File size: 89,703 Bytes
2e04eb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:90000
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
base_model: distilbert/distilbert-base-uncased
widget:
- text: what is chess
- text: what is a hickman for?
- text: 'Steps. 1  1. Gather your materials. Here''s what you need to build two regulations-size
    horseshoe pits that will face each other (if you only want to build one pit, halve
    the materials): Two 6-foot-long treated wood 2x6s (38mm x 140mm), cut in half.
    2  2. Decide where you''re going to put your pit(s).'
- text: who played at california jam
- text: "To the Citizens of St. Bernard We chose as our motto a simple but profound\
    \ declaration: â\x80\x9CWelcome to your office.â\x80\x9D Those words remind us\
    \ that we are no more than the caretakers of the office of Clerk of Court for\
    \ the Parish of St. Bernard."
datasets:
- sentence-transformers/msmarco
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 20.864216098626564
  energy_consumed: 0.05652200756224921
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: AMD EPYC 7R13 Processor
  ram_total_size: 248.0
  hours_used: 0.179
  hardware_used: 1 x NVIDIA H100 80GB HBM3
model-index:
- name: splade-distilbert-base-uncased trained on MS MARCO triplets
  results:
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: dot_accuracy@1
      value: 0.44
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.66
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.72
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.82
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.44
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.22
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.14400000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08199999999999999
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.44
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.66
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.72
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.82
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6223979987260191
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5599444444444444
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.5701364200315813
      name: Dot Map@100
    - type: query_active_dims
      value: 25.260000228881836
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9991724002283965
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 89.06385040283203
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9970819785596348
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.44
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.6
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.74
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.84
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.44
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.14800000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08399999999999999
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.44
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.6
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.74
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.84
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6241753240638171
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5571349206349206
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.5639260419913368
      name: Dot Map@100
    - type: query_active_dims
      value: 20.5
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9993283533189175
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 81.87666320800781
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9973174541901578
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: dot_accuracy@1
      value: 0.4
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.52
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.54
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.66
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.4
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.3666666666666667
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.332
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.27
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.023282599806398227
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.07519782108259539
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.09254782270412643
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.12120665375595915
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.32050254842735026
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4703888888888889
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.13331879084552362
      name: Dot Map@100
    - type: query_active_dims
      value: 17.639999389648438
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9994220562417387
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 165.31358337402344
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9945837892872674
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.36
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.46
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.54
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.68
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.36
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.34
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.32799999999999996
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.27
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.02081925669789383
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.07064967781220355
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.09055307754310991
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.14403725441385476
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.3196380424829849
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4414444444444445
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.13569627052041464
      name: Dot Map@100
    - type: query_active_dims
      value: 18.299999237060547
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9994004324999325
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 156.04843139648438
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9948873458031424
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: dot_accuracy@1
      value: 0.48
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.68
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.72
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.76
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.48
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.22666666666666668
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.14400000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08199999999999999
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.46
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.65
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.68
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.74
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6136977374010735
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.585079365079365
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.5730967720685111
      name: Dot Map@100
    - type: query_active_dims
      value: 24.299999237060547
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9992038529835181
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 103.79106140136719
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9965994672235972
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.48
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.68
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.74
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.76
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.48
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.22666666666666668
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.15200000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.47
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.64
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.7
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.73
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6150809765850531
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5864999999999999
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.5841443871983568
      name: Dot Map@100
    - type: query_active_dims
      value: 22.200000762939453
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9992726557642704
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 103.72532653808594
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9966016209115365
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-nano-beir
      name: Sparse Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: dot_accuracy@1
      value: 0.44
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.6200000000000001
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.66
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.7466666666666667
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.44
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.27111111111111114
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.2066666666666667
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.14466666666666664
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.30776086660213275
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.4617326070275318
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.49751594090137546
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.5604022179186531
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5188660948514809
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5384708994708994
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.42551732764853867
      name: Dot Map@100
    - type: query_active_dims
      value: 22.399999618530273
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9992661031512178
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 112.03345893951784
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9963294194699063
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.5241130298273154
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.6799372056514913
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.7415070643642072
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.8169230769230769
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.5241130298273154
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.3215384615384615
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.2547566718995291
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.17874411302982732
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.30856930592565196
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.4441119539769697
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.5092929381431597
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.5878231569460904
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5577320367017354
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.6173593605940545
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.48084758588880655
      name: Dot Map@100
    - type: query_active_dims
      value: 38.07395960627058
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9987525732387698
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 105.05153383516846
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9965581700466821
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoClimateFEVER
      type: NanoClimateFEVER
    metrics:
    - type: dot_accuracy@1
      value: 0.24
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.42
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.56
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.64
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.24
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.14666666666666664
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.12
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07400000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.11833333333333332
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.21166666666666664
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.26233333333333336
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.29966666666666664
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.25712162589613363
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.35861111111111116
