.json filter=lfs diff=lfs merge=lfs -text
79
+ playground/data/LLaVA-Pretrain/select_raw_200k.json filter=lfs diff=lfs merge=lfs -text
80
+ playground/data/LLaVA-Pretrain/sharegpt4v_100k.json filter=lfs diff=lfs merge=lfs -text
81
+ playground/data/LLaVA-Pretrain/sharegpt4v_instruct_gpt4-vision_cap100k.json filter=lfs diff=lfs merge=lfs -text
82
+ playground/data/eval/gqa/data/challenge_all_questions.json filter=lfs diff=lfs merge=lfs -text
83
+ playground/data/eval/gqa/data/submission_all_questions.json filter=lfs diff=lfs merge=lfs -text
84
+ playground/data/eval/gqa/data/test_all_questions.json filter=lfs diff=lfs merge=lfs -text
85
+ playground/data/eval/gqa/data/test_balanced_questions.json filter=lfs diff=lfs merge=lfs -text
86
+ playground/data/eval/gqa/data/testdev_all_questions.json filter=lfs diff=lfs merge=lfs -text
87
+ playground/data/eval/gqa/data/testdev_balanced_questions.json filter=lfs diff=lfs merge=lfs -text
88
+ playground/data/eval/gqa/data/train_balanced_questions.json filter=lfs diff=lfs merge=lfs -text
89
+ playground/data/eval/gqa/data/val_all_questions.json filter=lfs diff=lfs merge=lfs -text
90
+ playground/data/eval/gqa/data/val_balanced_questions.json filter=lfs diff=lfs merge=lfs -text
91
+ playground/data/eval/gqa/data/val_choices.json filter=lfs diff=lfs merge=lfs -text
92
+ playground/data/llava_v1_5_mix200k.json filter=lfs diff=lfs merge=lfs -text
93
+ playground/data/llava_v1_5_mix665k.json filter=lfs diff=lfs merge=lfs -text
94
+ playground/data/llava_v1_5_mix865k.json filter=lfs diff=lfs merge=lfs -text
95
+ playground/data/llava_v1_5_mix865k_2.json filter=lfs diff=lfs merge=lfs -text
96
+ playground/data/mscoco_200k.json filter=lfs diff=lfs merge=lfs -text
.github/ISSUE_TEMPLATE/1-usage.yaml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Usage issues
2
+ description: Report issues in usage.
3
+ title: "[Usage] "
4
+ body:
5
+ - type: markdown
6
+ attributes:
7
+ value: |
8
+ Thanks for taking the time to fill out this form. Please give as detailed description as possible for us to better assist with the issue :)
9
+ - type: textarea
10
+ id: what-happened
11
+ attributes:
12
+ label: Describe the issue
13
+ description: Please give as detailed description as possible for us to better assist with the issue. Please paste the **FULL** error log here, so that we can better understand the issue. Wrap the log with ``` for better readability in GitHub.
14
+ placeholder: Issue
15
+ value: |
16
+ Issue:
17
+
18
+ Command:
19
+ ```
20
+ PASTE THE COMMANDS HERE.
21
+ ```
22
+
23
+ Log:
24
+ ```
25
+ PASTE THE LOGS HERE.
26
+ ```
27
+
28
+ Screenshots:
29
+ You may attach screenshots if it better explains the issue.
30
+ validations:
31
+ required: true
.github/ISSUE_TEMPLATE/2-feature-request.yaml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Feature Request
2
+ description: Request for a new feature
3
+ title: "[Feature request] "
4
+ body:
5
+ - type: markdown
6
+ attributes:
7
+ value: |
8
+ Thanks for your interest in our work. Please share your thoughts of the new features below.
9
+ - type: textarea
10
+ id: feature
11
+ attributes:
12
+ label: feature
13
+ placeholder: Start your thoughts here...
.github/ISSUE_TEMPLATE/3-question.yaml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Questions
2
+ description: General questions about the work
3
+ title: "[Question] "
4
+ body:
5
+ - type: markdown
6
+ attributes:
7
+ value: |
8
+ Thanks for your interest in our work. For this type of question, it may be more suitable to go to [discussion](https://github.com/haotian-liu/LLaVA/discussions) sections. If you believe an issue would be better for your request, please continue your post below :)
9
+ - type: textarea
10
+ id: question
11
+ attributes:
12
+ label: Question
13
+ placeholder: Start question here...
.github/ISSUE_TEMPLATE/4-discussion.yaml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Discussions
2
+ description: General discussions about the work
3
+ title: "[Discussion] "
4
+ body:
5
+ - type: markdown
6
+ attributes:
7
+ value: |
8
+ Thanks for your interest in our work. For this type of question, it may be more suitable to go to [discussion](https://github.com/haotian-liu/LLaVA/discussions) sections. If you believe an issue would be better for your request, please continue your post below :)
9
+ - type: textarea
10
+ id: discussion
11
+ attributes:
12
+ label: Discussion
13
+ placeholder: Start discussion here...
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md ADDED
@@ -0,0 +1,460 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🌋 LLaVA: Large Language and Vision Assistant
2
+
3
+ *Visual instruction tuning towards large language and vision models with GPT-4 level capabilities.*
4
+
5
+ [📢 [LLaVA-NeXT Blog](https://llava-vl.github.io/blog/2024-01-30-llava-next/)] [[Project Page](https://llava-vl.github.io/)] [[Demo](https://llava.hliu.cc/)] [[Data](https://github.com/haotian-liu/LLaVA/blob/main/docs/Data.md)] [[Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)]
6
+
7
+ 🤝Community Contributions: [[llama.cpp](https://github.com/ggerganov/llama.cpp/pull/3436)] [[Colab](https://github.com/camenduru/LLaVA-colab)] [[🤗Space](https://huggingface.co/spaces/badayvedat/LLaVA)] [[Replicate](https://replicate.com/yorickvp/llava-13b)] [[AutoGen](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_lmm_llava.ipynb)] [[BakLLaVA](https://github.com/SkunkworksAI/BakLLaVA)]
8
+
9
+ **Improved Baselines with Visual Instruction Tuning** [[Paper](https://arxiv.org/abs/2310.03744)] [[HF](https://huggingface.co/papers/2310.03744)] <br>
10
+ [Haotian Liu](https://hliu.cc), [Chunyuan Li](https://chunyuan.li/), [Yuheng Li](https://yuheng-li.github.io/), [Yong Jae Lee](https://pages.cs.wisc.edu/~yongjaelee/)
11
+
12
+ **Visual Instruction Tuning** (NeurIPS 2023, **Oral**) [[Paper](https://arxiv.org/abs/2304.08485)] [[HF](https://huggingface.co/papers/2304.08485)] <br>
13
+ [Haotian Liu*](https://hliu.cc), [Chunyuan Li*](https://chunyuan.li/), [Qingyang Wu](https://scholar.google.ca/citations?user=HDiw-TsAAAAJ&hl=en/), [Yong Jae Lee](https://pages.cs.wisc.edu/~yongjaelee/) (*Equal Contribution)
14
+
15
+ <!--p align="center">
16
+ <a href="https://llava.hliu.cc/"><img src="images/llava_logo.png" width="50%"></a> <br>
17
+ Generated by <a href="https://gligen.github.io/">GLIGEN</a> via "a cute lava llama with glasses" and box prompt
18
+ </p-->
19
+
20
+
21
+ ## Release
22
+ - [03/10] Releasing **LMMs-Eval**, a highly efficient evaluation pipeline we used when developing LLaVA-NeXT. It supports the evaluation of LMMs on dozens of public datasets and allows new dataset onboarding, making the dev of new LMMs much faster. [[Blog](https://lmms-lab.github.io/lmms-eval-blog/lmms-eval-0.1/)] [[Codebase](https://github.com/EvolvingLMMs-Lab/lmms-eval)]
23
+ - [1/30] 🔥 LLaVA-NeXT (LLaVA-1.6) is out! With additional scaling to LLaVA-1.5, LLaVA-NeXT-34B outperforms Gemini Pro on some benchmarks. It can now process 4x more pixels and perform more tasks/applications than before. Check out the [blog post](https://llava-vl.github.io/blog/2024-01-30-llava-next/), and explore the [demo](https://llava.hliu.cc/)! Models are available in [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md). Training/eval data and scripts coming soon.
