Remek commited on
Commit
211251b
·
verified ·
1 Parent(s): db99988

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - pl
4
+ license: apache-2.0
5
+ library_name: transformers
6
+ tags:
7
+ - finetuned
8
+ - gguf
9
+ - 8bit
10
+ inference: false
11
+ pipeline_tag: text-generation
12
+ ---
13
+ <p align="center">
14
+ <img src="https://huggingface.co/speakleash/Bielik-7B-Instruct-v0.1-GGUF/raw/main/speakleash_cyfronet.png">
15
+ </p>
16
+
17
+ # Bielik-11B-v2.2-Instruct-FP8
18
+
19
+ This model was obtained by quantizing the weights and activations of [Bielik-11B-v.2.2-Instruct](https://huggingface.co/speakleash/Bielik-11B-v2.2-Instruct) to FP8 data type, ready for inference with vLLM >= 0.5.0.
20
+ AutoFP8 is used for quantization. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
21
+ Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a single linear scaling maps the FP8 representations of the quantized weights and activations.
22
+ FP8 compuation is supported on Nvidia GPUs with compute capability > 8.9 (Ada Lovelace, Hopper).
23
+
24
+
25
+ ## Use with vLLM
26
+
27
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
28
+
29
+ ```python
30
+ from vllm import LLM, SamplingParams
31
+ from transformers import AutoTokenizer
32
+
33
+ model_id = "speakleash/Bielik-11B-v2.2-Instruct-FP8"
34
+
35
+ sampling_params = SamplingParams(temperature=0.2, top_p=0.95, max_tokens=4096)
36
+
37
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
38
+
39
+ messages = [
40
+ {"role": "system", "content": "Jesteś pomocnym asystentem Bielik."},
41
+ {"role": "user", "content": "Kim był Mikołaj Kopernik i z czego zasłynął?"},
42
+ ]
43
+
44
+ prompts = tokenizer.apply_chat_template(messages, tokenize=False)
45
+
46
+ llm = LLM(model=model_id, max_model_len=4096)
47
+
48
+ outputs = llm.generate(prompts, sampling_params)
49
+
50
+ generated_text = outputs[0].outputs[0].text
51
+ print(generated_text)
52
+ ```
53
+
54
+ vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
55
+
56
+ ### Model description:
57
+
58
+ * **Developed by:** [SpeakLeash](https://speakleash.org/) & [ACK Cyfronet AGH](https://www.cyfronet.pl/)
59
+ * **Language:** Polish
60
+ * **Model type:** causal decoder-only
61
+ * **Quant from:** [Bielik-11B-v2.2-Instruct](https://huggingface.co/speakleash/Bielik-11B-v2.2-Instruct)
62
+ * **Finetuned from:** [Bielik-11B-v2](https://huggingface.co/speakleash/Bielik-11B-v2)
63
+ * **License:** apache-2.0
64
+
65
+ ### Responsible for model quantization
66
+ * [Remigiusz Kinas](https://www.linkedin.com/in/remigiusz-kinas/)<sup>SpeakLeash</sup> - team leadership, conceptualizing, calibration data preparation, process creation and quantized model delivery.
67
+
68
+ ## Contact Us
69
+
70
+ If you have any questions or suggestions, please use the discussion tab. If you want to contact us directly, join our [Discord SpeakLeash](https://discord.gg/CPBxPce4).