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.20460406106488077
      name: Dot Map@100
    - type: query_active_dims
      value: 51.47999954223633
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9983133477641624
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 134.2989959716797
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9955999280528248
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoDBPedia
      type: NanoDBPedia
    metrics:
    - type: dot_accuracy@1
      value: 0.7
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.82
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.88
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.92
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.7
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.6133333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.58
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.52
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.05306233623739282
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.16391544714816778
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.23662708539883293
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.3543605851621492
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6137764330075132
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.771888888888889
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.4604772150699302
      name: Dot Map@100
    - type: query_active_dims
      value: 20.520000457763672
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.999327698038865
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 111.07841491699219
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9963607098185902
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoFEVER
      type: NanoFEVER
    metrics:
    - type: dot_accuracy@1
      value: 0.74
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.9
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.92
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.98
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.74
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.3133333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.19599999999999995
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.10399999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.7066666666666667
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.8666666666666667
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.8933333333333333
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.9433333333333332
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.8368149756149829
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.8170000000000001
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.7993556466302367
      name: Dot Map@100
    - type: query_active_dims
      value: 44.84000015258789
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9985308957423306
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 154.09767150878906
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9949512590423697
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoFiQA2018
      type: NanoFiQA2018
    metrics:
    - type: dot_accuracy@1
      value: 0.34
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.58
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.68
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.34
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.21333333333333332
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.17600000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.11199999999999999
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.1770793650793651
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.3069920634920635
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.3936825396825397
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.48673809523809525
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.3901649596140352
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4438809523809523
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.32670074884185174
      name: Dot Map@100
    - type: query_active_dims
      value: 18.920000076293945
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9993801192557403
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 75.49989318847656
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9975263779179453
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoHotpotQA
      type: NanoHotpotQA
    metrics:
    - type: dot_accuracy@1
      value: 0.88
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.92
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.94
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.96
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.88
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.4866666666666666
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.324
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.16999999999999996
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.44
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.73
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.81
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.85
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.8077539978128343
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.9041666666666667
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.74474463747389
      name: Dot Map@100
    - type: query_active_dims
      value: 43.880001068115234
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9985623484349612
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 120.78840637207031
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9960425789144856
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoQuoraRetrieval
      type: NanoQuoraRetrieval
    metrics:
    - type: dot_accuracy@1
      value: 0.84
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.92
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.94
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.96
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.84
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.32666666666666666
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.22
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.11999999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.7873333333333333
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.8540000000000001
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.898
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.9313333333333332
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.8841170132005264
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.8805555555555554
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.8625873756339163
      name: Dot Map@100
    - type: query_active_dims
      value: 18.760000228881836
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9993853613711787
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 20.381887435913086
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9993322230707059
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoSCIDOCS
      type: NanoSCIDOCS
    metrics:
    - type: dot_accuracy@1
      value: 0.42
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.6
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.64
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.76
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.42
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2866666666666667
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.21999999999999997
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.152
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.086
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.17666666666666664
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.22466666666666665
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.3116666666666667
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.31329169156104253
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5258253968253969
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.24015404586272074
      name: Dot Map@100
    - type: query_active_dims
      value: 38.599998474121094
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9987353384943936
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 120.28081512451172
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9960592092548158
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoArguAna
      type: NanoArguAna
    metrics:
    - type: dot_accuracy@1
      value: 0.1
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.34
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.46
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.66
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.1
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.11333333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.09200000000000001
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.06600000000000002
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.1
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.34
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.46
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.66
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.35624387960476495
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.2620238095238095
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.27408886435627244
      name: Dot Map@100
    - type: query_active_dims
      value: 121.0199966430664
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9960349912639058
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 107.16836547851562
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9964888157565521
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoSciFact
      type: NanoSciFact
    metrics:
    - type: dot_accuracy@1
      value: 0.6
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.72
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.72
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.78
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.6
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.24666666666666665
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.16399999999999998
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.088
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.565
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.68
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.71
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.77
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6798182226611048
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.6625
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.6532896014216637
      name: Dot Map@100
    - type: query_active_dims
      value: 57.41999816894531
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9981187340879056
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 158.03323364257812
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9948223172255234
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoTouche2020
      type: NanoTouche2020
    metrics:
    - type: dot_accuracy@1
      value: 0.673469387755102
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.9591836734693877
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.9795918367346939
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 1.0
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.673469387755102
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.6666666666666667
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.5918367346938777
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.4836734693877551
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.04710668568549065
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.13289821324817133
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.20161215990326012
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.3205651054850781
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5525193350177682
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.814139941690962
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.40124972048901353
      name: Dot Map@100
    - type: query_active_dims
      value: 18.12244987487793
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9994062495945587
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 84.7328109741211
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9972238774990461
      name: Corpus Sparsity Ratio
---

