arthurbresnu HF Staff commited on
Commit
24a269d
·
verified ·
1 Parent(s): 490b889

Add new SparseEncoder model

Browse files
1_SpladePooling/config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "pooling_strategy": "max",
3
+ "activation_function": "relu",
4
+ "word_embedding_dimension": 30522
5
+ }
README.md ADDED
@@ -0,0 +1,474 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sparse-encoder
8
+ - sparse
9
+ - splade
10
+ - generated_from_trainer
11
+ - dataset_size:5749
12
+ - loss:SpladeLoss
13
+ - loss:SparseCosineSimilarityLoss
14
+ - loss:FlopsLoss
15
+ base_model: naver/splade-cocondenser-ensembledistil
16
+ widget:
17
+ - text: There is no 'still' that is not relative to some other object.
18
+ - text: A woman is adding oil on fishes.
19
+ - text: Minimum wage laws hurt the least skilled, least productive the most.
20
+ - text: Although I believe Searle is mistaken, I don't think you have found the problem.
21
+ - text: A man plays the guitar.
22
+ datasets:
23
+ - sentence-transformers/stsb
24
+ pipeline_tag: feature-extraction
25
+ library_name: sentence-transformers
26
+ metrics:
27
+ - pearson_cosine
28
+ - spearman_cosine
29
+ - active_dims
30
+ - sparsity_ratio
31
+ co2_eq_emissions:
32
+ emissions: 0.004571308812647019
33
+ energy_consumed: 0.0019229652366223092
34
+ source: codecarbon
35
+ training_type: fine-tuning
36
+ on_cloud: false
37
+ cpu_model: AMD Ryzen 9 6900HX with Radeon Graphics
38
+ ram_total_size: 30.6114501953125
39
+ hours_used: 0.016
40
+ hardware_used: 1 x NVIDIA GeForce RTX 3070 Ti Laptop GPU
41
+ model-index:
42
+ - name: 'splade-cocondenser-ensembledistil trained on '
43
+ results:
44
+ - task:
45
+ type: semantic-similarity
46
+ name: Semantic Similarity
47
+ dataset:
48
+ name: sts dev
49
+ type: sts-dev
50
+ metrics:
51
+ - type: pearson_cosine
52
+ value: 0.8760417145994235
53
+ name: Pearson Cosine
54
+ - type: spearman_cosine
55
+ value: 0.8704199278417449
56
+ name: Spearman Cosine
57
+ - type: active_dims
58
+ value: 49.305667877197266
59
+ name: Active Dims
60
+ - type: sparsity_ratio
61
+ value: 0.9983845859420353
62
+ name: Sparsity Ratio
63
+ - task:
64
+ type: semantic-similarity
65
+ name: Semantic Similarity
66
+ dataset:
67
+ name: sts test
68
+ type: sts-test
69
+ metrics:
70
+ - type: pearson_cosine
71
+ value: 0.840843473698782
72
+ name: Pearson Cosine
73
+ - type: spearman_cosine
74
+ value: 0.8291534166645268
75
+ name: Spearman Cosine
76
+ - type: active_dims
77
+ value: 47.07070350646973
78
+ name: Active Dims
79
+ - type: sparsity_ratio
80
+ value: 0.9984578106445688
81
+ name: Sparsity Ratio
82
+ ---
83
+
84
+ # splade-cocondenser-ensembledistil trained on
85
+
86
+ This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [naver/splade-cocondenser-ensembledistil](https://huggingface.co/naver/splade-cocondenser-ensembledistil) on the [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
87
+ ## Model Details
88
+
89
+ ### Model Description
90
+ - **Model Type:** SPLADE Sparse Encoder
91
+ - **Base model:** [naver/splade-cocondenser-ensembledistil](https://huggingface.co/naver/splade-cocondenser-ensembledistil) <!-- at revision 25178a62708a3ab1b5c4b5eb30764d65bfddcfbb -->
92
+ - **Maximum Sequence Length:** 256 tokens
93
+ - **Output Dimensionality:** 30522 dimensions
94
+ - **Similarity Function:** Cosine Similarity
95
+ - **Training Dataset:**
96
+ - [stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
97
+ - **Language:** en
98
+ - **License:** apache-2.0
99
+
100
+ ### Model Sources
101
+
102
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
103
+ - **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
104
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
105
+ - **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
106
+
107
+ ### Full Model Architecture
108
+
109
+ ```
110
+ SparseEncoder(
111
+ (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
112
+ (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
113
+ )
114
+ ```
115
+
116
+ ## Usage
117
+
118
+ ### Direct Usage (Sentence Transformers)
119
+
120
+ First install the Sentence Transformers library:
121
+
122
+ ```bash
123
+ pip install -U sentence-transformers
124
+ ```
125
+
126
+ Then you can load this model and run inference.
