File size: 83,309 Bytes
240a804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:99000
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
base_model: distilbert/distilbert-base-uncased
widget:
- text: Rollin' (Limp Bizkit song) The music video was filmed atop the South Tower
    of the former World Trade Center in New York City. The introduction features Ben
    Stiller and Stephen Dorff mistaking Fred Durst for the valet and giving him the
    keys to their Bentley Azure. Also making a cameo is break dancer Mr. Wiggles.
    The rest of the video has several cuts to Durst and his bandmates hanging out
    of the Bentley as they drive about Manhattan. The song Ben Stiller is playing
    at the beginning is "My Generation" from the same album. The video also features
    scenes of Fred Durst with five girls dancing in a room. The video was filmed around
    the same time as the film Zoolander, which explains Stiller and Dorff's appearance.
    Fred Durst has a small cameo in that film.
- text: 'Maze Runner: The Death Cure On April 22, 2017, the studio delayed the release
    date once again, to February 9, 2018, in order to allow more time for post-production;
    months later, on August 25, the studio moved the release forward two weeks.[17]
    The film will premiere on January 26, 2018 in 3D, IMAX and IMAX 3D.[18][19]'
- text: who played the dj in the movie the warriors
- text: Lionel Messi Born and raised in central Argentina, Messi was diagnosed with
    a growth hormone deficiency as a child. At age 13, he relocated to Spain to join
    Barcelona, who agreed to pay for his medical treatment. After a fast progression
    through Barcelona's youth academy, Messi made his competitive debut aged 17 in
    October 2004. Despite being injury-prone during his early career, he established
    himself as an integral player for the club within the next three years, finishing
    2007 as a finalist for both the Ballon d'Or and FIFA World Player of the Year
    award, a feat he repeated the following year. His first uninterrupted campaign
    came in the 2008–09 season, during which he helped Barcelona achieve the first
    treble in Spanish football. At 22 years old, Messi won the Ballon d'Or and FIFA
    World Player of the Year award by record voting margins.
- text: 'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim
    for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman''s
    film Smiles of a Summer Night. It is a ballad from Act Two, in which the character
    Desirée reflects on the ironies and disappointments of her life. Among other things,
    she looks back on an affair years earlier with the lawyer Fredrik, who was deeply
    in love with her but whose marriage proposals she had rejected. Meeting him after
    so long, she realizes she is in love with him and finally ready to marry him,
    but now it is he who rejects her: he is in an unconsummated marriage with a much
    younger woman. Desirée proposes marriage to rescue him from this situation, but
    he declines, citing his dedication to his bride. Reacting to his rejection, Desirée
    sings this song. The song is later reprised as a coda after Fredrik''s young wife
    runs away with his son, and Fredrik is finally free to accept Desirée''s offer.[1]'
datasets:
- sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 2.229070129979357
  energy_consumed: 0.0397771218255029
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: AMD Ryzen 9 6900HX with Radeon Graphics
  ram_total_size: 30.6114501953125
  hours_used: 0.322
  hardware_used: 1 x NVIDIA GeForce RTX 3070 Ti Laptop GPU
model-index:
- name: splade-distilbert-base-uncased trained on Natural Questions
  results:
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: dot_accuracy@1
      value: 0.28
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.66
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.74
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.28
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.16666666666666663
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.132
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07400000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.28
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.5
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.66
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.74
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.49577037509991184
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4185238095238094
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.4294303031277172
      name: Dot Map@100
    - type: query_active_dims
      value: 52.560001373291016
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9982779633912164
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 106.13404846191406
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9965227033463759
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.28
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.66
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.74
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.28
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.16666666666666663
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.132
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07400000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.28
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.5
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.66
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.74
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.49577037509991184
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4185238095238094
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.4294303031277172
      name: Dot Map@100
    - type: query_active_dims
      value: 52.560001373291016
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9982779633912164
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 106.13404846191406
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9965227033463759
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: dot_accuracy@1
      value: 0.38
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.46
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.52
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.62
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.38
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.31999999999999995
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.292
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.236
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.0242331024704017
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.053060546044216006
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.07273890139350063
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.09593681264940912
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.2784960942139155
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4393888888888889
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.11744499575471842
      name: Dot Map@100
    - type: query_active_dims
      value: 62.5
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9979522967040168
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 126.24652862548828
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9958637530756345
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.38
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.46
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.52
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.62
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.38
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.31999999999999995
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.292
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.236
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.0242331024704017
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.053060546044216006
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.07273890139350063
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.09593681264940912
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.2784960942139155
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4393888888888889
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.11744499575471842
      name: Dot Map@100
    - type: query_active_dims
      value: 62.5
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9979522967040168
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 126.24652862548828
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9958637530756345
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: dot_accuracy@1
      value: 0.36
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.58
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.66
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.76
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.36
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.14
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.34