24
+ - [11/10] [LLaVA-Plus](https://llava-vl.github.io/llava-plus/) is released: Learning to Use Tools for Creating Multimodal Agents, with LLaVA-Plus (LLaVA that Plug and Learn to Use Skills). [[Project Page](https://llava-vl.github.io/llava-plus/)] [[Demo](https://llavaplus.ngrok.io/)] [[Code](https://github.com/LLaVA-VL/LLaVA-Plus-Codebase)] [[Paper](https://arxiv.org/abs/2311.05437)]
25
+ - [11/2] [LLaVA-Interactive](https://llava-vl.github.io/llava-interactive/) is released: Experience the future of human-AI multimodal interaction with an all-in-one demo for Image Chat, Segmentation, Generation and Editing. [[Project Page](https://llava-vl.github.io/llava-interactive/)] [[Demo](https://llavainteractive.ngrok.io/)] [[Code](https://github.com/LLaVA-VL/LLaVA-Interactive-Demo)] [[Paper](https://arxiv.org/abs/2311.00571)]
26
+ - [10/26] 🔥 LLaVA-1.5 with LoRA achieves comparable performance as full-model finetuning, with a reduced GPU RAM requirement ([ckpts](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md#llava-v15), [script](https://github.com/haotian-liu/LLaVA#train)). We also provide a [doc](https://github.com/haotian-liu/LLaVA/blob/main/docs/Finetune_Custom_Data.md) on how to finetune LLaVA-1.5 on your own dataset with LoRA.
27
+ - [10/12] Check out the Korean LLaVA (Ko-LLaVA), created by ETRI, who has generously supported our research! [[🤗 Demo](https://huggingface.co/spaces/etri-vilab/Ko-LLaVA)]
28
+ - [10/5] 🔥 LLaVA-1.5 is out! Achieving SoTA on 11 benchmarks, with just simple modifications to the original LLaVA, utilizes all public data, completes training in ~1 day on a single 8-A100 node, and surpasses methods like Qwen-VL-Chat that use billion-scale data. Check out the [technical report](https://arxiv.org/abs/2310.03744), and explore the [demo](https://llava.hliu.cc/)! Models are available in [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md). The training data and scripts of LLaVA-1.5 are released [here](https://github.com/haotian-liu/LLaVA#train), and evaluation scripts are released [here](https://github.com/haotian-liu/LLaVA/blob/main/docs/Evaluation.md)!
29
+ - [9/26] LLaVA is improved with reinforcement learning from human feedback (RLHF) to improve fact grounding and reduce hallucination. Check out the new SFT and RLHF checkpoints at project [[LLavA-RLHF]](https://llava-rlhf.github.io/)
30
+ - [9/22] [LLaVA](https://arxiv.org/abs/2304.08485) is accepted by NeurIPS 2023 as **oral presentation**, and [LLaVA-Med](https://arxiv.org/abs/2306.00890) is accepted by NeurIPS 2023 Datasets and Benchmarks Track as **spotlight presentation**.
31
+
32
+ <details>
33
+ <summary>More</summary>
34
+
35
+ - [11/6] Support **Intel** dGPU and CPU platforms. [More details here.](https://github.com/haotian-liu/LLaVA/tree/intel/docs/intel)
36
+ - [10/12] LLaVA is now supported in [llama.cpp](https://github.com/ggerganov/llama.cpp/pull/3436) with 4-bit / 5-bit quantization support!
37
+ - [10/11] The training data and scripts of LLaVA-1.5 are released [here](https://github.com/haotian-liu/LLaVA#train), and evaluation scripts are released [here](https://github.com/haotian-liu/LLaVA/blob/main/docs/Evaluation.md)!
38
+ - [10/10] [Roboflow Deep Dive](https://blog.roboflow.com/first-impressions-with-llava-1-5/): First Impressions with LLaVA-1.5.
39
+ - [9/20] We summarize our empirical study of training 33B and 65B LLaVA models in a [note](https://arxiv.org/abs/2309.09958). Further, if you are interested in the comprehensive review, evolution and trend of multimodal foundation models, please check out our recent survey paper [``Multimodal Foundation Models: From Specialists to General-Purpose Assistants''.](https://arxiv.org/abs/2309.10020)
40
+ <p align="center">
41
+ <img src="https://github.com/Computer-Vision-in-the-Wild/CVinW_Readings/blob/main/images/mfm_evolution.jpeg?raw=true" width=50%/>
42
+ </p>
43
+
44
+ - [7/19] 🔥 We release a major upgrade, including support for LLaMA-2, LoRA training, 4-/8-bit inference, higher resolution (336x336), and a lot more. We release [LLaVA Bench](https://github.com/haotian-liu/LLaVA/blob/main/docs/LLaVA_Bench.md) for benchmarking open-ended visual chat with results from Bard and Bing-Chat. We also support and verify training with RTX 3090 and RTX A6000. Check out [LLaVA-from-LLaMA-2](https://github.com/haotian-liu/LLaVA/blob/main/docs/LLaVA_from_LLaMA2.md), and our [model zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)!
45
+ - [6/26] [CVPR 2023 Tutorial](https://vlp-tutorial.github.io/) on **Large Multimodal Models: Towards Building and Surpassing Multimodal GPT-4**! Please check out [[Slides](https://datarelease.blob.core.windows.net/tutorial/vision_foundation_models_2023/slides/Chunyuan_cvpr2023_tutorial_lmm.pdf)] [[Notes](https://arxiv.org/abs/2306.14895)] [[YouTube](https://youtu.be/mkI7EPD1vp8)] [[Bilibli](https://www.bilibili.com/video/BV1Ng4y1T7v3/)].
46
+ - [6/11] We released the preview for the most requested feature: DeepSpeed and LoRA support! Please see documentations [here](./docs/LoRA.md).
47
+ - [6/1] We released **LLaVA-Med: Large Language and Vision Assistant for Biomedicine**, a step towards building biomedical domain large language and vision models with GPT-4 level capabilities. Checkout the [paper](https://arxiv.org/abs/2306.00890) and [page](https://github.com/microsoft/LLaVA-Med).
48
+ - [5/6] We are releasing [LLaVA-Lighting-MPT-7B-preview](https://huggingface.co/liuhaotian/LLaVA-Lightning-MPT-7B-preview), based on MPT-7B-Chat! See [here](#LLaVA-MPT-7b) for more details.
49
+ - [5/2] 🔥 We are releasing LLaVA-Lighting! Train a lite, multimodal GPT-4 with just $40 in 3 hours! See [here](#train-llava-lightning) for more details.
50
+ - [4/27] Thanks to the community effort, LLaVA-13B with 4-bit quantization allows you to run on a GPU with as few as 12GB VRAM! Try it out [here](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/llava).
51
+ - [4/17] 🔥 We released **LLaVA: Large Language and Vision Assistant**. We propose visual instruction tuning, towards building large language and vision models with GPT-4 level capabilities. Checkout the [paper](https://arxiv.org/abs/2304.08485) and [demo](https://llava.hliu.cc/).
52
+
53
+ </details>
54
+
55
+ <!-- <a href="https://llava.hliu.cc/"><img src="assets/demo.gif" width="70%"></a> -->
56
+
57
+ [![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE)
58
+ **Usage and License Notices**: This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses, including but not limited to the [OpenAI Terms of Use](https://openai.com/policies/terms-of-use) for the dataset and the specific licenses for base language models for checkpoints trained using the dataset (e.g. [Llama community license](https://ai.meta.com/llama/license/) for LLaMA-2 and Vicuna-v1.5). This project does not impose any additional constraints beyond those stipulated in the original licenses. Furthermore, users are reminded to ensure that their use of the dataset and checkpoints is in compliance with all applicable laws and regulations.
59
+
60
+
61
+ ## Contents
62
+ - [Install](#install)
63
+ - [LLaVA Weights](#llava-weights)
64
+ - [Demo](#Demo)
65
+ - [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)
66
+ - [Dataset](https://github.com/haotian-liu/LLaVA/blob/main/docs/Data.md)
67
+ - [Train](#train)
68
+ - [Evaluation](#evaluation)
69
+
70
+ ## Install
71
+
72
+ If you are not using Linux, do *NOT* proceed, see instructions for [macOS](https://github.com/haotian-liu/LLaVA/blob/main/docs/macOS.md) and [Windows](https://github.com/haotian-liu/LLaVA/blob/main/docs/Windows.md).
