Spaces:
Running
Running
first commit
Browse files- app.py +215 -125
- depthmaster/__init__.py +26 -0
- depthmaster/depthmaster_pipeline.py +387 -0
- depthmaster/modules/unet_2d_blocks.py +0 -0
- depthmaster/modules/unet_2d_condition.py +1322 -0
- depthmaster/util/batchsize.py +86 -0
- depthmaster/util/ensemble.py +205 -0
- depthmaster/util/image_util.py +127 -0
- requirements.txt +128 -5
- run.py +253 -0
app.py
CHANGED
@@ -1,60 +1,93 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
|
17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
pipe = pipe.to(device)
|
19 |
|
20 |
-
MAX_SEED = np.iinfo(np.int32).max
|
21 |
-
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
|
24 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
def infer(
|
26 |
-
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
progress=gr.Progress(track_tqdm=True),
|
35 |
):
|
36 |
-
if randomize_seed:
|
37 |
-
|
38 |
-
|
39 |
-
generator = torch.Generator().manual_seed(seed)
|
40 |
-
|
41 |
-
image = pipe(
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
).images[0]
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
]
|
59 |
|
60 |
css = """
|
@@ -62,93 +95,150 @@ css = """
|
|
62 |
margin: 0 auto;
|
63 |
max-width: 640px;
|
64 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
"""
|
66 |
|
67 |
with gr.Blocks(css=css) as demo:
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
minimum=256,
|
114 |
-
maximum=MAX_IMAGE_SIZE,
|
115 |
-
step=32,
|
116 |
-
value=1024, # Replace with defaults that work for your model
|
117 |
-
)
|
118 |
-
|
119 |
-
with gr.Row():
|
120 |
-
guidance_scale = gr.Slider(
|
121 |
-
label="Guidance scale",
|
122 |
-
minimum=0.0,
|
123 |
-
maximum=10.0,
|
124 |
-
step=0.1,
|
125 |
-
value=0.0, # Replace with defaults that work for your model
|
126 |
-
)
|
127 |
-
|
128 |
-
num_inference_steps = gr.Slider(
|
129 |
-
label="Number of inference steps",
|
130 |
-
minimum=1,
|
131 |
-
maximum=50,
|
132 |
-
step=1,
|
133 |
-
value=2, # Replace with defaults that work for your model
|
134 |
-
)
|
135 |
-
|
136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
137 |
-
gr.on(
|
138 |
-
triggers=[run_button.click, prompt.submit],
|
139 |
-
fn=infer,
|
140 |
-
inputs=[
|
141 |
-
prompt,
|
142 |
-
negative_prompt,
|
143 |
-
seed,
|
144 |
-
randomize_seed,
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
-
],
|
150 |
-
outputs=[result, seed],
|
151 |
)
|
152 |
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
from glob import glob
|
7 |
|
8 |
+
import numpy as np
|
|
|
9 |
import torch
|
10 |
+
from PIL import Image
|
11 |
+
from tqdm.auto import tqdm
|
12 |
+
|
13 |
+
from depthmaster import DepthMasterPipeline
|
14 |
+
from depthmaster.modules.unet_2d_condition import UNet2DConditionModel
|
15 |
+
|
16 |
+
def load_example(example_image):
|
17 |
+
# 返回选中的图片
|
18 |
+
return example_image
|
19 |
+
|
20 |
|
21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
+
model_repo_id = "zysong212/DepthMaster" # Replace to the model you would like to use