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.56
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.64
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.72
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5341909779287488
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4836666666666667
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.47986132889672267
      name: Dot Map@100
    - type: query_active_dims
      value: 45.63999938964844
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9985046851651384
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 104.37854766845703
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9965802192625498
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.36
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.58
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.66
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.76
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.36
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.14
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.34
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.56
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.64
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.72
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5341909779287488
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4836666666666667
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.47986132889672267
      name: Dot Map@100
    - type: query_active_dims
      value: 45.63999938964844
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9985046851651384
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 104.37854766845703
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9965802192625498
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-nano-beir
      name: Sparse Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: dot_accuracy@1
      value: 0.34
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5133333333333333
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.6133333333333334
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.7066666666666667
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.34
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.22888888888888884
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.18800000000000003
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.13
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.21474436749013393
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.3710201820147387
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.45757963379783356
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.5186456042164697
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.436152482414192
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4471931216931217
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.3422455425930528
      name: Dot Map@100
    - type: query_active_dims
      value: 53.56666692097982
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9982449817534571
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 110.01350571216182
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9963955997080087
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.44241758241758244
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.6319937205651491
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.6982103610675039
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.7922762951334378
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.44241758241758244
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.28906331763474624
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.22349764521193094
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.1596828885400314
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.24762543099163964
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.4029567497606036
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.47356029516066417
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.5593700517107145
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.4973635297458972
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5535014203483591
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.41852441580546024
      name: Dot Map@100
    - type: query_active_dims
      value: 70.98613267025705
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9976742633945921
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 109.8632523295962
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.996400522497556
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoClimateFEVER
      type: NanoClimateFEVER
    metrics:
    - type: dot_accuracy@1
      value: 0.26
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.42
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.48
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.62
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.26
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.15333333333333332
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.10800000000000001
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07800000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.12499999999999999
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.20166666666666663
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.24
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.32166666666666666
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.26602915512735714
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.3617857142857142
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.2080211358638896
      name: Dot Map@100
    - type: query_active_dims
      value: 89.9000015258789
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.997054583529065
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 107.88761901855469
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9964652506710387
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoDBPedia
      type: NanoDBPedia
    metrics:
    - type: dot_accuracy@1
      value: 0.62
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.82
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.86
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.92
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.62
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.5266666666666667
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.4640000000000001
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.43199999999999994
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.07037508003753436
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.1332476350020503
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.17834335811098734
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.3023813591870427
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5284701506717093
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.7312222222222222
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.39806509167251636
      name: Dot Map@100
    - type: query_active_dims
      value: 48.779998779296875
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9984018085715453
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 112.2790756225586
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9963213722684438
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoFEVER
      type: NanoFEVER
    metrics:
    - type: dot_accuracy@1
      value: 0.54
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.72
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.82
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.92
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.54
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.24
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.16799999999999998
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09599999999999997
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.5266666666666666
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.6866666666666665
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.7666666666666666
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.8766666666666667
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.696250000763901
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.6531666666666667
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.6383785103785103
      name: Dot Map@100
    - type: query_active_dims
      value: 82.72000122070312
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9972898236937061
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 121.61109161376953
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9960156250699899
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoFiQA2018
      type: NanoFiQA2018
    metrics:
    - type: dot_accuracy@1
      value: 0.22
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.42
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.44
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.54
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.22
