Wording in the code example (#2)
Browse files- Wording in the code example (142aa16b4cb6ed9f02fa825b0f9f42bd6d8bb69e)
- Update README.md (7b41fafe0af25f1dee86c1bfad9db38ccf548381)
Co-authored-by: Apolinário from multimodal AI art <[email protected]>
README.md
CHANGED
|
@@ -65,7 +65,9 @@ aesthetic prompts. Specifically, Stable Cascade (30 inference steps) was compare
|
|
| 65 |
steps), SDXL (50 inference steps), SDXL Turbo (1 inference step) and Würstchen v2 (30 inference steps).
|
| 66 |
|
| 67 |
## Code Example
|
| 68 |
-
|
|
|
|
|
|
|
| 69 |
```shell
|
| 70 |
pip install git+https://github.com/kashif/diffusers.git@wuerstchen-v3
|
| 71 |
```
|
|
@@ -75,31 +77,33 @@ import torch
|
|
| 75 |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
| 76 |
|
| 77 |
device = "cuda"
|
| 78 |
-
dtype = torch.bfloat16
|
| 79 |
num_images_per_prompt = 2
|
| 80 |
|
| 81 |
-
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=
|
| 82 |
-
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=
|
| 83 |
|
| 84 |
prompt = "Anthropomorphic cat dressed as a pilot"
|
| 85 |
negative_prompt = ""
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
| 103 |
```
|
| 104 |
|
| 105 |
## Uses
|
|
|
|
| 65 |
steps), SDXL (50 inference steps), SDXL Turbo (1 inference step) and Würstchen v2 (30 inference steps).
|
| 66 |
|
| 67 |
## Code Example
|
| 68 |
+
|
| 69 |
+
**⚠️ Important**: For the code below to work, you have to install `diffusers` from this branch while the PR is WIP.
|
| 70 |
+
|
| 71 |
```shell
|
| 72 |
pip install git+https://github.com/kashif/diffusers.git@wuerstchen-v3
|
| 73 |
```
|
|
|
|
| 77 |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
| 78 |
|
| 79 |
device = "cuda"
|
|
|
|
| 80 |
num_images_per_prompt = 2
|
| 81 |
|
| 82 |
+
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16).to(device)
|
| 83 |
+
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=torch.float16).to(device)
|
| 84 |
|
| 85 |
prompt = "Anthropomorphic cat dressed as a pilot"
|
| 86 |
negative_prompt = ""
|
| 87 |
|
| 88 |
+
prior_output = prior(
|
| 89 |
+
prompt=prompt,
|
| 90 |
+
height=1024,
|
| 91 |
+
width=1024,
|
| 92 |
+
negative_prompt=negative_prompt,
|
| 93 |
+
guidance_scale=4.0,
|
| 94 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 95 |
+
num_inference_steps=20
|
| 96 |
+
)
|
| 97 |
+
decoder_output = decoder(
|
| 98 |
+
image_embeddings=prior_output.image_embeddings.half(),
|
| 99 |
+
prompt=prompt,
|
| 100 |
+
negative_prompt=negative_prompt,
|
| 101 |
+
guidance_scale=0.0,
|
| 102 |
+
output_type="pil",
|
| 103 |
+
num_inference_steps=10
|
| 104 |
+
).images
|
| 105 |
+
|
| 106 |
+
#Now decoder_output is a list with your PIL images
|
| 107 |
```
|
| 108 |
|
| 109 |
## Uses
|