# splade-distilbert-base-uncased trained on MS MARCO triplets

This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space   and can be used for semantic search and sparse retrieval.
## Model Details

### Model Description
- **Model Type:** SPLADE Sparse Encoder
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
- **Training Dataset:**
    - [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)

### Full Model Architecture

```
SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("arthurbresnu/splade-distilbert-base-uncased-msmarco-mrl")
# Run inference
queries = [
    "meaning of the name bernard",
]
documents = [
    'English Meaning: The name Bernard is an English baby name. In English the meaning of the name Bernard is: Strong as a bear. See also Bjorn. American Meaning: The name Bernard is an American baby name. In American the meaning of the name Bernard is: Strong as a bear.',
    'To the Citizens of St. Bernard We chose as our motto a simple but profound declaration: â\x80\x9cWelcome to your office.â\x80\x9d Those words remind us that we are no more than the caretakers of the office of Clerk of Court for the Parish of St. Bernard.',
    "Get Your Prior Years Tax Information from the IRS. IRS Tax Tip 2012-18, January 27, 2012. Sometimes taxpayers need a copy of an old tax return, but can't find or don't have their own records. There are three easy and convenient options for getting tax return transcripts and tax account transcripts from the IRS: on the web, by phone or by mail.",
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[18.6221, 10.0646,  0.0000]])
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Sparse Information Retrieval

* Datasets: `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)

| Metric                | NanoMSMARCO | NanoNFCorpus | NanoNQ     | NanoClimateFEVER | NanoDBPedia | NanoFEVER  | NanoFiQA2018 | NanoHotpotQA | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|:----------------------|:------------|:-------------|:-----------|:-----------------|:------------|:-----------|:-------------|:-------------|:-------------------|:------------|:------------|:------------|:---------------|
| dot_accuracy@1        | 0.44        | 0.36         | 0.48       | 0.24             | 0.7         | 0.74       | 0.34         | 0.88         | 0.84               | 0.42        | 0.1         | 0.6         | 0.6735         |
| dot_accuracy@3        | 0.6         | 0.46         | 0.68       | 0.42             | 0.82        | 0.9        | 0.5          | 0.92         | 0.92               | 0.6         | 0.34        | 0.72        | 0.9592         |
| dot_accuracy@5        | 0.74        | 0.54         | 0.74       | 0.56             | 0.88        | 0.92       | 0.58         | 0.94         | 0.94               | 0.64        | 0.46        | 0.72        | 0.9796         |
| dot_accuracy@10       | 0.84        | 0.68         | 0.76       | 0.64             | 0.92        | 0.98       | 0.68         | 0.96         | 0.96               | 0.76        | 0.66        | 0.78        | 1.0            |
| dot_precision@1       | 0.44        | 0.36         | 0.48       | 0.24             | 0.7         | 0.74       | 0.34         | 0.88         | 0.84               | 0.42        | 0.1         | 0.6         | 0.6735         |