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.16666666666666663
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.11200000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07200000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.12335714285714286
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.29043650793650794
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.3084365079365079
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.38043650793650796
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.2842623648908474
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.3184126984126985
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.24328509002216755
      name: Dot Map@100
    - type: query_active_dims
      value: 52.91999816894531
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9982661687252163
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 104.23889923095703
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9965847945996016
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoHotpotQA
      type: NanoHotpotQA
    metrics:
    - type: dot_accuracy@1
      value: 0.74
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.9
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.9
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.98
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.74
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.41999999999999993
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.284
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.16399999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.37
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.63
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.71
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.82
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.7250698177423742
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.8267222222222221
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.63152024851727
      name: Dot Map@100
    - type: query_active_dims
      value: 69.81999969482422
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9977124697039897
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 134.8498992919922
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9955818786681085
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoQuoraRetrieval
      type: NanoQuoraRetrieval
    metrics:
    - type: dot_accuracy@1
      value: 0.8
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.92
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.94
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.98
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.8
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.35999999999999993
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.23599999999999993
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.12999999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.7240000000000001
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.8613333333333333
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.9059999999999999
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.9633333333333333
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.8826618022083887
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.8673809523809524
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.8507124011593389
      name: Dot Map@100
    - type: query_active_dims
      value: 49.619998931884766
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9983742874342479
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 54.11692428588867
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.998226953532341
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoSCIDOCS
      type: NanoSCIDOCS
    metrics:
    - type: dot_accuracy@1
      value: 0.44
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.62
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.66
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.76
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.44
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2733333333333334
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.22
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.16399999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.09166666666666666
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.16866666666666666
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.22566666666666665
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.3356666666666666
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.326903742587538
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5351904761904761
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.24963439583895705
      name: Dot Map@100
    - type: query_active_dims
      value: 86.16000366210938
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9971771180243068
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 115.15058898925781
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9962272921502766
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoArguAna
      type: NanoArguAna
    metrics:
    - type: dot_accuracy@1
      value: 0.1
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.52
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.66
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.78
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.1
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.17333333333333337
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.132
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07800000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.1
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.52
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.66
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.78
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.44166045098306866
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.3330793650793652
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.33989533146591966
      name: Dot Map@100
    - type: query_active_dims
      value: 119.26000213623047
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9960926544087468
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 117.85887145996094
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9961385600072092
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoSciFact
      type: NanoSciFact
    metrics:
    - type: dot_accuracy@1
      value: 0.44
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.54
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.64
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.7
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.44
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.14400000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07800000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.405
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.525
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.63
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.68
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5538495558550187
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5216904761904761
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.5176733402786808
      name: Dot Map@100
    - type: query_active_dims
      value: 111.37999725341797
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9963508290002812
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 109.96676635742188
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9963971310413007
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoTouche2020
      type: NanoTouche2020
    metrics:
    - type: dot_accuracy@1
      value: 0.5714285714285714
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.7959183673469388
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.8367346938775511
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.9795918367346939
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.5714285714285714
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.5578231292517006
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.4734693877551021
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.3938775510204081
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.03883194419290252
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.10835972457173955
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.15843173631430588
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.25572265913299697
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.4521113986238841
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.7052883057985098
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.33689523249457515
      name: Dot Map@100
    - type: query_active_dims
      value: 51.163265228271484
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9983237250105409
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 122.40800476074219
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9959895156031472
      name: Corpus Sparsity Ratio
---