73
+
74
+ 1. Clone this repository and navigate to LLaVA folder
75
+ ```bash
76
+ git clone https://github.com/haotian-liu/LLaVA.git
77
+ cd LLaVA
78
+ ```
79
+
80
+ 2. Install Package
81
+ ```Shell
82
+ conda create -n llava python=3.10 -y
83
+ conda activate llava
84
+ pip install --upgrade pip # enable PEP 660 support
85
+ pip install -e .
86
+ ```
87
+
88
+ 3. Install additional packages for training cases
89
+ ```
90
+ pip install -e ".[train]"
91
+ pip install flash-attn --no-build-isolation
92
+ ```
93
+
94
+ ### Upgrade to latest code base
95
+
96
+ ```Shell
97
+ git pull
98
+ pip install -e .
99
+
100
+ # if you see some import errors when you upgrade,
101
+ # please try running the command below (without #)
102
+ # pip install flash-attn --no-build-isolation --no-cache-dir
103
+ ```
104
+
105
+ ### Quick Start With HuggingFace
106
+
107
+ <details>
108
+ <summary>Example Code</summary>
109
+
110
+ ```Python
111
+ from llava.model.builder import load_pretrained_model
112
+ from llava.mm_utils import get_model_name_from_path
113
+ from llava.eval.run_llava import eval_model
114
+
115
+ model_path = "liuhaotian/llava-v1.5-7b"
116
+
117
+ tokenizer, model, image_processor, context_len = load_pretrained_model(
118
+ model_path=model_path,
119
+ model_base=None,
120
+ model_name=get_model_name_from_path(model_path)
121
+ )
122
+ ```
123
+
124
+ Check out the details wth the `load_pretrained_model` function in `llava/model/builder.py`.
125
+
126
+ You can also use the `eval_model` function in `llava/eval/run_llava.py` to get the output easily. By doing so, you can use this code on Colab directly after downloading this repository.
127
+
128
+ ``` python
129
+ model_path = "liuhaotian/llava-v1.5-7b"
130
+ prompt = "What are the things I should be cautious about when I visit here?"
131
+ image_file = "https://llava-vl.github.io/static/images/view.jpg"
132
+
133
+ args = type('Args', (), {
134
+ "model_path": model_path,
135
+ "model_base": None,
136
+ "model_name": get_model_name_from_path(model_path),
137
+ "query": prompt,
138
+ "conv_mode": None,
139
+ "image_file": image_file,
140
+ "sep": ",",
141
+ "temperature": 0,
142
+ "top_p": None,
143
+ "num_beams": 1,
144
+ "max_new_tokens": 512
145
+ })()
146
+
147
+ eval_model(args)
148
+ ```
149
+ </details>
150
+
151
+ ## LLaVA Weights
152
+ Please check out our [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md) for all public LLaVA checkpoints, and the instructions of how to use the weights.
153
+
154
+ ## Demo
155
+
156
+ ### Gradio Web UI
157
+
158
+ To launch a Gradio demo locally, please run the following commands one by one. If you plan to launch multiple model workers to compare between different checkpoints, you only need to launch the controller and the web server *ONCE*.
159
+
160
+ ```mermaid
161
+ flowchart BT
162
+ %% Declare Nodes
163
+ gws("Gradio (UI Server)")
164
+ c("Controller (API Server):<br/>PORT: 10000")
165
+ mw7b("Model Worker:<br/>llava-v1.5-7b<br/>PORT: 40000")
166
+ mw13b("Model Worker:<br/>llava-v1.5-13b<br/>PORT: 40001")
167
+ sglw13b("SGLang Backend:<br/>llava-v1.6-34b<br/>http://localhost:30000")
168
+ lsglw13b("SGLang Worker:<br/>llava-v1.6-34b<br/>PORT: 40002")
169
+
170
+ %% Declare Styles
171
+ classDef data fill:#3af,stroke:#48a,stroke-width:2px,color:#444
172
+ classDef success fill:#8f8,stroke:#0a0,stroke-width:2px,color:#444
173
+ classDef failure fill:#f88,stroke:#f00,stroke-width:2px,color:#444
174
+
175
+ %% Assign Styles
176
+ class id,od data;
177
+ class cimg,cs_s,scsim_s success;
178
+ class ncimg,cs_f,scsim_f failure;
179
+
180
+ subgraph Demo Connections
181
+ direction BT
182
+ c<-->gws
183
+
184
+ mw7b<-->c
185
+ mw13b<-->c
186
+ lsglw13b<-->c
187
+ sglw13b<-->lsglw13b
188
+ end
189
+ ```
190
+
191
+ #### Launch a controller
192
+ ```Shell
193
+ python -m llava.serve.controller --host 0.0.0.0 --port 10000
194
+ ```
195
+
196
+ #### Launch a gradio web server.
197
+ ```Shell
198
+ python -m llava.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload
199
+ ```
200
+ You just launched the Gradio web interface. Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker.
201
+
202
+ #### Launch a SGLang worker
203
+
204
+ This is the recommended way to serve LLaVA model with high throughput, and you need to install SGLang first. Note that currently `4-bit` quantization is not supported yet on SGLang-LLaVA, and if you have limited GPU VRAM, please check out model worker with [quantization](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#launch-a-model-worker-4-bit-8-bit-inference-quantized).
205
+
206
+ ```Shell
207
+ pip install "sglang[all]"
208
+ ```
209
+
210
+ You'll first launch a SGLang backend worker which will execute the models on GPUs. Remember the `--port` you've set and you'll use that later.
211
+
212
+ ```Shell
213
+ # Single GPU
214
+ CUDA_VISIBLE_DEVICES=0 python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --port 30000
215
+
216
+ # Multiple GPUs with tensor parallel
217
+ CUDA_VISIBLE_DEVICES=0,1 python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-13b --tokenizer-path llava-hf/llava-1.5-13b-hf --port 30000 --tp 2
218
+ ```
219
+
220
+ Tokenizers (temporary): `llava-hf/llava-1.5-7b-hf`, `llava-hf/llava-1.5-13b-hf`, `liuhaotian/llava-v1.6-34b-tokenizer`.
221
+
222
+ You'll then launch a LLaVA-SGLang worker that will communicate between LLaVA controller and SGLang backend to route the requests. Set `--sgl-endpoint` to `http://127.0.0.1:port` where `port` is the one you just set (default: 30000).
223
+
224
+ ```Shell
225
+ python -m llava.serve.sglang_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --sgl-endpoint http://127.0.0.1:30000
226
+ ```
227
+
228
+ #### Launch a model worker
229
+
230
+ This is the actual *worker* that performs the inference on the GPU. Each worker is responsible for a single model specified in `--model-path`.
231
+
232
+ ```Shell
233
+ python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b
234
+ ```
235
+ Wait until the process finishes loading the model and you see "Uvicorn running on ...". Now, refresh your Gradio web UI, and you will see the model you just launched in the model list.
236
+
237
+ You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the `--controller` the same, and modify the `--port` and `--worker` to a different port number for each worker.
238
+ ```Shell
239
+ python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port <different from 40000, say 40001> --worker http://localhost:<change accordingly, i.e. 40001> --model-path <ckpt2>
240
+ ```
241
+
242
+ If you are using an Apple device with an M1 or M2 chip, you can specify the mps device by using the `--device` flag: `--device mps`.
243
+
244
+ #### Launch a model worker (Multiple GPUs, when GPU VRAM <= 24GB)
245
+
246
+ If the VRAM of your GPU is less than 24GB (e.g., RTX 3090, RTX 4090, etc.), you may try running it with multiple GPUs. Our latest code base will automatically try to use multiple GPUs if you have more than one GPU. You can specify which GPUs to use with `CUDA_VISIBLE_DEVICES`. Below is an example of running with the first two GPUs.
247
+
248
+ ```Shell
249
+ CUDA_VISIBLE_DEVICES=0,1 python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b
250
+ ```
251
+
252
+ #### Launch a model worker (4-bit, 8-bit inference, quantized)
253
+
254
+ You can launch the model worker with quantized bits (4-bit, 8-bit), which allows you to run the inference with reduced GPU memory footprint, potentially allowing you to run on a GPU with as few as 12GB VRAM. Note that inference with quantized bits may not be as accurate as the full-precision model. Simply append `--load-4bit` or `--load-8bit` to the **model worker** command that you are executing. Below is an example of running with 4-bit quantization.