|
23 |
+
|
24 |
+
# if torch.cuda.is_available():
|
25 |
+
# torch_dtype = torch.float16
|
26 |
+
# else:
|
27 |
+
torch_dtype = torch.float32
|
28 |
+
|
29 |
+
# pipe = DepthMasterPipeline.from_pretrained('eval', torch_dtype=torch_dtype)
|
30 |
+
# unet = UNet2DConditionModel.from_pretrained(os.path.join('eval', f'unet'))
|
31 |
+
pipe = DepthMasterPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
32 |
+
unet = UNet2DConditionModel.from_pretrained(model_repo_id, subfolder="unet", torch_dtype=torch_dtype)
|
33 |
+
pipe.unet = unet
|
34 |
|
35 |
+
try:
|
36 |
+
pipe.enable_xformers_memory_efficient_attention()
|
37 |
+
except ImportError:
|
38 |
+
pass # run without xformers
|
39 |
|
|
|
40 |
pipe = pipe.to(device)
|
41 |
|
42 |
+
# MAX_SEED = np.iinfo(np.int32).max
|
43 |
+
# MAX_IMAGE_SIZE = 1024
|
44 |
|
45 |
|
46 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
47 |
def infer(
|
48 |
+
input_image,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
progress=gr.Progress(track_tqdm=True),
|
50 |
):
|
51 |
+
# if randomize_seed:
|
52 |
+
# seed = random.randint(0, MAX_SEED)
|
53 |
+
|
54 |
+
# generator = torch.Generator().manual_seed(seed)
|
55 |
+
|
56 |
+
# image = pipe(
|
57 |
+
# prompt=prompt,
|
58 |
+
# negative_prompt=negative_prompt,
|
59 |
+
# guidance_scale=guidance_scale,
|
60 |
+
# num_inference_steps=num_inference_steps,
|
61 |
+
# width=width,
|
62 |
+
# height=height,
|
63 |
+
# generator=generator,
|
64 |
+
# ).images[0]
|
65 |
+
pipe_out = pipe(
|
66 |
+
input_image,
|
67 |
+
processing_res=768,
|
68 |
+
match_input_res=True,
|
69 |
+
batch_size=1,
|
70 |
+
color_map="Spectral",
|
71 |
+
show_progress_bar=True,
|
72 |
+
resample_method="bilinear",
|
73 |
+
)
|
74 |
+
|
75 |
+
# depth_pred: np.ndarray = pipe_out.depth_np
|
76 |
+
depth_colored: Image.Image = pipe_out.depth_colored
|
77 |
+
|
78 |
+
|
79 |
+
return depth_colored
|
80 |
+
|
81 |
+
|
82 |
+
# 默认图像路径
|
83 |
+
example_images = [
|
84 |
+
"wild_example/000000000776.jpg",
|
85 |
+
"wild_example/800x.jpg",
|
86 |
+
"wild_example/000000055950.jpg",
|
87 |
+
"wild_example/53441037037_c2cbd91ad2_k.jpg",
|
88 |
+
"wild_example/53501906161_6109e3da29_b.jpg",
|
89 |
+
"wild_example/m_1e31af1c.jpg",
|
90 |
+
"wild_example/sg-11134201-7rd5x-lvlh48byidbqca.jpg"
|
91 |
]
|
92 |
|
93 |
css = """
|
|
|
95 |
margin: 0 auto;
|
96 |
max-width: 640px;
|
97 |
}
|
98 |
+
#example-gallery {
|
99 |
+
height: 80px; /* 设置缩略图高度 */
|
100 |
+
width: auto; /* 保持宽高比 */
|
101 |
+
margin: 0 auto; /* 图片间距 */
|
102 |
+
cursor: pointer; /* 鼠标指针变为手型 */
|
103 |
+
}
|
104 |
"""
|
105 |
|
106 |
with gr.Blocks(css=css) as demo:
|
107 |
+
gr.Markdown("# DepthMaster")
|
108 |
+
gr.Markdown("Official demo for DepthMaster. Please refer to our [paper](https://arxiv.org/abs/2501.02576), [project page](https://indu1ge.github.io/DepthMaster_page/), and [github](https://github.com/indu1ge/DepthMaster) for more details.")
|
109 |
+
gr.Markdown(" ### Depth Estimation with DepthMaster.")