# splade-distilbert-base-uncased trained on Natural Questions

This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space   and can be used for semantic search and sparse retrieval.
## Model Details

### Model Description
- **Model Type:** SPLADE Sparse Encoder
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
- **Training Dataset:**
    - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)

### Full Model Architecture

```
SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("arthurbresnu/splade-distilbert-base-uncased-nq")
# Run inference
sentences = [
    'is send in the clowns from a musical',
    'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman\'s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik\'s young wife runs away with his son, and Fredrik is finally free to accept Desirée\'s offer.[1]',
    'The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off of the Disney Channel Original Series The Suite Life of Zack & Cody. The series follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in a new setting, the SS Tipton, where they attend classes at "Seven Seas High School" and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around the world to nations such as Italy, France, Greece, India, Sweden and the United Kingdom where the characters experience different cultures, adventures, and situations.[1]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 30522)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Sparse Information Retrieval

* Datasets: `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)

| Metric                | NanoMSMARCO | NanoNFCorpus | NanoNQ     | NanoClimateFEVER | NanoDBPedia | NanoFEVER  | NanoFiQA2018 | NanoHotpotQA | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|:----------------------|:------------|:-------------|:-----------|:-----------------|:------------|:-----------|:-------------|:-------------|:-------------------|:------------|:------------|:------------|:---------------|
| dot_accuracy@1        | 0.28        | 0.38         | 0.36       | 0.26             | 0.62        | 0.54       | 0.22         | 0.74         | 0.8                | 0.44        | 0.1         | 0.44        | 0.5714         |
| dot_accuracy@3        | 0.5         | 0.46         | 0.58       | 0.42             | 0.82        | 0.72       | 0.42         | 0.9          | 0.92               | 0.62        | 0.52        | 0.54        | 0.7959         |
| dot_accuracy@5        | 0.66        | 0.52         | 0.66       | 0.48             | 0.86        | 0.82       | 0.44         | 0.9          | 0.94               | 0.66        | 0.66        | 0.64        | 0.8367         |
| dot_accuracy@10       | 0.74        | 0.62         | 0.76       | 0.62             | 0.92        | 0.92       | 0.54         | 0.98         | 0.98               | 0.76        | 0.78        | 0.7         | 0.9796         |
| dot_precision@1       | 0.28        | 0.38         | 0.36       | 0.26             | 0.62        | 0.54       | 0.22         | 0.74         | 0.8                | 0.44        | 0.1         | 0.44        | 0.5714         |
| dot_precision@3       | 0.1667      | 0.32         | 0.2        | 0.1533           | 0.5267      | 0.24       | 0.1667       | 0.42         | 0.36               | 0.2733      | 0.1733      | 0.2         | 0.5578         |
| dot_precision@5       | 0.132       | 0.292        | 0.14       | 0.108            | 0.464       | 0.168      | 0.112        | 0.284        | 0.236              | 0.22        | 0.132       | 0.144       | 0.4735         |
| dot_precision@10      | 0.074       | 0.236        | 0.08       | 0.078            | 0.432       | 0.096      | 0.072        | 0.164        | 0.13               | 0.164       | 0.078       | 0.078       | 0.3939         |
| dot_recall@1          | 0.28        | 0.0242       | 0.34       | 0.125            | 0.0704      | 0.5267     | 0.1234       | 0.37         | 0.724              | 0.0917      | 0.1         | 0.405       | 0.0388         |
| dot_recall@3          | 0.5         | 0.0531       | 0.56       | 0.2017           | 0.1332      | 0.6867     | 0.2904       | 0.63         | 0.8613             | 0.1687      | 0.52        | 0.525       | 0.1084         |
| dot_recall@5          | 0.66        | 0.0727       | 0.64       | 0.24             | 0.1783      | 0.7667     | 0.3084       | 0.71         | 0.906              | 0.2257      | 0.66        | 0.63        | 0.1584         |
| dot_recall@10         | 0.74        | 0.0959       | 0.72       | 0.3217           | 0.3024      | 0.8767     | 0.3804       | 0.82         | 0.9633             | 0.3357      | 0.78        | 0.68        | 0.2557         |
| **dot_ndcg@10**       | **0.4958**  | **0.2785**   | **0.5342** | **0.266**        | **0.5285**  | **0.6963** | **0.2843**   | **0.7251**   | **0.8827**         | **0.3269**  | **0.4417**  | **0.5538**  | **0.4521**     |
| dot_mrr@10            | 0.4185      | 0.4394       | 0.4837     | 0.3618           | 0.7312      | 0.6532     | 0.3184       | 0.8267       | 0.8674             | 0.5352      | 0.3331      | 0.5217      | 0.7053         |
| dot_map@100           | 0.4294      | 0.1174       | 0.4799     | 0.208            | 0.3981      | 0.6384     | 0.2433       | 0.6315       | 0.8507             | 0.2496      | 0.3399      | 0.5177      | 0.3369         |
| query_active_dims     | 52.56       | 62.5         | 45.64      | 89.9             | 48.78       | 82.72      | 52.92        | 69.82        | 49.62              | 86.16       | 119.26      | 111.38      | 51.1633        |
| query_sparsity_ratio  | 0.9983      | 0.998        | 0.9985     | 0.9971           | 0.9984      | 0.9973     | 0.9983       | 0.9977       | 0.9984             | 0.9972      | 0.9961      | 0.9964      | 0.9983         |
| corpus_active_dims    | 106.134     | 126.2465     | 104.3785   | 107.8876         | 112.2791    | 121.6111   | 104.2389     | 134.8499     | 54.1169            | 115.1506    | 117.8589    | 109.9668    | 122.408        |
| corpus_sparsity_ratio | 0.9965      | 0.9959       | 0.9966     | 0.9965           | 0.9963      | 0.996      | 0.9966       | 0.9956       | 0.9982             | 0.9962      | 0.9961      | 0.9964      | 0.996          |

#### Sparse Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "msmarco",
          "nfcorpus",
          "nq"
      ]
  }
  ```