| dot_precision@3       | 0.2         | 0.34         | 0.2267     | 0.1467           | 0.6133      | 0.3133     | 0.2133       | 0.4867       | 0.3267             | 0.2867      | 0.1133      | 0.2467      | 0.6667         |
| dot_precision@5       | 0.148       | 0.328        | 0.152      | 0.12             | 0.58        | 0.196      | 0.176        | 0.324        | 0.22               | 0.22        | 0.092       | 0.164       | 0.5918         |
| dot_precision@10      | 0.084       | 0.27         | 0.08       | 0.074            | 0.52        | 0.104      | 0.112        | 0.17         | 0.12               | 0.152       | 0.066       | 0.088       | 0.4837         |
| dot_recall@1          | 0.44        | 0.0208       | 0.47       | 0.1183           | 0.0531      | 0.7067     | 0.1771       | 0.44         | 0.7873             | 0.086       | 0.1         | 0.565       | 0.0471         |
| dot_recall@3          | 0.6         | 0.0706       | 0.64       | 0.2117           | 0.1639      | 0.8667     | 0.307        | 0.73         | 0.854              | 0.1767      | 0.34        | 0.68        | 0.1329         |
| dot_recall@5          | 0.74        | 0.0906       | 0.7        | 0.2623           | 0.2366      | 0.8933     | 0.3937       | 0.81         | 0.898              | 0.2247      | 0.46        | 0.71        | 0.2016         |
| dot_recall@10         | 0.84        | 0.144        | 0.73       | 0.2997           | 0.3544      | 0.9433     | 0.4867       | 0.85         | 0.9313             | 0.3117      | 0.66        | 0.77        | 0.3206         |
| **dot_ndcg@10**       | **0.6242**  | **0.3196**   | **0.6151** | **0.2571**       | **0.6138**  | **0.8368** | **0.3902**   | **0.8078**   | **0.8841**         | **0.3133**  | **0.3562**  | **0.6798**  | **0.5525**     |
| dot_mrr@10            | 0.5571      | 0.4414       | 0.5865     | 0.3586           | 0.7719      | 0.817      | 0.4439       | 0.9042       | 0.8806             | 0.5258      | 0.262       | 0.6625      | 0.8141         |
| dot_map@100           | 0.5639      | 0.1357       | 0.5841     | 0.2046           | 0.4605      | 0.7994     | 0.3267       | 0.7447       | 0.8626             | 0.2402      | 0.2741      | 0.6533      | 0.4012         |
| query_active_dims     | 20.5        | 18.3         | 22.2       | 51.48            | 20.52       | 44.84      | 18.92        | 43.88        | 18.76              | 38.6        | 121.02      | 57.42       | 18.1224        |
| query_sparsity_ratio  | 0.9993      | 0.9994       | 0.9993     | 0.9983           | 0.9993      | 0.9985     | 0.9994       | 0.9986       | 0.9994             | 0.9987      | 0.996       | 0.9981      | 0.9994         |
| corpus_active_dims    | 81.8767     | 156.0484     | 103.7253   | 134.299          | 111.0784    | 154.0977   | 75.4999      | 120.7884     | 20.3819            | 120.2808    | 107.1684    | 158.0332    | 84.7328        |
| corpus_sparsity_ratio | 0.9973      | 0.9949       | 0.9966     | 0.9956           | 0.9964      | 0.995      | 0.9975       | 0.996        | 0.9993             | 0.9961      | 0.9965      | 0.9948      | 0.9972         |

#### Sparse Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "msmarco",
          "nfcorpus",
          "nq"
      ]
  }
  ```

| Metric                | Value      |
|:----------------------|:-----------|
| dot_accuracy@1        | 0.44       |
| dot_accuracy@3        | 0.62       |
| dot_accuracy@5        | 0.66       |
| dot_accuracy@10       | 0.7467     |
| dot_precision@1       | 0.44       |
| dot_precision@3       | 0.2711     |
| dot_precision@5       | 0.2067     |
| dot_precision@10      | 0.1447     |
| dot_recall@1          | 0.3078     |
| dot_recall@3          | 0.4617     |
| dot_recall@5          | 0.4975     |
| dot_recall@10         | 0.5604     |
| **dot_ndcg@10**       | **0.5189** |
| dot_mrr@10            | 0.5385     |
| dot_map@100           | 0.4255     |
| query_active_dims     | 22.4       |
| query_sparsity_ratio  | 0.9993     |
| corpus_active_dims    | 112.0335   |
| corpus_sparsity_ratio | 0.9963     |

#### Sparse Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "climatefever",
          "dbpedia",
          "fever",
          "fiqa2018",
          "hotpotqa",
          "msmarco",
          "nfcorpus",
          "nq",
          "quoraretrieval",
          "scidocs",
          "arguana",
          "scifact",
          "touche2020"
      ]
  }
  ```

| Metric                | Value      |
|:----------------------|:-----------|
| dot_accuracy@1        | 0.5241     |
| dot_accuracy@3        | 0.6799     |
| dot_accuracy@5        | 0.7415     |
| dot_accuracy@10       | 0.8169     |
| dot_precision@1       | 0.5241     |
| dot_precision@3       | 0.3215     |
| dot_precision@5       | 0.2548     |
| dot_precision@10      | 0.1787     |
| dot_recall@1          | 0.3086     |
| dot_recall@3          | 0.4441     |
| dot_recall@5          | 0.5093     |
| dot_recall@10         | 0.5878     |
| **dot_ndcg@10**       | **0.5577** |
| dot_mrr@10            | 0.6174     |
| dot_map@100           | 0.4808     |
| query_active_dims     | 38.074     |
| query_sparsity_ratio  | 0.9988     |
| corpus_active_dims    | 105.0515   |
| corpus_sparsity_ratio | 0.9966     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### msmarco

* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
* Size: 90,000 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                            | positive                                                                            | negative                                                                           |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 9.02 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 79.88 tokens</li><li>max: 203 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 77.8 tokens</li><li>max: 201 tokens</li></ul> |
* Samples:
  | query                                                                           | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
  |:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>yosemite temperature in september</code>                                  | <code>Here are the average temp in Yosemite Valley (where CV is located) by month: www.nps.gov/yose/planyourvisit/climate.htm. Also beginning of September is usually still quite warm. Nights can have a bit of a chill, but nothing a couple of blankets can't handle.</code>                                                                                                                                                                                                      | <code>Guide to Switzerland weather in September. The average maximum daytime temperature in Switzerland in September is a comfortable 18°C (64°F). The average night-time temperature is usually a cool 9°C (48°F). There are usually 6 hours of bright sunshine each day, which represents 45% of the 13 hours of daylight.</code>                                                                                                                                                                                                                                                                                                          |
  | <code>what is genus</code>                                                      | <code>Intermediate minor rankings are not shown. A genus (/ˈdʒiːnəs/, pl. genera) is a taxonomic rank used in the biological classification of living and fossil organisms in biology. In the hierarchy of biological classification, genus comes above species and below family. In binomial nomenclature, the genus name forms the first part of the binomial species name for each species within the genus. The composition of a genus is determined by a taxonomist.</code> | <code>The genus is the first part of a scientific name. Note that the genus is always capitalised. An example: Lemur catta is the scientific name of the Ringtailed lemur and Lemur … is the genus.Another example: Sphyrna zygaena is the scientific name of one species of Hammerhead shark and Sphyrna is the genus. name used all around the world to classify a living organism. It is composed of a genus and species name. A sceintific name can also be considered for non living things, the … se are usually called scientific jargon, or very simply 'proper names for the things around you'. 4 people found this useful.</code> |
  | <code>what did johannes kepler discover about the motion of the planets?</code> | <code>Johannes Kepler devised his three laws of motion from his observations of planets that are fundamental to our understanding of orbital motions.</code>                                                                                                                                                                                                                                                                                                                         | <code>Little Street, Johannes Vermeer, c. 1658. New stop on Delft tourist trail after Vermeer's Little Street identified. Few artists have left such a deep imprint on their birthplace as Johannes Vermeer on Delft. In the summer, tour parties weave through the Dutch town’s cobbled streets ticking off Vermeer landmarks.</code>                                                                                                                                                                                                                                                                                                         |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json
  {
      "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
      "lambda_corpus": 0.001,
      "lambda_query": 5e-05
  }
  ```

### Evaluation Dataset

#### msmarco

* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
* Size: 10,000 evaluation samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                            | positive                                                                            | negative                                                                            |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              | string                                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 9.16 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 79.89 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 76.95 tokens</li><li>max: 220 tokens</li></ul> |
* Samples:
  | query                                        | positive                                                                                                                                                                                                                                                                                               | negative                                                                                                                                                                                                                                                                                                                                   |
  |:---------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>scarehouse cast</code>                 | <code>The Scarehouse. The Scarehouse is a 2014 Canadian horror film directed by Gavin Michael Booth. It stars Sarah Booth and Kimberly-Sue Murray as two women who seek revenge against their former sorority.</code>                                                                                  | <code>Nathalie Emmanuel joined the TV series as a recurring cast member in Season 3, and continued as a recurring cast member into Season 4. Emmanuel was later promoted to a starring cast member for seasons 5 and 6.</code>                                                                                                             |
  | <code>population of bellemont arizona</code> | <code>The 2016 Bellemont (zip 86015), Arizona, population is 300. There are 55 people per square mile (population density). The median age is 29.9. The US median is 37.4. 38.19% of people in Bellemont (zip 86015), Arizona, are married.</code>                                                     | <code>• Arizona: A 2010 University of Arizona report estimates that 40% of the state's kissing bugs carry a parasite strain related to the Chagas disease but rarely transmit the disease to humans. The Arizona Department of Health Services reported one Chagas disease-related death in 2013, reports The Arizona Republic.</code>   |
  | <code>does air transat check bag size</code> | <code>• Weight must be 10kg (22 lb) in Economy class and in Option Plus and 15 kg (33lb) in Club Class. Checked Baggage Air Transat allows for multiple pieces, as long as the combined weight does not exceed weight limitations. • Length + width + height must not exceed 158cm (62 in).</code> | <code>Bag-valve masks come in different sizes to fit infants, children, and adults. The face mask size may be independent of the bag size; for example, a single pediatric-sized bag might be used with different masks for multiple face sizes, or a pediatric mask might be used with an adult bag for patients with small faces.</code> |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json
  {
      "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
      "lambda_corpus": 0.001,
      "lambda_query": 5e-05
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch      | Step     | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |
|:----------:|:--------:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|:----------------------------:|:-----------------------:|:---------------------:|:------------------------:|:------------------------:|:------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:--------------------------:|
| 0.0178     | 100      | 199.0423      | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.0356     | 200      | 11.3558       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.0533     | 300      | 0.9845        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.0711     | 400      | 0.4726        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.0889     | 500      | 0.2639        | 0.2407          | 0.5514                  | 0.3061                   | 0.5649             | 0.4741                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.1067     | 600      | 0.2931        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.1244     | 700      | 0.2301        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.1422     | 800      | 0.2168        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.16       | 900      | 0.1741        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.1778     | 1000     | 0.1852        | 0.1878          | 0.5868                  | 0.2975                   | 0.5648             | 0.4830                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.1956     | 1100     | 0.1684        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.2133     | 1200     | 0.1629        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.2311     | 1300     | 0.1736        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.2489     | 1400     | 0.1813        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.2667     | 1500     | 0.1826        | 0.1382          | 0.5941                  | 0.3251                   | 0.5911             | 0.5035                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.2844     | 1600     | 0.177         | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.3022     | 1700     | 0.1568        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.32       | 1800     | 0.1707        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.3378     | 1900     | 0.1554        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.3556     | 2000     | 0.1643        | 0.1553          | 0.6157                  | 0.2997                   | 0.5807             | 0.4987                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.3733     | 2100     | 0.1564        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.3911     | 2200     | 0.1334        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.4089     | 2300     | 0.1349        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.4267     | 2400     | 0.1228        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| **0.4444** | **2500** | **0.1473**    | **0.1239**      | **0.6242**              | **0.3196**               | **0.6151**         | **0.5196**                | **-**                        | **-**                   | **-**                 | **-**                    | **-**                    | **-**                          | **-**                   | **-**                   | **-**                   | **-**                      |
| 0.4622     | 2600     | 0.1506        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.48       | 2700     | 0.1436        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.4978     | 2800     | 0.1471        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.5156     | 2900     | 0.1378        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.5333     | 3000     | 0.1248        | 0.1328          | 0.6077                  | 0.3073                   | 0.6022             | 0.5057                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.5511     | 3100     | 0.1672        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.5689     | 3200     | 0.1301        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.5867     | 3300     | 0.1325        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.6044     | 3400     | 0.1335        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.6222     | 3500     | 0.122         | 0.1163          | 0.6081                  | 0.3302                   | 0.6190             | 0.5191                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.64       | 3600     | 0.1369        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.6578     | 3700     | 0.1651        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.6756     | 3800     | 0.1243        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.6933     | 3900     | 0.1122        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.7111     | 4000     | 0.1308        | 0.1307          | 0.6013                  | 0.3232                   | 0.5981             | 0.5075                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.7289     | 4100     | 0.1708        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.7467     | 4200     | 0.1143        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.7644     | 4300     | 0.167         | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.7822     | 4400     | 0.1119        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8        | 4500     | 0.1128        | 0.1177          | 0.6082                  | 0.3228                   | 0.5866             | 0.5058                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8178     | 4600     | 0.125         | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8356     | 4700     | 0.1252        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8533     | 4800     | 0.1066        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8711     | 4900     | 0.1196        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8889     | 5000     | 0.1291        | 0.1120          | 0.6134                  | 0.3230                   | 0.6115             | 0.5160                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9067     | 5100     | 0.1219        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9244     | 5200     | 0.1492        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9422     | 5300     | 0.1138        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.96       | 5400     | 0.1583        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9778     | 5500     | 0.1516        | 0.1125          | 0.6224                  | 0.3205                   | 0.6137             | 0.5189                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9956     | 5600     | 0.1227        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| -1         | -1       | -             | -               | 0.6242                  | 0.3196                   | 0.6151             | 0.5577                    | 0.2571                       | 0.6138                  | 0.8368                | 0.3902                   | 0.8078                   | 0.8841                         | 0.3133                  | 0.3562                  | 0.6798                  | 0.5525                     |

* The bold row denotes the saved checkpoint.

### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.057 kWh
- **Carbon Emitted**: 0.021 kg of CO2
- **Hours Used**: 0.179 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA H100 80GB HBM3
- **CPU Model**: AMD EPYC 7R13 Processor
- **RAM Size**: 248.00 GB

### Framework Versions
- Python: 3.13.3
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.51.3
- PyTorch: 2.7.1+cu126
- Accelerate: 0.26.0
- Datasets: 2.21.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### SpladeLoss
```bibtex
@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}
```

#### SparseMultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

#### FlopsLoss
```bibtex
@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
    }
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->