|
110 |
+
# with gr.Column(elem_id="col-container"):
|
111 |
+
# gr.Markdown(" # Depth Estimation")
|
112 |
+
with gr.Row():
|
113 |
+
with gr.Column():
|
114 |
+
input_image = gr.Image(label="Input Image", type="pil", elem_id="input-image", interactive=True)
|
115 |
+
with gr.Column():
|
116 |
+
depth_map = gr.Image(label="Depth Map with Slider View", type="pil", interactive=False, elem_id="depth-map")
|
117 |
+
|
118 |
+
# 计算按钮
|
119 |
+
compute_button = gr.Button("Compute Depth")
|
120 |
+
|
121 |
+
# # 添加示例图片选择器
|
122 |
+
# with gr.Row():
|
123 |
+
# gr.Markdown("### example images")
|
124 |
+
# with gr.Row(elem_id="example-gallery"):
|
125 |
+
# example_gallery = gr.Gallery(
|
126 |
+
# label="",
|
127 |
+
# value=example_images,
|
128 |
+
# elem_id="example-gallery",
|
129 |
+
# show_label=False,
|
130 |
+
# interactive=True,
|
131 |
+
# columns=10
|
132 |
+
# )
|
133 |
+
|
134 |
+
# 设置默认图片点击后的操作
|
135 |
+
# example_gallery.select(
|
136 |
+
# fn=lambda img_path: img_path, # 回调函数:返回选择的路径
|
137 |
+
# inputs=[],
|
138 |
+
# outputs=input_image # 输出设置为 Input Image
|
139 |
+
# )
|
140 |
+
# example_gallery.click(
|
141 |
+
# fn=load_example, # 选择图片的回调
|
142 |
+
# inputs=[example_gallery], # 输入:用户点击的图片
|
143 |
+
# outputs=[input_image] # 输出:更新 Input Image
|
144 |
+
# )
|
145 |
+
|
146 |
+
|
147 |
+
# 设置计算按钮的回调
|
148 |
+
compute_button.click(
|
149 |
+
fn=infer, # 回调函数
|
150 |
+
inputs=input_image, # 输入
|
151 |
+
outputs=depth_map # 输出
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
)
|
153 |
|
154 |
+
# 启动 Gradio 应用
|
155 |
+
demo.launch()
|
156 |
+
# with gr.Column(scale=45):
|
157 |
+
# img_in = gr.Image(type="pil")
|
158 |
+
# with gr.Column(scale=45):
|
159 |
+
# img_out =
|
160 |
+
|
161 |
+
# with gr.Row():
|
162 |
+
# prompt = gr.Text(
|
163 |
+
# label="Prompt",
|
164 |
+
# show_label=False,
|
165 |
+
# max_lines=1,
|
166 |
+
# placeholder="Enter your prompt",
|
167 |
+
# container=False,
|
168 |
+
# )
|
169 |
+
|
170 |
+
# run_button = gr.Button("Run", scale=0, variant="primary")
|
171 |
+
|
172 |
+
# result = gr.Image(label="Result", show_label=False)
|
173 |
+
|
174 |
+
# with gr.Accordion("Advanced Settings", open=False):
|
175 |
+
# negative_prompt = gr.Text(
|
176 |
+
# label="Negative prompt",
|
177 |
+
# max_lines=1,
|
178 |
+
# placeholder="Enter a negative prompt",
|
179 |
+
# visible=False,
|
180 |
+
# )
|
181 |
+
|
182 |
+
# seed = gr.Slider(
|
183 |
+
# label="Seed",
|
184 |
+
# minimum=0,
|
185 |
+
# maximum=MAX_SEED,
|
186 |
+
# step=1,
|
187 |
+
# value=0,
|
188 |
+
# )
|
189 |
+
|
190 |
+
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
191 |
+
|
192 |
+
# with gr.Row():
|
193 |
+
# width = gr.Slider(
|
194 |
+
# label="Width",
|
195 |
+
# minimum=256,
|
196 |
+
# maximum=MAX_IMAGE_SIZE,
|
197 |
+
# step=32,
|
198 |
+
# value=1024, # Replace with defaults that work for your model
|
199 |
+
# )
|
200 |
+
|
201 |
+
# height = gr.Slider(
|
202 |
+
# label="Height",
|
203 |
+
# minimum=256,
|
204 |
+
# maximum=MAX_IMAGE_SIZE,
|
205 |
+
# step=32,
|
206 |
+
# value=1024, # Replace with defaults that work for your model
|
207 |
+
# )
|
208 |
+
|
209 |
+
# with gr.Row():
|
210 |
+
# guidance_scale = gr.Slider(
|
211 |
+
# label="Guidance scale",
|
212 |
+
# minimum=0.0,
|
213 |
+
# maximum=10.0,
|
214 |
+
# step=0.1,
|
215 |
+
# value=0.0, # Replace with defaults that work for your model
|
216 |
+
# )
|
217 |
+
|
218 |
+
# num_inference_steps = gr.Slider(
|
219 |
+
# label="Number of inference steps",
|
220 |
+
# minimum=1,
|
221 |
+
# maximum=50,
|
222 |
+
# step=1,
|
223 |
+
# value=2, # Replace with defaults that work for your model
|
224 |
+
# )
|
225 |
+
|
226 |
+
# gr.Examples(examples=examples, inputs=[prompt])
|
227 |
+
# gr.on(
|
228 |
+
# triggers=[run_button.click, prompt.submit],
|
229 |
+
# fn=infer,
|
230 |
+
# inputs=[
|
231 |
+
# prompt,
|
232 |
+
# negative_prompt,
|
233 |
+
# seed,
|
234 |
+
# randomize_seed,
|
235 |
+
# # width,
|
236 |
+
# # height,
|
237 |
+
# # guidance_scale,
|
238 |
+
# # num_inference_steps,
|
239 |
+
# ],
|
240 |
+
# outputs=[result, seed],
|
241 |
+
# )
|
242 |
+
|
243 |
+
# if __name__ == "__main__":
|
244 |
+
# demo.launch()
|
depthmaster/__init__.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Last modified: 2025-01-14
|
2 |
+
#
|
3 |
+
# Copyright 2025 Ziyang Song, USTC. All rights reserved.
|
4 |
+
#
|
5 |
+
# This file has been modified from the original version.
|
6 |
+
# Original copyright (c) 2023 Bingxin Ke, ETH Zurich. All rights reserved.
|
7 |
+
#
|
8 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
9 |
+
# you may not use this file except in compliance with the License.
|
10 |
+
# You may obtain a copy of the License at
|
11 |
+
#
|
12 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
13 |
+
#
|
14 |
+
# Unless required by applicable law or agreed to in writing, software
|
15 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
16 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
17 |
+
# See the License for the specific language governing permissions and
|
18 |
+
# limitations under the License.
|
19 |
+
# --------------------------------------------------------------------------
|
20 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
21 |
+
# Please find bibtex at: https://github.com/indu1ge/DepthMaster#-citation
|
22 |
+
# More information about the method can be found at https://indu1ge.github.io/DepthMaster_page
|
23 |
+
# --------------------------------------------------------------------------
|
24 |
+
|
25 |
+
|
26 |
+
from .depthmaster_pipeline import DepthMasterPipeline, DepthMasterDepthOutput # noqa: F401
|
depthmaster/depthmaster_pipeline.py
ADDED
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Last modified: 2025-01-14
|
2 |
+
#
|
3 |
+
# Copyright 2025 Ziyang Song, USTC. All rights reserved.
|
4 |
+
#
|
5 |
+
# This file has been modified from the original version.
|
6 |
+
# Original copyright (c) 2023 Bingxin Ke, ETH Zurich. All rights reserved.
|
7 |
+
#
|
8 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
9 |
+
# you may not use this file except in compliance with the License.
|
10 |
+
# You may obtain a copy of the License at
|
11 |
+
#
|
12 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
13 |
+
#
|
14 |
+
# Unless required by applicable law or agreed to in writing, software
|
15 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
16 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
17 |
+
# See the License for the specific language governing permissions and
|
18 |
+
# limitations under the License.
|
19 |
+
# --------------------------------------------------------------------------
|
20 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
21 |
+
# Please find bibtex at: https://github.com/indu1ge/DepthMaster#-citation
|
22 |
+
# More information about the method can be found at https://indu1ge.github.io/DepthMaster_page
|
23 |
+
# --------------------------------------------------------------------------
|
24 |
+
|
25 |
+
|
26 |
+
import logging
|
27 |
+
from typing import Dict, Optional, Union
|
28 |
+
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
from diffusers import (
|
32 |
+
AutoencoderKL,
|
33 |
+
DiffusionPipeline,
|
34 |
+
# UNet2DConditionModel,
|
35 |
+
)
|
36 |
+
from depthmaster.modules.unet_2d_condition import UNet2DConditionModel
|
37 |
+
from diffusers.utils import BaseOutput
|
38 |
+
from PIL import Image
|
39 |
+
from torch.utils.data import DataLoader, TensorDataset
|
40 |
+
from torchvision.transforms import InterpolationMode
|
41 |
+
from torchvision.transforms.functional import pil_to_tensor, resize
|
42 |
+
from tqdm.auto import tqdm
|
43 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
44 |
+
|
45 |
+
from .util.image_util import (
|
46 |
+
chw2hwc,
|
47 |
+
colorize_depth_maps,
|
48 |
+
get_tv_resample_method,
|
49 |
+
resize_max_res,
|
50 |
+
)
|
51 |
+
|
52 |
+
class DepthMasterDepthOutput(BaseOutput):
|
53 |
+
"""
|
54 |
+
Output class for monocular depth prediction pipeline.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
depth_np (`np.ndarray`):
|
58 |
+
Predicted depth map, with depth values in the range of [0, 1].
|
59 |
+
depth_colored (`PIL.Image.Image`):
|
60 |
+
Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
|
61 |
+
uncertainty (`None` or `np.ndarray`):
|
62 |
+
Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
|
63 |
+
"""
|
64 |
+
|
65 |
+
depth_np: np.ndarray
|
66 |
+
depth_colored: Union[None, Image.Image]
|
67 |
+
uncertainty: Union[None, np.ndarray]
|
68 |
+
|
69 |
+
|
70 |
+
class DepthMasterPipeline(DiffusionPipeline):
|
71 |
+
"""
|
72 |
+
Pipeline for monocular depth estimation using DepthMaster.