| Metric                | Value      |
|:----------------------|:-----------|
| dot_accuracy@1        | 0.34       |
| dot_accuracy@3        | 0.5133     |
| dot_accuracy@5        | 0.6133     |
| dot_accuracy@10       | 0.7067     |
| dot_precision@1       | 0.34       |
| dot_precision@3       | 0.2289     |
| dot_precision@5       | 0.188      |
| dot_precision@10      | 0.13       |
| dot_recall@1          | 0.2147     |
| dot_recall@3          | 0.371      |
| dot_recall@5          | 0.4576     |
| dot_recall@10         | 0.5186     |
| **dot_ndcg@10**       | **0.4362** |
| dot_mrr@10            | 0.4472     |
| dot_map@100           | 0.3422     |
| query_active_dims     | 53.5667    |
| query_sparsity_ratio  | 0.9982     |
| corpus_active_dims    | 110.0135   |
| corpus_sparsity_ratio | 0.9964     |

#### Sparse Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "climatefever",
          "dbpedia",
          "fever",
          "fiqa2018",
          "hotpotqa",
          "msmarco",
          "nfcorpus",
          "nq",
          "quoraretrieval",
          "scidocs",
          "arguana",
          "scifact",
          "touche2020"
      ]
  }
  ```

| Metric                | Value      |
|:----------------------|:-----------|
| dot_accuracy@1        | 0.4424     |
| dot_accuracy@3        | 0.632      |
| dot_accuracy@5        | 0.6982     |
| dot_accuracy@10       | 0.7923     |
| dot_precision@1       | 0.4424     |
| dot_precision@3       | 0.2891     |
| dot_precision@5       | 0.2235     |
| dot_precision@10      | 0.1597     |
| dot_recall@1          | 0.2476     |
| dot_recall@3          | 0.403      |
| dot_recall@5          | 0.4736     |
| dot_recall@10         | 0.5594     |
| **dot_ndcg@10**       | **0.4974** |
| dot_mrr@10            | 0.5535     |
| dot_map@100           | 0.4185     |
| query_active_dims     | 70.9861    |
| query_sparsity_ratio  | 0.9977     |
| corpus_active_dims    | 109.8633   |
| corpus_sparsity_ratio | 0.9964     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### natural-questions

* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 99,000 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                              | answer                                                                              |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                              |
  | details | <ul><li>min: 10 tokens</li><li>mean: 11.71 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 131.81 tokens</li><li>max: 450 tokens</li></ul> |
* Samples:
  | query                                                         | answer                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>who played the father in papa don't preach</code>       | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code>                                                                                                                                                                                                                                                                                                                                                     |
  | <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> |
  | <code>how many puppies can a dog give birth to</code>         | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code>                                                                                                                                                                                                                                                      |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json
  {
      "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
      "lambda_corpus": 3e-05,
      "lambda_query": 5e-05
  }
  ```