127
+ ```python
128
+ from sentence_transformers import SparseEncoder
129
+
130
+ # Download from the 🤗 Hub
131
+ model = SparseEncoder("arthurbresnu/splade-cocondenser-ensembledistil-sts")
132
+ # Run inference
133
+ sentences = [
134
+ 'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
135
+ 'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
136
+ 'A man plays the guitar.',
137
+ ]
138
+ embeddings = model.encode(sentences)
139
+ print(embeddings.shape)
140
+ # (3, 30522)
141
+
142
+ # Get the similarity scores for the embeddings
143
+ similarities = model.similarity(embeddings, embeddings)
144
+ print(similarities.shape)
145
+ # [3, 3]
146
+ ```
147
+
148
+ <!--
149
+ ### Direct Usage (Transformers)
150
+
151
+ <details><summary>Click to see the direct usage in Transformers</summary>
152
+
153
+ </details>
154
+ -->
155
+
156
+ <!--
157
+ ### Downstream Usage (Sentence Transformers)
158
+
159
+ You can finetune this model on your own dataset.
160
+
161
+ <details><summary>Click to expand</summary>
162
+
163
+ </details>
164
+ -->
165
+
166
+ <!--
167
+ ### Out-of-Scope Use
168
+
169
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
170
+ -->
171
+
172
+ ## Evaluation
173
+
174
+ ### Metrics
175
+
176
+ #### Semantic Similarity
177
+
178
+ * Datasets: `sts-dev` and `sts-test`
179
+ * Evaluated with [<code>SparseEmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseEmbeddingSimilarityEvaluator)
180
+
181
+ | Metric | sts-dev | sts-test |
182
+ |:--------------------|:-----------|:-----------|
183
+ | pearson_cosine | 0.876 | 0.8408 |
184
+ | **spearman_cosine** | **0.8704** | **0.8292** |
185
+ | active_dims | 49.3057 | 47.0707 |
186
+ | sparsity_ratio | 0.9984 | 0.9985 |
187
+
188
+ <!--
189
+ ## Bias, Risks and Limitations
190
+
191
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
192
+ -->
193
+
194
+ <!--
195
+ ### Recommendations
196
+
197
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
198
+ -->
199
+
200
+ ## Training Details
201
+
202
+ ### Training Dataset
203
+
204
+ #### stsb
205
+
206
+ * Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
207
+ * Size: 5,749 training samples
208
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
209
+ * Approximate statistics based on the first 1000 samples:
210
+ | | sentence1 | sentence2 | score |
211
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
212
+ | type | string | string | float |
213
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
214
+ * Samples:
215
+ | sentence1 | sentence2 | score |
216
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
217
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
218
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
219
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
220
+ * Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
221
+ ```json
222
+ {
223
+ "loss": "SparseCosineSimilarityLoss(loss_fct='torch.nn.modules.loss.MSELoss')",
224
+ "lambda_corpus": 0.003
225
+ }
226
+ ```
227
+
228
+ ### Evaluation Dataset
229
+
230
+ #### stsb
231
+
232
+ * Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
233
+ * Size: 1,500 evaluation samples
234
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
235
+ * Approximate statistics based on the first 1000 samples:
236
+ | | sentence1 | sentence2 | score |
237
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
238
+ | type | string | string | float |
239
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
240
+ * Samples:
241
+ | sentence1 | sentence2 | score |
242
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
243
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
244
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
245
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
246
+ * Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
247
+ ```json
248
+ {
249
+ "loss": "SparseCosineSimilarityLoss(loss_fct='torch.nn.modules.loss.MSELoss')",
250