255
+
256
+ ```Shell
257
+ python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b --load-4bit
258
+ ```
259
+
260
+ #### Launch a model worker (LoRA weights, unmerged)
261
+
262
+ You can launch the model worker with LoRA weights, without merging them with the base checkpoint, to save disk space. There will be additional loading time, while the inference speed is the same as the merged checkpoints. Unmerged LoRA checkpoints do not have `lora-merge` in the model name, and are usually much smaller (less than 1GB) than the merged checkpoints (13G for 7B, and 25G for 13B).
263
+
264
+ To load unmerged LoRA weights, you simply need to pass an additional argument `--model-base`, which is the base LLM that is used to train the LoRA weights. You can check the base LLM of each LoRA weights in the [model zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md).
265
+
266
+ ```Shell
267
+ python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1-0719-336px-lora-vicuna-13b-v1.3 --model-base lmsys/vicuna-13b-v1.3
268
+ ```
269
+
270
+ ### CLI Inference
271
+
272
+ Chat about images using LLaVA without the need of Gradio interface. It also supports multiple GPUs, 4-bit and 8-bit quantized inference. With 4-bit quantization, for our LLaVA-1.5-7B, it uses less than 8GB VRAM on a single GPU.
273
+
274
+ ```Shell
275
+ python -m llava.serve.cli \
276
+ --model-path liuhaotian/llava-v1.5-7b \
277
+ --image-file "https://llava-vl.github.io/static/images/view.jpg" \
278
+ --load-4bit
279
+ ```
280
+
281
+ <img src="images/demo_cli.gif" width="70%">
282
+
283
+ ## Train
284
+
285
+ *Below is the latest training configuration for LLaVA v1.5. For legacy models, please refer to README of [this](https://github.com/haotian-liu/LLaVA/tree/v1.0.1) version for now. We'll add them in a separate doc later.*
286
+
287
+ LLaVA training consists of two stages: (1) feature alignment stage: use our 558K subset of the LAION-CC-SBU dataset to connect a *frozen pretrained* vision encoder to a *frozen LLM*; (2) visual instruction tuning stage: use 150K GPT-generated multimodal instruction-following data, plus around 515K VQA data from academic-oriented tasks, to teach the model to follow multimodal instructions.
288
+
289
+ LLaVA is trained on 8 A100 GPUs with 80GB memory. To train on fewer GPUs, you can reduce the `per_device_train_batch_size` and increase the `gradient_accumulation_steps` accordingly. Always keep the global batch size the same: `per_device_train_batch_size` x `gradient_accumulation_steps` x `num_gpus`.
290
+
291
+ ### Hyperparameters
292
+ We use a similar set of hyperparameters as Vicuna in finetuning. Both hyperparameters used in pretraining and finetuning are provided below.
293
+
294
+ 1. Pretraining
295
+
296
+ | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
297
+ | --- | ---: | ---: | ---: | ---: | ---: |
298
+ | LLaVA-v1.5-13B | 256 | 1e-3 | 1 | 2048 | 0 |
299
+
300
+ 2. Finetuning
301
+
302
+ | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
303
+ | --- | ---: | ---: | ---: | ---: | ---: |
304
+ | LLaVA-v1.5-13B | 128 | 2e-5 | 1 | 2048 | 0 |
305
+
306
+ ### Download Vicuna checkpoints (automatically)
307
+
308
+ Our base model Vicuna v1.5, which is an instruction-tuned chatbot, will be downloaded automatically when you run our provided training scripts. No action is needed.
309
+
310
+ ### Pretrain (feature alignment)
311
+
312
+ Please download the 558K subset of the LAION-CC-SBU dataset with BLIP captions we use in the paper [here](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain).
313
+
314
+ Pretrain takes around 5.5 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 3.5 hours for LLaVA-v1.5-7B.
315
+
316
+ Training script with DeepSpeed ZeRO-2: [`pretrain.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/pretrain.sh).
317
+
318
+ - `--mm_projector_type mlp2x_gelu`: the two-layer MLP vision-language connector.
319
+ - `--vision_tower openai/clip-vit-large-patch14-336`: CLIP ViT-L/14 336px.
320
+
321
+ <details>
322
+ <summary>Pretrain takes around 20 hours for LLaVA-7B on 8x V100 (32G)</summary>
323
+
324
+ We provide training script with DeepSpeed [here](https://github.com/haotian-liu/LLaVA/blob/main/scripts/pretrain_xformers.sh).
325
+ Tips:
326
+ - If you are using V100 which is not supported by FlashAttention, you can use the [memory-efficient attention](https://arxiv.org/abs/2112.05682) implemented in [xFormers](https://github.com/facebookresearch/xformers). Install xformers and replace `llava/train/train_mem.py` above with [llava/train/train_xformers.py](llava/train/train_xformers.py).
327
+ </details>
328
+
329
+ ### Visual Instruction Tuning
330
+
331
+ 1. Prepare data
332
+
333
+ Please download the annotation of the final mixture our instruction tuning data [llava_v1_5_mix665k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json), and download the images from constituting datasets:
334
+
335
+ - COCO: [train2017](http://images.cocodataset.org/zips/train2017.zip)
336
+ - GQA: [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip)
337
+ - OCR-VQA: [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing), **we save all files as `.jpg`**
338
+ - TextVQA: [train_val_images](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip)
339
+ - VisualGenome: [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip)
340
+
341
+ After downloading all of them, organize the data as follows in `./playground/data`,
342
+
343
+ ```
344
+ ├── coco
345
+ │ └── train2017
346
+ ├── gqa
347
+ │ └── images
348
+ ├── ocr_vqa
349
+ │ └── images
350
+ ├── textvqa
351
+ │ └── train_images
352
+ └── vg
353
+ ├── VG_100K
354
+ └── VG_100K_2
355
+ ```
356
+
357
+ 2. Start training!
358
+
359
+ You may download our pretrained projectors in [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md). It is not recommended to use legacy projectors, as they may be trained with a different version of the codebase, and if any option is off, the model will not function/train as we expected.
360
+
361
+ Visual instruction tuning takes around 20 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 10 hours for LLaVA-v1.5-7B on 8x A100 (40G).
362
+
363
+ Training script with DeepSpeed ZeRO-3: [`finetune.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune.sh).
364
+
365
+ If you are do not have enough GPU memory:
366
+
367
+ - Use LoRA: [`finetune_lora.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune_lora.sh). We are able to fit 13B training in 8-A100-40G/8-A6000, and 7B training in 8-RTX3090. Make sure `per_device_train_batch_size*gradient_accumulation_steps` is the same as the provided script for best reproducibility.
368
+ - Replace `zero3.json` with `zero3_offload.json` which offloads some parameters to CPU RAM. This slows down the training speed.
369
+
370
+ If you are interested in finetuning LLaVA model to your own task/data, please check out [`Finetune_Custom_Data.md`](https://github.com/haotian-liu/LLaVA/blob/main/docs/Finetune_Custom_Data.md)。
371
+
372
+ New options to note:
373
+
374
+ - `--mm_projector_type mlp2x_gelu`: the two-layer MLP vision-language connector.
375
+ - `--vision_tower openai/clip-vit-large-patch14-336`: CLIP ViT-L/14 336px.
376
+ - `--image_aspect_ratio pad`: this pads the non-square images to square, instead of cropping them; it slightly reduces hallucination.
377
+ - `--group_by_modality_length True`: this should only be used when your instruction tuning dataset contains both language (e.g. ShareGPT) and multimodal (e.g. LLaVA-Instruct). It makes the training sampler only sample a single modality (either image or language) during training, which we observe to speed up training by ~25%, and does not affect the final outcome.
378
+
379
+ ## Evaluation
380
+
381
+ In LLaVA-1.5, we evaluate models on a diverse set of 12 benchmarks. To ensure the reproducibility, we evaluate the models with greedy decoding. We do not evaluate using beam search to make the inference process consistent with the chat demo of real-time outputs.
382
+
383
+ See [Evaluation.md](https://github.com/haotian-liu/LLaVA/blob/main/docs/Evaluation.md).
384
+
385
+ ### GPT-assisted Evaluation
386
+
387
+ Our GPT-assisted evaluation pipeline for multimodal modeling is provided for a comprehensive understanding of the capabilities of vision-language models. Please see our paper for more details.