### Evaluation Dataset

#### natural-questions

* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 1,000 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                              | answer                                                                               |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 11.69 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 134.01 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | query                                                  | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
  |:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> |
  | <code>what kind of car does jay gatsby drive</code>    | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code>                                       |
  | <code>who sings if i can dream about you</code>        | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code>                                                                                                                                                                                                                   |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json
  {
      "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
      "lambda_corpus": 3e-05,
      "lambda_query": 5e-05
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 12
- `per_device_eval_batch_size`: 12
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `bf16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 12
- `per_device_eval_batch_size`: 12
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step     | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |
|:-------:|:--------:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|:----------------------------:|:-----------------------:|:---------------------:|:------------------------:|:------------------------:|:------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:--------------------------:|
| 0.0242  | 200      | 6.3626        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.0485  | 400      | 0.0957        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.0727  | 600      | 0.0927        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.0970  | 800      | 0.0588        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.1212  | 1000     | 0.0408        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.1455  | 1200     | 0.0515        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.1697  | 1400     | 0.0517        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.1939  | 1600     | 0.0213        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.2     | 1650     | -             | 0.0520          | 0.4929                  | 0.2618                   | 0.4572             | 0.4040                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.2182  | 1800     | 0.019         | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.2424  | 2000     | 0.0333        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.2667  | 2200     | 0.0282        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.2909  | 2400     | 0.0418        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.3152  | 2600     | 0.0386        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.3394  | 2800     | 0.0289        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.3636  | 3000     | 0.0242        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.3879  | 3200     | 0.0335        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.4     | 3300     | -             | 0.0360          | 0.4715                  | 0.2808                   | 0.5340             | 0.4288                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.4121  | 3400     | 0.0264        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.4364  | 3600     | 0.0331        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.4606  | 3800     | 0.0339        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.4848  | 4000     | 0.0225        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.5091  | 4200     | 0.0164        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.5333  | 4400     | 0.0247        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.5576  | 4600     | 0.0213        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.5818  | 4800     | 0.0187        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.6     | 4950     | -             | 0.0217          | 0.4901                  | 0.2930                   | 0.5072             | 0.4301                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.6061  | 5000     | 0.0153        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.6303  | 5200     | 0.0186        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.6545  | 5400     | 0.0096        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.6788  | 5600     | 0.0115        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.7030  | 5800     | 0.0255        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.7273  | 6000     | 0.0219        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.7515  | 6200     | 0.033         | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.7758  | 6400     | 0.0199        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8     | 6600     | 0.0175        | 0.0224          | 0.4700                  | 0.2743                   | 0.5136             | 0.4193                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8242  | 6800     | 0.0236        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8485  | 7000     | 0.0145        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8727  | 7200     | 0.0372        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8970  | 7400     | 0.0107        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9212  | 7600     | 0.0131        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9455  | 7800     | 0.0127        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9697  | 8000     | 0.0207        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9939  | 8200     | 0.0217        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| **1.0** | **8250** | **-**         | **0.0219**      | **0.4958**              | **0.2785**               | **0.5342**         | **0.4362**                | **-**                        | **-**                   | **-**                 | **-**                    | **-**                    | **-**                          | **-**                   | **-**                   | **-**                   | **-**                      |
| -1      | -1       | -             | -               | 0.4958                  | 0.2785                   | 0.5342             | 0.4974                    | 0.2660                       | 0.5285                  | 0.6963                | 0.2843                   | 0.7251                   | 0.8827                         | 0.3269                  | 0.4417                  | 0.5538                  | 0.4521                     |

* The bold row denotes the saved checkpoint.

### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.040 kWh
- **Carbon Emitted**: 0.002 kg of CO2
- **Hours Used**: 0.322 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3070 Ti Laptop GPU
- **CPU Model**: AMD Ryzen 9 6900HX with Radeon Graphics
- **RAM Size**: 30.61 GB

### Framework Versions
- Python: 3.12.9
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.50.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### SpladeLoss
```bibtex
@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}
```

#### SparseMultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

#### FlopsLoss
```bibtex
@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
    }
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->