+ "lambda_corpus": 0.003
251
+ }
252
+ ```
253
+
254
+ ### Training Hyperparameters
255
+ #### Non-Default Hyperparameters
256
+
257
+ - `eval_strategy`: steps
258
+ - `per_device_train_batch_size`: 16
259
+ - `per_device_eval_batch_size`: 16
260
+ - `learning_rate`: 4e-06
261
+ - `num_train_epochs`: 1
262
+ - `bf16`: True
263
+ - `batch_sampler`: no_duplicates
264
+
265
+ #### All Hyperparameters
266
+ <details><summary>Click to expand</summary>
267
+
268
+ - `overwrite_output_dir`: False
269
+ - `do_predict`: False
270
+ - `eval_strategy`: steps
271
+ - `prediction_loss_only`: True
272
+ - `per_device_train_batch_size`: 16
273
+ - `per_device_eval_batch_size`: 16
274
+ - `per_gpu_train_batch_size`: None
275
+ - `per_gpu_eval_batch_size`: None
276
+ - `gradient_accumulation_steps`: 1
277
+ - `eval_accumulation_steps`: None
278
+ - `torch_empty_cache_steps`: None
279
+ - `learning_rate`: 4e-06
280
+ - `weight_decay`: 0.0
281
+ - `adam_beta1`: 0.9
282
+ - `adam_beta2`: 0.999
283
+ - `adam_epsilon`: 1e-08
284
+ - `max_grad_norm`: 1.0
285
+ - `num_train_epochs`: 1
286
+ - `max_steps`: -1
287
+ - `lr_scheduler_type`: linear
288
+ - `lr_scheduler_kwargs`: {}
289
+ - `warmup_ratio`: 0.0
290
+ - `warmup_steps`: 0
291
+ - `log_level`: passive
292
+ - `log_level_replica`: warning
293
+ - `log_on_each_node`: True
294
+ - `logging_nan_inf_filter`: True
295
+ - `save_safetensors`: True
296
+ - `save_on_each_node`: False
297
+ - `save_only_model`: False
298
+ - `restore_callback_states_from_checkpoint`: False
299
+ - `no_cuda`: False
300
+ - `use_cpu`: False
301
+ - `use_mps_device`: False
302
+ - `seed`: 42
303
+ - `data_seed`: None
304
+ - `jit_mode_eval`: False
305
+ - `use_ipex`: False
306
+ - `bf16`: True
307
+ - `fp16`: False
308
+ - `fp16_opt_level`: O1
309
+ - `half_precision_backend`: auto
310
+ - `bf16_full_eval`: False
311
+ - `fp16_full_eval`: False
312
+ - `tf32`: None
313
+ - `local_rank`: 0
314
+ - `ddp_backend`: None
315
+ - `tpu_num_cores`: None
316
+ - `tpu_metrics_debug`: False
317
+ - `debug`: []
318
+ - `dataloader_drop_last`: False
319
+ - `dataloader_num_workers`: 0
320
+ - `dataloader_prefetch_factor`: None
321
+ - `past_index`: -1
322
+ - `disable_tqdm`: False
323
+ - `remove_unused_columns`: True
324
+ - `label_names`: None
325
+ - `load_best_model_at_end`: False
326
+ - `ignore_data_skip`: False
327
+ - `fsdp`: []
328
+ - `fsdp_min_num_params`: 0
329
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
330
+ - `tp_size`: 0
331
+ - `fsdp_transformer_layer_cls_to_wrap`: None
332
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
333
+ - `deepspeed`: None
334
+ - `label_smoothing_factor`: 0.0
335
+ - `optim`: adamw_torch
336
+ - `optim_args`: None
337
+ - `adafactor`: False
338
+ - `group_by_length`: False
339
+ - `length_column_name`: length
340
+ - `ddp_find_unused_parameters`: None
341
+ - `ddp_bucket_cap_mb`: None
342
+ - `ddp_broadcast_buffers`: False
343
+ - `dataloader_pin_memory`: True
344
+ - `dataloader_persistent_workers`: False
345
+ - `skip_memory_metrics`: True
346
+ - `use_legacy_prediction_loop`: False
347
+ - `push_to_hub`: False
348
+ - `resume_from_checkpoint`: None
349
+ - `hub_model_id`: None
350
+ - `hub_strategy`: every_save
351
+ - `hub_private_repo`: None
352
+ - `hub_always_push`: False
353
+ - `gradient_checkpointing`: False
354
+ - `gradient_checkpointing_kwargs`: None
355
+ - `include_inputs_for_metrics`: False
356
+ - `include_for_metrics`: []
357
+ - `eval_do_concat_batches`: True
358
+ - `fp16_backend`: auto
359
+ - `push_to_hub_model_id`: None
360
+ - `push_to_hub_organization`: None
361
+ - `mp_parameters`:
362
+ - `auto_find_batch_size`: False
363
+ - `full_determinism`: False
364
+ - `torchdynamo`: None
365
+ - `ray_scope`: last
366
+ - `ddp_timeout`: 1800
367
+ - `torch_compile`: False
368
+ - `torch_compile_backend`: None
369
+ - `torch_compile_mode`: None
370
+ - `dispatch_batches`: None
371
+ - `split_batches`: None