388
+
389
+ 1. Generate LLaVA responses
390
+
391
+ ```Shell
392
+ python model_vqa.py \
393
+ --model-path ./checkpoints/LLaVA-13B-v0 \
394
+ --question-file \
395
+ playground/data/coco2014_val_qa_eval/qa90_questions.jsonl \
396
+ --image-folder \
397
+ /path/to/coco2014_val \
398
+ --answers-file \
399
+ /path/to/answer-file-our.jsonl
400
+ ```
401
+
402
+ 2. Evaluate the generated responses. In our case, [`answer-file-ref.jsonl`](./playground/data/coco2014_val_qa_eval/qa90_gpt4_answer.jsonl) is the response generated by text-only GPT-4 (0314), with the context captions/boxes provided.
403
+
404
+ ```Shell
405
+ OPENAI_API_KEY="sk-***********************************" python llava/eval/eval_gpt_review_visual.py \
406
+ --question playground/data/coco2014_val_qa_eval/qa90_questions.jsonl \
407
+ --context llava/eval/table/caps_boxes_coco2014_val_80.jsonl \
408
+ --answer-list \
409
+ /path/to/answer-file-ref.jsonl \
410
+ /path/to/answer-file-our.jsonl \
411
+ --rule llava/eval/table/rule.json \
412
+ --output /path/to/review.json
413
+ ```
414
+
415
+ 3. Summarize the evaluation results
416
+
417
+ ```Shell
418
+ python summarize_gpt_review.py
419
+ ```
420
+
421
+ ## Citation
422
+
423
+ If you find LLaVA useful for your research and applications, please cite using this BibTeX:
424
+ ```bibtex
425
+ @misc{liu2024llavanext,
426
+ title={LLaVA-NeXT: Improved reasoning, OCR, and world knowledge},
427
+ url={https://llava-vl.github.io/blog/2024-01-30-llava-next/},
428
+ author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Li, Bo and Zhang, Yuanhan and Shen, Sheng and Lee, Yong Jae},
429
+ month={January},
430
+ year={2024}
431
+ }
432
+
433
+ @misc{liu2023improvedllava,
434
+ title={Improved Baselines with Visual Instruction Tuning},
435
+ author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Lee, Yong Jae},
436
+ publisher={arXiv:2310.03744},
437
+ year={2023},
438
+ }
439
+
440
+ @misc{liu2023llava,
441
+ title={Visual Instruction Tuning},
442
+ author={Liu, Haotian and Li, Chunyuan and Wu, Qingyang and Lee, Yong Jae},
443
+ publisher={NeurIPS},
444
+ year={2023},
445
+ }
446
+ ```
447
+
448
+ ## Acknowledgement
449
+
450
+ - [Vicuna](https://github.com/lm-sys/FastChat): the codebase we built upon, and our base model Vicuna-13B that has the amazing language capabilities!
451
+
452
+ ## Related Projects
453
+
454
+ - [Instruction Tuning with GPT-4](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
455
+ - [LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day](https://github.com/microsoft/LLaVA-Med)
456
+ - [Otter: In-Context Multi-Modal Instruction Tuning](https://github.com/Luodian/Otter)
457
+
458
+ For future project ideas, please check out:
459
+ - [SEEM: Segment Everything Everywhere All at Once](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once)
460
+ - [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything) to detect, segment, and generate anything by marrying [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO) and [Segment-Anything](https://github.com/facebookresearch/segment-anything).
accuracy_scores.txt ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/coco_gen_558k/llava-v1.5-13b
2
+ Average accuracy: 0.477
3
+ --- End of model ---
4
+
5
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/llava_raw_558k/llava-v1.5-13b
6
+ Average accuracy: 0.494
7
+ --- End of model ---
8
+
9
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/llava_coco_gen_758k/llava-v1.5-13b
10
+ Average accuracy: 0.513
11
+ --- End of model ---
12
+
13
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/llava_coco_raw_758k/llava-v1.5-13b
14
+ Average accuracy: 0.505
15
+ --- End of model ---
16
+
17
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/coco_gen_200k/llava-v1.5-13b
18
+ Average accuracy: 0.501
19
+ --- End of model ---
20
+
21
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/llava_gen_200k/llava-v1.5-13b
22
+ Average accuracy: 0.531
23
+ --- End of model ---
24
+
25
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/coco_raw_200k/llava-v1.5-13b
26
+ Average accuracy: 0.508
27
+ --- End of model ---
28
+
29
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/coco_raw_200k/llava-v1.5-13b
30
+ Average accuracy: 0.508
31
+ --- End of model ---
32
+
33
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/coco_raw_558k/llava-v1.5-13b
34
+ Average accuracy: 0.520
35
+ --- End of model ---
36
+
37
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/llava_raw_558k/llava-v1.5-13b
38
+ Average accuracy: 0.524
39
+ --- End of model ---
40
+
41
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/coco_raw_558k/llava-v1.5-13b
42
+ Average accuracy: 0.520
43
+ --- End of model ---
44
+
45
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/coco_gen_200k/llava-v1.5-13b
46
+ Average accuracy: 0.529
47
+ --- End of model ---
48
+
49
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/coco_gen_558k/llava-v1.5-13b
50
+ Average accuracy: 0.515
51
+ --- End of model ---
52
+
53
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/llava_coco_gen_758k/llava-v1.5-13b
54
+ Average accuracy: 0.537
55
+ --- End of model ---
56
+
57
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/llava_gen_200k/llava-v1.5-13b
58
+ Average accuracy: 0.537
59
+ --- End of model ---
60
+
61
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/coco_raw_200k/llava-v1.5-13b
62
+ Average accuracy: 0.529
63
+ --- End of model ---
64
+
65
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/llava_raw_558k/llava-v1.5-13b
66
+ Average accuracy: 0.524
67
+ --- End of model ---
68
+
69
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/llava_coco_raw_758k/llava-v1.5-13b
70
+ Average accuracy: 0.521
71
+ --- End of model ---
72
+
73
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/coco_raw_558k/llava-v1.5-13b
74
+ Average accuracy: 0.539
75
+ --- End of model ---
76
+
77
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/coco_gen_200k/llava-v1.5-13b-pretrain
78
+ Average accuracy: 0.531
79
+ --- End of model ---
80
+
81
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/coco_gen_558k/llava-v1.5-13b-pretrain
82
+ Average accuracy: 0.531
83
+ --- End of model ---
84
+
85
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/coco_raw_200k/llava-v1.5-13b-pretrain
86
+ Average accuracy: 0.531
87
+ --- End of model ---
88
+
89
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/coco_raw_558k/llava-v1.5-13b-pretrain
90
+ Average accuracy: 0.531
91
+ --- End of model ---
92
+
93
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/llava_coco_raw_758k/llava-v1.5-13b-pretrain
94
+ Average accuracy: 0.531
95
+ --- End of model ---
96
+
97
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/llava_coco_gen_758k/llava-v1.5-13b-pretrain
98
+ Average accuracy: 0.531
99
+ --- End of model ---
100
+
101
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/llava_raw_558k/llava-v1.5-13b-pretrain
102
+ Average accuracy: 0.531
103
+ --- End of model ---
104
+
105
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/llava_gen_200k/llava-v1.5-13b-pretrain
106
+ Average accuracy: 0.531
107
+ --- End of model ---
108
+
109
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/pure_gen_558k/llava-v1.5-13b
110
+ Average accuracy: 0.533
111
+ --- End of model ---
112
+
113
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/pure_gen_200k/llava-v1.5-13b
114
+ Average accuracy: 0.534
115
+ --- End of model ---
116
+
117
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/select_gen_100k/llava-v1.5-13b
118
+ Average accuracy: 0.546
119
+ --- End of model ---
120
+
121
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/select_gen_100k/llava-v1.5-13b
122
+ Average accuracy: 0.542
123
+ --- End of model ---
124
+
125
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/select_raw_100k/llava-v1.5-13b
126
+ Average accuracy: 0.536
127
+ --- End of model ---
128
+
129
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/select_gen_200k/llava-v1.5-13b
130
+ Average accuracy: 0.535
131
+ --- End of model ---
132
+
133
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/select_raw_200k/llava-v1.5-13b
134
+ Average accuracy: 0.537
135
+ --- End of model ---
136
+
137
+ Model: /mnt/petrelfs/zhuchenglin/LLaVA/checkpoints_ft/mixed_200k/llava-v1.5-13b
138
+ Average accuracy: 0.535
139
+ --- End of model ---
140
+
checkpoints_ft/.gitattributes ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.lz4 filter=lfs diff=lfs merge=lfs -text
12
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
+ *.model filter=lfs diff=lfs merge=lfs -text
14
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
15
+ *.npy filter=lfs diff=lfs merge=lfs -text
16
+ *.npz filter=lfs diff=lfs merge=lfs -text
17
+ *.onnx filter=lfs diff=lfs merge=lfs -text
18
+ *.ot filter=lfs diff=lfs merge=lfs -text
19
+ *.parquet filter=lfs diff=lfs merge=lfs -text
20
+ *.pb filter=lfs diff=lfs merge=lfs -text
21
+ *.pickle filter=lfs diff=lfs merge=lfs -text
22
+ *.pkl filter=lfs diff=lfs merge=lfs -text
23
+ *.pt filter=lfs diff=lfs merge=lfs -text
24
+ *.pth filter=lfs diff=lfs merge=lfs -text
25
+ *.rar filter=lfs diff=lfs merge=lfs -text
26
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
27
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar filter=lfs diff=lfs merge=lfs -text
30
+ *.tflite filter=lfs diff=lfs merge=lfs -text
31
+ *.tgz filter=lfs diff=lfs merge=lfs -text
32
+ *.wasm filter=lfs diff=lfs merge=lfs -text
33
+ *.xz filter=lfs diff=lfs merge=lfs -text
34
+ *.zip filter=lfs diff=lfs merge=lfs -text
35
+ *.zst filter=lfs diff=lfs merge=lfs -text
36
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
37
+ # Audio files - uncompressed
38
+ *.pcm filter=lfs diff=lfs merge=lfs -text
39
+ *.sam filter=lfs diff=lfs merge=lfs -text
40
+ *.raw filter=lfs diff=lfs merge=lfs -text
41
+ # Audio files - compressed
42
+ *.aac filter=lfs diff=lfs merge=lfs -text
43
+ *.flac filter=lfs diff=lfs merge=lfs -text
44
+ *.mp3 filter=lfs diff=lfs merge=lfs -text
45
+ *.ogg filter=lfs diff=lfs merge=lfs -text
46
+ *.wav filter=lfs diff=lfs merge=lfs -text
47
+ # Image files - uncompressed
48
+ *.bmp filter=lfs diff=lfs merge=lfs -text
49
+ *.gif filter=lfs diff=lfs merge=lfs -text
50
+ *.png filter=lfs diff=lfs merge=lfs -text
51
+ *.tiff filter=lfs diff=lfs merge=lfs -text
52
+ # Image files - compressed
53
+ *.jpg filter=lfs diff=lfs merge=lfs -text
54
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
55
+ *.webp filter=lfs diff=lfs merge=lfs -text
checkpoints_ft/coco_gen_200k/llava-v1.5-13b-pretrain/config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmsys/vicuna-13b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "image_aspect_ratio": "square",
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 13824,
16
+ "max_length": 4096,
17
+ "max_position_embeddings": 4096,
18
+ "mm_hidden_size": 1024,
19
+ "mm_patch_merge_type": "flat",
20
+ "mm_projector_lr": null,
21
+ "mm_projector_type": "mlp2x_gelu",
22
+ "mm_use_im_patch_token": false,
23
+ "mm_use_im_start_end": false,
24
+ "mm_vision_select_feature": "patch",
25
+ "mm_vision_select_layer": -2,
26
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
27
+ "model_type": "llava_llama",
28
+ "num_attention_heads": 40,
29
+ "num_hidden_layers": 40,
30
+ "num_key_value_heads": 40,
31
+ "pad_token_id": 0,
32
+ "pretraining_tp": 1,
33
+ "rms_norm_eps": 1e-05,
34
+ "rope_scaling": null,
35
+ "rope_theta": 10000.0,
36
+ "tie_word_embeddings": false,
37
+ "tokenizer_model_max_length": 2048,
38
+ "tokenizer_padding_side": "right",
39
+ "torch_dtype": "float16",
40
+ "transformers_version": "4.37.2",
41
+ "tune_mm_mlp_adapter": true,
42
+ "use_cache": true,
43
+ "use_mm_proj": true,
44
+ "vocab_size": 32000,
45
+ "do_sample": true
46
+ }
checkpoints_ft/coco_gen_200k/llava-v1.5-13b-pretrain/mm_projector.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71fab2dc54b692793d5f008f274b55ab8e6f67c093489128fde9f01aae2553d5
3
+ size 62937144
checkpoints_ft/coco_gen_200k/llava-v1.5-13b-pretrain/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints_ft/coco_gen_558k/llava-v1.5-13b-pretrain/config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/LLaVA/vicuna-13b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "image_aspect_ratio": "square",
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 13824,
16
+ "max_length": 4096,
17
+ "max_position_embeddings": 4096,
18
+ "mm_hidden_size": 1024,
19
+ "mm_patch_merge_type": "flat",
20
+ "mm_projector_lr": null,
21
+ "mm_projector_type": "mlp2x_gelu",
22
+ "mm_use_im_patch_token": false,
23
+ "mm_use_im_start_end": false,
24
+ "mm_vision_select_feature": "patch",
25
+ "mm_vision_select_layer": -2,
26
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
27
+ "model_type": "llava_llama",
28
+ "num_attention_heads": 40,
29
+ "num_hidden_layers": 40,
30
+ "num_key_value_heads": 40,
31
+ "pad_token_id": 0,
32
+ "pretraining_tp": 1,
33
+ "rms_norm_eps": 1e-05,
34
+ "rope_scaling": null,
35
+ "rope_theta": 10000.0,
36
+ "tie_word_embeddings": false,
37
+ "tokenizer_model_max_length": 2048,
38
+ "tokenizer_padding_side": "right",
39
+ "torch_dtype": "float16",
40
+ "transformers_version": "4.37.2",
41
+ "tune_mm_mlp_adapter": true,
42
+ "use_cache": true,
43
+ "use_mm_proj": true,
44
+ "vocab_size": 32000,
45
+ "do_sample": true
46
+ }
checkpoints_ft/coco_gen_558k/llava-v1.5-13b-pretrain/mm_projector.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0e7165ff7ac58d8e24ee9c6b6fed5c12731e6a005d45c2de626b72167d0bd05
3
+ size 62937144
checkpoints_ft/coco_gen_558k/llava-v1.5-13b-pretrain/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints_ft/coco_raw_200k/llava-v1.5-13b-pretrain/config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmsys/vicuna-13b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "image_aspect_ratio": "square",
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 13824,
16
+ "max_length": 4096,
17
+ "max_position_embeddings": 4096,
18
+ "mm_hidden_size": 1024,
19
+ "mm_patch_merge_type": "flat",
20
+ "mm_projector_lr": null,
21
+ "mm_projector_type": "mlp2x_gelu",
22
+ "mm_use_im_patch_token": false,
23
+ "mm_use_im_start_end": false,
24
+ "mm_vision_select_feature": "patch",
25
+ "mm_vision_select_layer": -2,
26
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
27
+ "model_type": "llava_llama",
28
+ "num_attention_heads": 40,
29
+ "num_hidden_layers": 40,
30
+ "num_key_value_heads": 40,
31
+ "pad_token_id": 0,
32
+ "pretraining_tp": 1,
33
+ "rms_norm_eps": 1e-05,
34
+ "rope_scaling": null,
35
+ "rope_theta": 10000.0,
36
+ "tie_word_embeddings": false,
37
+ "tokenizer_model_max_length": 2048,
38
+ "tokenizer_padding_side": "right",
39
+ "torch_dtype": "float16",
40
+ "transformers_version": "4.37.2",
41
+ "tune_mm_mlp_adapter": true,
42
+ "use_cache": true,
43
+ "use_mm_proj": true,
44
+ "vocab_size": 32000,
45
+ "do_sample": true
46
+ }
checkpoints_ft/coco_raw_200k/llava-v1.5-13b-pretrain/mm_projector.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2180785973804f4a52e0a7443cb5684f848ae499169d91101c99a83afef4c9b9
3
+ size 62937144
checkpoints_ft/coco_raw_200k/llava-v1.5-13b-pretrain/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints_ft/coco_raw_558k/llava-v1.5-13b-pretrain/config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmsys/vicuna-13b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "image_aspect_ratio": "square",
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 13824,
16
+ "max_length": 4096,
17
+ "max_position_embeddings": 4096,
18
+ "mm_hidden_size": 1024,
19
+ "mm_patch_merge_type": "flat",
20
+ "mm_projector_lr": null,
21
+ "mm_projector_type": "mlp2x_gelu",
22
+ "mm_use_im_patch_token": false,
23
+ "mm_use_im_start_end": false,
24
+ "mm_vision_select_feature": "patch",
25
+ "mm_vision_select_layer": -2,
26
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
27
+ "model_type": "llava_llama",
28
+ "num_attention_heads": 40,
29
+ "num_hidden_layers": 40,
30
+ "num_key_value_heads": 40,
31
+ "pad_token_id": 0,
32
+ "pretraining_tp": 1,
33
+ "rms_norm_eps": 1e-05,
34
+ "rope_scaling": null,
35
+ "rope_theta": 10000.0,
36
+ "tie_word_embeddings": false,
37
+ "tokenizer_model_max_length": 2048,
38
+ "tokenizer_padding_side": "right",
39
+ "torch_dtype": "float16",
40
+ "transformers_version": "4.37.2",
41
+ "tune_mm_mlp_adapter": true,
42
+ "use_cache": true,
43
+ "use_mm_proj": true,
44
+ "vocab_size": 32000,
45
+ "do_sample": true
46
+ }
checkpoints_ft/coco_raw_558k/llava-v1.5-13b-pretrain/mm_projector.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:108db710ea90f798e0db72c3c3a785e3adadb4739bbafde1331c2cd5f276e05b
3
+ size 62937144
checkpoints_ft/coco_raw_558k/llava-v1.5-13b-pretrain/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints_ft/coco_select_200k/llava-v1.5-13b-pretrain/config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmsys/vicuna-13b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "image_aspect_ratio": "square",
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 13824,
16
+ "max_length": 4096,
17
+ "max_position_embeddings": 4096,
18
+ "mm_hidden_size": 1024,
19
+ "mm_patch_merge_type": "flat",
20
+ "mm_projector_lr": null,
21
+ "mm_projector_type": "mlp2x_gelu",
22
+ "mm_use_im_patch_token": false,
23
+ "mm_use_im_start_end": false,
24
+ "mm_vision_select_feature": "patch",
25
+ "mm_vision_select_layer": -2,
26
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
27
+ "model_type": "llava_llama",
28
+ "num_attention_heads": 40,
29
+ "num_hidden_layers": 40,
30
+ "num_key_value_heads": 40,
31
+ "pad_token_id": 0,
32
+ "pretraining_tp": 1,
33
+ "rms_norm_eps": 1e-05,
34
+ "rope_scaling": null,
35
+ "rope_theta": 10000.0,
36
+ "tie_word_embeddings": false,
37
+ "tokenizer_model_max_length": 2048,
38
+ "tokenizer_padding_side": "right",
39
+ "torch_dtype": "float16",
40
+ "transformers_version": "4.37.2",
41
+ "tune_mm_mlp_adapter": true,
42
+ "use_cache": true,
43
+ "use_mm_proj": true,
44
+ "vocab_size": 32000,
45
+ "do_sample": true
46
+ }
checkpoints_ft/coco_select_200k/llava-v1.5-13b-pretrain/mm_projector.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32f539ec44bea3f9901ed557fd705c33ff4ce872f32ab4aa272baa227235f99c
3
+ size 62937144
checkpoints_ft/coco_select_200k/llava-v1.5-13b-pretrain/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints_ft/llava_coco_gen_758k/llava-v1.5-13b-pretrain/config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmsys/vicuna-13b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "image_aspect_ratio": "square",
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 13824,
16
+ "max_length": 4096,
17
+ "max_position_embeddings": 4096,
18
+ "mm_hidden_size": 1024,
19
+ "mm_patch_merge_type": "flat",
20
+ "mm_projector_lr": null,
21
+ "mm_projector_type": "mlp2x_gelu",
22
+ "mm_use_im_patch_token": false,
23
+ "mm_use_im_start_end": false,
24
+ "mm_vision_select_feature": "patch",
25
+ "mm_vision_select_layer": -2,
26
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
27
+ "model_type": "llava_llama",
28
+ "num_attention_heads": 40,
29
+ "num_hidden_layers": 40,
30
+ "num_key_value_heads": 40,
31
+ "pad_token_id": 0,
32
+ "pretraining_tp": 1,
33
+ "rms_norm_eps": 1e-05,
34
+ "rope_scaling": null,
35
+ "rope_theta": 10000.0,
36
+ "tie_word_embeddings": false,
37
+ "tokenizer_model_max_length": 2048,
38
+ "tokenizer_padding_side": "right",
39
+ "torch_dtype": "float16",
40
+ "transformers_version": "4.37.2",
41
+ "tune_mm_mlp_adapter": true,
42
+ "use_cache": true,
43
+ "use_mm_proj": true,
44
+ "vocab_size": 32000,
45
+ "do_sample": true
46
+ }
checkpoints_ft/llava_coco_gen_758k/llava-v1.5-13b-pretrain/mm_projector.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1879a902ae20cf78bb8f66a1d849adf1e88d0f8e81c53285a21e2625497e646
3
+ size 62937144
checkpoints_ft/llava_coco_gen_758k/llava-v1.5-13b-pretrain/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints_ft/llava_coco_raw_758k/llava-v1.5-13b-pretrain/config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmsys/vicuna-13b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "image_aspect_ratio": "square",
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 13824,
16
+ "max_length": 4096,
17
+ "max_position_embeddings": 4096,
18
+ "mm_hidden_size": 1024,
19
+ "mm_patch_merge_type": "flat",
20
+ "mm_projector_lr": null,
21
+ "mm_projector_type": "mlp2x_gelu",
22
+ "mm_use_im_patch_token": false,
23
+ "mm_use_im_start_end": false,
24
+ "mm_vision_select_feature": "patch",
25
+ "mm_vision_select_layer": -2,
26
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
27
+ "model_type": "llava_llama",
28
+ "num_attention_heads": 40,
29
+ "num_hidden_layers": 40,
30
+ "num_key_value_heads": 40,
31
+ "pad_token_id": 0,
32
+ "pretraining_tp": 1,
33
+ "rms_norm_eps": 1e-05,
34
+ "rope_scaling": null,
35
+ "rope_theta": 10000.0,
36
+ "tie_word_embeddings": false,
37
+ "tokenizer_model_max_length": 2048,
38
+ "tokenizer_padding_side": "right",
39
+ "torch_dtype": "float16",
40
+ "transformers_version": "4.37.2",
41
+ "tune_mm_mlp_adapter": true,
42
+ "use_cache": true,
43
+ "use_mm_proj": true,
44
+ "vocab_size": 32000,
45
+ "do_sample": true
46
+ }
checkpoints_ft/llava_coco_raw_758k/llava-v1.5-13b-pretrain/mm_projector.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4031291543d0a4b64ec39f4560655bcf5d78d5a76281abd642d17b15b679857d
3
+ size 62937144
checkpoints_ft/llava_coco_raw_758k/llava-v1.5-13b-pretrain/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints_ft/llava_gen_200k/llava-v1.5-13b-pretrain/config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmsys/vicuna-13b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "image_aspect_ratio": "square",
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 13824,
16
+ "max_length": 4096,
17
+ "max_position_embeddings": 4096,
18
+ "mm_hidden_size": 1024,
19
+ "mm_patch_merge_type": "flat",
20
+ "mm_projector_lr": null,
21
+ "mm_projector_type": "mlp2x_gelu",
22
+ "mm_use_im_patch_token": false,
23
+ "mm_use_im_start_end": false,
24
+ "mm_vision_select_feature": "patch",
25
+ "mm_vision_select_layer": -2,
26
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
27
+ "model_type": "llava_llama",
28
+ "num_attention_heads": 40,
29
+ "num_hidden_layers": 40,
30
+ "num_key_value_heads": 40,
31
+ "pad_token_id": 0,
32
+ "pretraining_tp": 1,
33
+ "rms_norm_eps": 1e-05,
34
+ "rope_scaling": null,
35
+ "rope_theta": 10000.0,
36
+ "tie_word_embeddings": false,
37
+ "tokenizer_model_max_length": 2048,
38
+ "tokenizer_padding_side": "right",
39
+ "torch_dtype": "float16",
40
+ "transformers_version": "4.37.2",
41
+ "tune_mm_mlp_adapter": true,
42
+ "use_cache": true,
43
+ "use_mm_proj": true,
44
+ "vocab_size": 32000,
45
+ "do_sample": true
46
+ }
checkpoints_ft/llava_gen_200k/llava-v1.5-13b-pretrain/mm_projector.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d16c9fcd3548427b2ad57e5305c6e5a5d7b4f804df8558c16fcd2f21c188b99
3
+ size 62937144
checkpoints_ft/llava_gen_200k/llava-v1.5-13b-pretrain/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints_ft/llava_gen_200k/llava-v1.5-7b-pretrain/config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmsys/vicuna-7b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "image_aspect_ratio": "square",
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 11008,
16
+ "max_position_embeddings": 4096,
17
+ "mm_hidden_size": 1024,
18
+ "mm_patch_merge_type": "flat",
19
+ "mm_projector_lr": null,
20
+ "mm_projector_type": "mlp2x_gelu",
21
+ "mm_use_im_patch_token": false,
22
+ "mm_use_im_start_end": false,
23
+ "mm_vision_select_feature": "patch",
24
+ "mm_vision_select_layer": -2,
25
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
26
+ "model_type": "llava_llama",
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 32,
29
+ "num_key_value_heads": 32,
30
+ "pad_token_id": 0,
31
+ "pretraining_tp": 1,
32
+ "rms_norm_eps": 1e-05,
33
+ "rope_scaling": null,
34
+ "rope_theta": 10000.0,
35
+ "tie_word_embeddings": false,
36
+ "tokenizer_model_max_length": 2048,
37
+ "tokenizer_padding_side": "right",
38
+ "torch_dtype": "float16",
39
+ "transformers_version": "4.37.2",
40
+ "tune_mm_mlp_adapter": true,
41
+ "use_cache": true,
42
+ "use_mm_proj": true,
43
+ "vocab_size": 32000,
44
+ "do_sample": true
45
+ }
checkpoints_ft/llava_gen_200k/llava-v1.5-7b-pretrain/mm_projector.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcf3c664a5b88df6e87a1b9e4add5b95133daa6e405ca0f320d92b40e976d43a
3
+ size 41961528
checkpoints_ft/llava_gen_200k/llava-v1.5-7b-pretrain/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints_ft/llava_gen_200k/llava-v1.5-7b/config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmsys/vicuna-7b-v1.5",
3
+ "architectures": [
4
+ "LlavaLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "image_aspect_ratio": "pad",
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 11008,
16
+ "max_position_embeddings": 4096,
17
+ "mm_hidden_size": 1024,
18
+ "mm_patch_merge_type": "flat",
19
+ "mm_projector_lr": null,
20
+ "mm_projector_type": "mlp2x_gelu",
21
+ "mm_use_im_patch_token": false,
22
+ "mm_use_im_start_end": false,
23
+ "mm_vision_select_feature": "patch",
24
+ "mm_vision_select_layer": -2,
25
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
26
+ "model_type": "llava_llama",
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 32,
29
+ "num_key_value_heads": 32,
30
+ "pad_token_id": 0,
31
+ "pretraining_tp": 1,
32
+ "rms_norm_eps": 1e-05,
33
+ "rope_scaling": null,
34
+ "rope_theta": 10000.0,
35
+ "tie_word_embeddings": false,
36
+ "tokenizer_model_max_length": 2048,
37
+ "tokenizer_padding_side": "right",
38
+ "torch_dtype": "bfloat16",
39
+ "transformers_version": "4.37.2",
40
+ "tune_mm_mlp_adapter": false,
41
+ "use_cache": true,
42
+ "use_mm_proj": true,
43
+ "vocab_size": 32000
44
+ }
checkpoints_ft/llava_gen_200k/llava-v1.5-7b/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints_ft/llava_gen_558k/llava-v1.5-13b-pretrain/config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmsys/vicuna-13b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "image_aspect_ratio": "square",
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 13824,
16
+ "max_length": 4096,
17
+ "max_position_embeddings": 4096,
18
+ "mm_hidden_size": 1024,
19
+ "mm_patch_merge_type": "flat",
20
+ "mm_projector_lr": null,
21
+ "mm_projector_type": "mlp2x_gelu",
22
+ "mm_use_im_patch_token": false,
23
+ "mm_use_im_start_end": false,
24
+ "mm_vision_select_feature": "patch",
25
+ "mm_vision_select_layer": -2,
26
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
27
+ "model_type": "llava_llama",
28
+ "num_attention_heads": 40,
29
+ "num_hidden_layers": 40,
30
+ "num_key_value_heads": 40,
31
+ "pad_token_id": 0,
32
+ "pretraining_tp": 1,
33
+ "rms_norm_eps": 1e-05,
34
+ "rope_scaling": null,
35
+ "rope_theta": 10000.0,
36
+ "tie_word_embeddings": false,
37
+ "tokenizer_model_max_length": 2048,
38
+ "tokenizer_padding_side": "right",
39
+ "torch_dtype": "float16",
40
+ "transformers_version": "4.37.2",
41
+ "tune_mm_mlp_adapter": true,
42
+ "use_cache": true,
43
+ "use_mm_proj": true,
44
+ "vocab_size": 32000,
45
+ "do_sample": true
46
+ }
checkpoints_ft/llava_gen_558k/llava-v1.5-13b-pretrain/mm_projector.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd31ac0099d5e5bad89b180ed632ec1658dfe18a0dceedbab7e0fb976073b7ae
3
+ size 62937144
checkpoints_ft/llava_gen_558k/llava-v1.5-13b-pretrain/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints_ft/llava_raw_200k/llava-v1.5-13b-pretrain/config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmsys/vicuna-13b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "image_aspect_ratio": "square",
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 13824,
16
+ "max_length": 4096,
17
+ "max_position_embeddings": 4096,
18
+ "mm_hidden_size": 1024,
19
+ "mm_patch_merge_type": "flat",
20
+ "mm_projector_lr": null,
21
+ "mm_projector_type": "mlp2x_gelu",
22
+ "mm_use_im_patch_token": false,
23
+ "mm_use_im_start_end": false,
24
+ "mm_vision_select_feature": "patch",
25
+ "mm_vision_select_layer": -2,
26
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
27
+ "model_type": "llava_llama",
28
+ "num_attention_heads": 40,
29
+ "num_hidden_layers": 40,
30
+ "num_key_value_heads": 40,
31
+ "pad_token_id": 0,
32
+ "pretraining_tp": 1,
33
+ "rms_norm_eps": 1e-05,
34
+ "rope_scaling": null,
35
+ "rope_theta": 10000.0,
36
+ "tie_word_embeddings": false,
37
+ "tokenizer_model_max_length": 2048,
38
+ "tokenizer_padding_side": "right",
39
+ "torch_dtype": "float16",
40
+ "transformers_version": "4.37.2",
41
+ "tune_mm_mlp_adapter": true,
42
+ "use_cache": true,
43
+ "use_mm_proj": true,
44
+ "vocab_size": 32000,
45
+ "do_sample": true
46
+ }
checkpoints_ft/llava_raw_200k/llava-v1.5-13b-pretrain/mm_projector.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfbaba7ebebbcc1f153df144e3c8b48476d000b948f51e5ed1c78e66d832f65e
3
+ size 62937144
checkpoints_ft/llava_raw_200k/llava-v1.5-13b-pretrain/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints_ft/llava_raw_558k/llava-v1.5-13b-pretrain/config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmsys/vicuna-13b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "image_aspect_ratio": "square",
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 13824,
16
+ "max_length": 4096,
17
+ "max_position_embeddings": 4096,
18
+ "mm_hidden_size": 1024,
19
+ "mm_patch_merge_type": "flat",
20
+ "mm_projector_lr": null,
21
+ "mm_projector_type": "mlp2x_gelu",
22
+ "mm_use_im_patch_token": false,
23
+ "mm_use_im_start_end": false,
24
+ "mm_vision_select_feature": "patch",
25
+ "mm_vision_select_layer": -2,
26
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
27
+ "model_type": "llava_llama",
28
+ "num_attention_heads": 40,
29
+ "num_hidden_layers": 40,
30
+ "num_key_value_heads": 40,
31
+ "pad_token_id": 0,
32
+ "pretraining_tp": 1,
33
+ "rms_norm_eps": 1e-05,
34
+ "rope_scaling": null,
35
+ "rope_theta": 10000.0,
36
+ "tie_word_embeddings": false,
37
+ "tokenizer_model_max_length": 2048,
38
+ "tokenizer_padding_side": "right",
39
+ "torch_dtype": "float16",
40
+ "transformers_version": "4.37.2",
41
+ "tune_mm_mlp_adapter": true,
42
+ "use_cache": true,
43
+ "use_mm_proj": true,
44
+ "vocab_size": 32000,
45
+ "do_sample": true
46
+ }