fix: create final list of special tokens
Browse files- tokenization_arcade100k.py +59 -46
tokenization_arcade100k.py
CHANGED
@@ -41,42 +41,52 @@ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
|
41 |
def _arcade100k(vocab_file: str):
|
42 |
mergeable_ranks = _load_tiktoken_bpe(vocab_file)
|
43 |
|
44 |
-
# Special Tokens
|
45 |
ENDOFTEXT = "<|endoftext|>"
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
ENDOFPROMPT = "<|endofprompt|>"
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
REGISTERS = [f"<|reg{i}|>" for i in range(0, 8)]
|
57 |
-
custom_special_tokens = {
|
58 |
-
t: 100261 + i for i, t in enumerate([IM_START, IM_END, PAUSE, *REGISTERS])
|
59 |
-
}
|
60 |
-
ENDOFPROMPT_ID = 100276
|
61 |
-
|
62 |
-
# Fill-out extra tokens
|
63 |
-
for i in range(100261 + len(custom_special_tokens), ENDOFPROMPT_ID + 1):
|
64 |
-
custom_special_tokens[f"<|extra{i}|>"] = i
|
65 |
-
|
66 |
-
special_tokens = {
|
67 |
-
ENDOFTEXT: 100257,
|
68 |
-
FIM_PREFIX: 100258,
|
69 |
-
FIM_MIDDLE: 100259,
|
70 |
-
FIM_SUFFIX: 100260,
|
71 |
-
**custom_special_tokens,
|
72 |
-
ENDOFPROMPT: 100276,
|
73 |
}
|
74 |
|
|
|
|
|
|
|
|
|
75 |
return {
|
76 |
"name": NAME,
|
77 |
"pat_str": r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+""",
|
78 |
"mergeable_ranks": mergeable_ranks,
|
79 |
-
"special_tokens":
|
80 |
}
|
81 |
|
82 |
|
@@ -108,41 +118,44 @@ class Arcade100kTokenizer(PreTrainedTokenizer):
|
|
108 |
self.tokenizer = tiktoken.Encoding(**self._tiktoken_config)
|
109 |
# TODO: Remove this assertion
|
110 |
assert (
|
111 |
-
len(self.
|
112 |
-
+ len(self.
|
113 |
== self.tokenizer.n_vocab
|
114 |
-
), f"{len(self.
|
115 |
|
116 |
self.decoder = {
|
117 |
-
i: n for n, i in self.
|
118 |
}
|
119 |
self.decoder.update(
|
120 |
-
{i: n for n, i in self.
|
121 |
)
|
122 |
self.eos_token = self.decoder[self.tokenizer.eot_token]
|
123 |
self.pad_token = self.decoder[self.tokenizer.eot_token]
|
124 |
|
|
|
|
|
|
|
125 |
@property
|
126 |
def vocab_size(self):
|
127 |
return self.tokenizer.n_vocab
|
128 |
|
129 |
def get_vocab(self) -> Dict[bytes, int]:
|
130 |
-
return self.
|
131 |
|
132 |
def convert_tokens_to_ids(
|
133 |
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
134 |
) -> List[int]:
|
135 |
ids = []
|
136 |
if isinstance(tokens, (str, bytes)):
|
137 |
-
if tokens in self.
|
138 |
-
return self.
|
139 |
else:
|
140 |
-
return self.
|
141 |
for token in tokens:
|
142 |
-
if token in self.
|
143 |
-
ids.append(self.
|
144 |
else:
|
145 |
-
ids.append(self.
|
146 |
return ids
|
147 |
|
148 |
def _add_tokens(
|
@@ -167,7 +180,7 @@ class Arcade100kTokenizer(PreTrainedTokenizer):
|
|
167 |
"""
|
168 |
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
169 |
with open(file_path, "w", encoding="utf8") as w:
|
170 |
-
for k, v in self.
|
171 |
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
172 |
w.write(line)
|
173 |
return (file_path,)
|
@@ -236,10 +249,10 @@ class Arcade100kTokenizer(PreTrainedTokenizer):
|
|
236 |
|
237 |
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
238 |
"""Converts a token to an id using the vocab, special tokens included"""
|
239 |
-
if token in self.
|
240 |
-
return self.
|
241 |
-
if token in self.
|
242 |
-
return self.
|
243 |
raise ValueError("unknown token")
|
244 |
|
245 |
def _tokenize(self, text: str, **kwargs):
|
@@ -262,4 +275,4 @@ class Arcade100kTokenizer(PreTrainedTokenizer):
|
|
262 |
token_ids = [token_ids]
|
263 |
if skip_special_tokens:
|
264 |
token_ids = [i for i in token_ids if i < self.tokenizer.eot_token]
|
265 |
-
return self.tokenizer.decode(token_ids
|
|
|
41 |
def _arcade100k(vocab_file: str):
|
42 |
mergeable_ranks = _load_tiktoken_bpe(vocab_file)
|
43 |
|
|
|
44 |
ENDOFTEXT = "<|endoftext|>"
|
45 |
+
# StarCoder special tokens (https://huggingface.co/bigcode/starcoder/blob/main/tokenizer_config.json)
|
46 |
+
CODE = [
|
47 |
+
"<fim_prefix>",
|
48 |
+
"<fim_middle>",
|
49 |
+
"<fim_suffix>",
|
50 |
+
"<fim_pad>",
|
51 |
+
"<gh_stars>",
|
52 |
+
"<filename>",
|
53 |
+
"<issue_start>",
|
54 |
+
"<issue_comment>",
|
55 |
+
"<issue_closed>",
|
56 |
+
"<jupyter_start>",
|
57 |
+
"<jupyter_text>",
|
58 |
+
"<jupyter_code>",
|
59 |
+
"<jupyter_output>",
|
60 |
+
"<empty_output>",
|
61 |
+
"<commit_before>",
|
62 |
+
"<commit_msg>",
|
63 |
+
"<commit_after>",
|
64 |
+
"<reponame>"
|
65 |
+
]
|
66 |
+
CHAT = [
|
67 |
+
"<|im_start|>", # Chat: Input message start
|
68 |
+
"<|im_end|>", # Chat: Input message end
|
69 |
+
]
|
70 |
+
PAUSE = "<|pause|>" # Think before you speak (https://arxiv.org/abs/2310.02226)
|
71 |
+
REGISTERS = [f"<|reg{i}|>" for i in range(0, 8)] # Register 0 sink token (https://arxiv.org/abs/2309.17453)
|
72 |
ENDOFPROMPT = "<|endofprompt|>"
|
73 |
+
|
74 |
+
SPECIAL_TOKENS_NAMES = [ENDOFTEXT] + CODE + [ENDOFPROMPT] + CHAT + [PAUSE] + REGISTERS
|
75 |
+
START_ID = len(mergeable_ranks) + 1
|
76 |
+
SPECIAL_TOKENS = {
|
77 |
+
t: START_ID + i
|
78 |
+
for i, t in enumerate(SPECIAL_TOKENS_NAMES)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
}
|
80 |
|
81 |
+
print(len(mergeable_ranks))
|
82 |
+
print(len(SPECIAL_TOKENS))
|
83 |
+
print(len(mergeable_ranks) + len(SPECIAL_TOKENS))
|
84 |
+
|
85 |
return {
|
86 |
"name": NAME,
|
87 |
"pat_str": r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+""",
|
88 |
"mergeable_ranks": mergeable_ranks,
|
89 |
+
"special_tokens": SPECIAL_TOKENS,
|
90 |
}
|
91 |
|
92 |
|
|
|
118 |
self.tokenizer = tiktoken.Encoding(**self._tiktoken_config)
|
119 |
# TODO: Remove this assertion
|
120 |
assert (
|
121 |
+
len(self.tokenizer._mergeable_ranks)
|
122 |
+
+ len(self.tokenizer._special_tokens) + 1
|
123 |
== self.tokenizer.n_vocab
|
124 |
+
), f"{len(self.tokenizer._mergeable_ranks) + len(self.tokenizer._special_tokens)} != {self.tokenizer.n_vocab} in encoding"
|
125 |
|
126 |
self.decoder = {
|
127 |
+
i: n for n, i in self.tokenizer._mergeable_ranks.items()
|
128 |
}
|
129 |
self.decoder.update(
|
130 |
+
{i: n for n, i in self.tokenizer._special_tokens.items()}
|
131 |
)
|
132 |
self.eos_token = self.decoder[self.tokenizer.eot_token]
|
133 |
self.pad_token = self.decoder[self.tokenizer.eot_token]
|
134 |
|
135 |
+
def __len__(self):
|
136 |
+
return self.tokenizer.n_vocab
|
137 |
+
|
138 |
@property
|
139 |
def vocab_size(self):
|
140 |
return self.tokenizer.n_vocab
|
141 |
|
142 |
def get_vocab(self) -> Dict[bytes, int]:
|
143 |
+
return self.tokenizer._mergeable_ranks
|
144 |
|
145 |
def convert_tokens_to_ids(
|
146 |
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
147 |
) -> List[int]:
|
148 |
ids = []
|
149 |
if isinstance(tokens, (str, bytes)):
|
150 |
+
if tokens in self.tokenizer._special_tokens:
|
151 |
+
return self.tokenizer._special_tokens[tokens]
|
152 |
else:
|
153 |
+
return self.tokenizer._mergeable_ranks.get(tokens)
|
154 |
for token in tokens:
|
155 |
+
if token in self.tokenizer._special_tokens:
|
156 |
+
ids.append(self.tokenizer._special_tokens[token])
|
157 |
else:
|
158 |
+
ids.append(self.tokenizer._mergeable_ranks.get(token))
|
159 |
return ids
|
160 |
|
161 |
def _add_tokens(
|
|
|
180 |
"""
|
181 |
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
182 |
with open(file_path, "w", encoding="utf8") as w:
|
183 |
+
for k, v in self.tokenizer._mergeable_ranks.items():
|
184 |
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
185 |
w.write(line)
|
186 |
return (file_path,)
|
|
|
249 |
|
250 |
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
251 |
"""Converts a token to an id using the vocab, special tokens included"""
|
252 |
+
if token in self.tokenizer._special_tokens:
|
253 |
+
return self.tokenizer._special_tokens[token]
|
254 |
+
if token in self.tokenizer._mergeable_ranks:
|
255 |
+
return self.tokenizer._mergeable_ranks[token]
|
256 |
raise ValueError("unknown token")
|
257 |
|
258 |
def _tokenize(self, text: str, **kwargs):
|
|
|
275 |
token_ids = [token_ids]
|
276 |
if skip_special_tokens:
|
277 |
token_ids = [i for i in token_ids if i < self.tokenizer.eot_token]
|
278 |
+
return self.tokenizer.decode(token_ids)
|