372
+ - `include_tokens_per_second`: False
373
+ - `include_num_input_tokens_seen`: False
374
+ - `neftune_noise_alpha`: None
375
+ - `optim_target_modules`: None
376
+ - `batch_eval_metrics`: False
377
+ - `eval_on_start`: False
378
+ - `use_liger_kernel`: False
379
+ - `eval_use_gather_object`: False
380
+ - `average_tokens_across_devices`: False
381
+ - `prompts`: None
382
+ - `batch_sampler`: no_duplicates
383
+ - `multi_dataset_batch_sampler`: proportional
384
+
385
+ </details>
386
+
387
+ ### Training Logs
388
+ | Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
389
+ |:------:|:----:|:-------------:|:---------------:|:-----------------------:|:------------------------:|
390
+ | -1 | -1 | - | - | 0.8366 | - |
391
+ | 0.2778 | 100 | 0.0298 | 0.0267 | 0.8631 | - |
392
+ | 0.5556 | 200 | 0.0306 | 0.0264 | 0.8686 | - |
393
+ | 0.8333 | 300 | 0.0289 | 0.0257 | 0.8704 | - |
394
+ | -1 | -1 | - | - | - | 0.8292 |
395
+
396
+
397
+ ### Environmental Impact
398
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
399
+ - **Energy Consumed**: 0.002 kWh
400
+ - **Carbon Emitted**: 0.000 kg of CO2
401
+ - **Hours Used**: 0.016 hours
402
+
403
+ ### Training Hardware
404
+ - **On Cloud**: No
405
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3070 Ti Laptop GPU
406
+ - **CPU Model**: AMD Ryzen 9 6900HX with Radeon Graphics
407
+ - **RAM Size**: 30.61 GB
408
+
409
+ ### Framework Versions
410
+ - Python: 3.12.9
411
+ - Sentence Transformers: 4.2.0.dev0
412
+ - Transformers: 4.50.3
413
+ - PyTorch: 2.6.0+cu124
414
+ - Accelerate: 1.6.0
415
+ - Datasets: 3.5.0
416
+ - Tokenizers: 0.21.1
417
+
418
+ ## Citation
419
+
420
+ ### BibTeX
421
+
422
+ #### Sentence Transformers
423
+ ```bibtex
424
+ @inproceedings{reimers-2019-sentence-bert,
425
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
426
+ author = "Reimers, Nils and Gurevych, Iryna",
427
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
428
+ month = "11",
429
+ year = "2019",
430
+ publisher = "Association for Computational Linguistics",
431
+ url = "https://arxiv.org/abs/1908.10084",
432
+ }
433
+ ```
434
+
435
+ #### SpladeLoss
436
+ ```bibtex
437
+ @misc{formal2022distillationhardnegativesampling,
438
+ title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
439
+ author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
440
+ year={2022},
441
+ eprint={2205.04733},
442
+ archivePrefix={arXiv},
443
+ primaryClass={cs.IR},
444
+ url={https://arxiv.org/abs/2205.04733},
445
+ }
446
+ ```
447
+
448
+ #### FlopsLoss
449
+ ```bibtex
450
+ @article{paria2020minimizing,
451
+ title={Minimizing flops to learn efficient sparse representations},
452
+ author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
453
+ journal={arXiv preprint arXiv:2004.05665},
454
+ year={2020}
455
+ }
456
+ ```
457
+
458
+ <!--
459
+ ## Glossary
460
+
461
+ *Clearly define terms in order to be accessible across audiences.*
462
+ -->
463
+
464
+ <!--
465
+ ## Model Card Authors
466
+
467
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
468
+ -->
469
+
470
+ <!--
471
+ ## Model Card Contact
472
+
473
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
474
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.50.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SparseEncoder",
3
+ "__version__": {
4
+ "sentence_transformers": "4.2.0.dev0",
5
+ "transformers": "4.50.3",
6
+ "pytorch": "2.6.0+cu124"
7
+ },
8
+ "prompts": {},
9
+ "default_prompt_name": null,
10
+ "similarity_fn_name": "cosine"
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23b840718196eda97a7a70b5bd442b5d426266592d8f5c1a917bc3e071fd2eea
3
+ size 438080896
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.sparse_encoder.models.MLMTransformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_SpladePooling",
12
+ "type": "sentence_transformers.sparse_encoder.models.SpladePooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff