File size: 1,408 Bytes
4c04be1 4f4670a 4c04be1 2f2c6bc ce691da 4c04be1 cb5d3fd 2f2c6bc 78e2ff4 4c04be1 2f2c6bc 4c04be1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
from typing import Dict
from faster_whisper import WhisperModel
import io
class EndpointHandler:
def __init__(self, model_dir=None):
# Set model size, assuming installation has been done with appropriate model files and setup
model_size = "medium" if model_dir is None else model_dir
# Change to 'cuda' to use the GPU, and set compute_type for faster computation
self.model = WhisperModel(model_size, device="cuda", compute_type="float16")
def __call__(self, data: Dict) -> Dict[str, str]:
# Process the input data expected to be in 'inputs' key containing audio file bytes
audio_bytes = data["inputs"]
# Convert bytes to a file-like object
audio_file = io.BytesIO(audio_bytes)
# Perform transcription using the model
segments, info = self.model.transcribe(audio_file)
# Compile the results into a text string and extract language information
# Strip whitespace from each segment before joining them
text = " ".join(segment.text.strip() for segment in segments)
language_code = info.language
language_prob = info.language_probability
# Compile the response dictionary
result = {
"text": text,
"language": language_code,
"language_probability": language_prob
}
return result |