|
73 |
+
|
74 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
75 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
76 |
+
|
77 |
+
Args:
|
78 |
+
unet (`UNet2DConditionModel`):
|
79 |
+
Conditional U-Net to denoise the depth latent, conditioned on image latent.
|
80 |
+
vae (`AutoencoderKL`):
|
81 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images and depth maps
|
82 |
+
to and from latent representations.
|
83 |
+
scheduler (`DDIMScheduler`):
|
84 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
85 |
+
text_encoder (`CLIPTextModel`):
|
86 |
+
Text-encoder, for empty text embedding.
|
87 |
+
tokenizer (`CLIPTokenizer`):
|
88 |
+
CLIP tokenizer.
|
89 |
+
scale_invariant (`bool`, *optional*):
|
90 |
+
A model property specifying whether the predicted depth maps are scale-invariant. This value must be set in
|
91 |
+
the model config. When used together with the `shift_invariant=True` flag, the model is also called
|
92 |
+
"affine-invariant". NB: overriding this value is not supported.
|
93 |
+
shift_invariant (`bool`, *optional*):
|
94 |
+
A model property specifying whether the predicted depth maps are shift-invariant. This value must be set in
|
95 |
+
the model config. When used together with the `scale_invariant=True` flag, the model is also called
|
96 |
+
"affine-invariant". NB: overriding this value is not supported.
|
97 |
+
default_denoising_steps (`int`, *optional*):
|
98 |
+
The minimum number of denoising diffusion steps that are required to produce a prediction of reasonable
|
99 |
+
quality with the given model. This value must be set in the model config. When the pipeline is called
|
100 |
+
without explicitly setting `num_inference_steps`, the default value is used. This is required to ensure
|
101 |
+
reasonable results with various model flavors compatible with the pipeline, such as those relying on very
|
102 |
+
short denoising schedules (`LCMScheduler`) and those with full diffusion schedules (`DDIMScheduler`).
|
103 |
+
default_processing_resolution (`int`, *optional*):
|
104 |
+
The recommended value of the `processing_resolution` parameter of the pipeline. This value must be set in
|
105 |
+
the model config. When the pipeline is called without explicitly setting `processing_resolution`, the
|
106 |
+
default value is used. This is required to ensure reasonable results with various model flavors trained
|
107 |
+
with varying optimal processing resolution values.
|
108 |
+
"""
|
109 |
+
|
110 |
+
rgb_latent_scale_factor = 0.18215
|
111 |
+
depth_latent_scale_factor = 0.18215
|
112 |
+
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
unet: UNet2DConditionModel,
|
116 |
+
vae: AutoencoderKL,
|
117 |
+
text_encoder: CLIPTextModel,
|
118 |
+
tokenizer: CLIPTokenizer,
|
119 |
+
scale_invariant: Optional[bool] = True,
|
120 |
+
shift_invariant: Optional[bool] = True,
|
121 |
+
default_processing_resolution: Optional[int] = None,
|
122 |
+
):
|
123 |
+
super().__init__()
|
124 |
+
|
125 |
+
# unet = UNet2DConditionModel.from_pretrained('/zssd/szy/Marigold_rgb2d/ckpt/eval/unet')
|
126 |
+
|
127 |
+
self.register_modules(
|
128 |
+
unet=unet,
|
129 |
+
vae=vae,
|
130 |
+
text_encoder=text_encoder,
|
131 |
+
tokenizer=tokenizer,
|
132 |
+
)
|
133 |
+
self.register_to_config(
|
134 |
+
scale_invariant=scale_invariant,
|
135 |
+
shift_invariant=shift_invariant,
|
136 |
+
default_processing_resolution=default_processing_resolution,
|
137 |
+
)
|
138 |
+
|
139 |
+
self.scale_invariant = scale_invariant
|
140 |
+
self.shift_invariant = shift_invariant
|
141 |
+
self.default_processing_resolution = default_processing_resolution
|
142 |
+
|
143 |
+
self.empty_text_embed = None
|
144 |
+
|
145 |
+
@torch.no_grad()
|
146 |
+
def __call__(
|
147 |
+
self,
|
148 |
+
input_image: Union[Image.Image, torch.Tensor],
|
149 |
+
processing_res: Optional[int] = None,
|
150 |
+
match_input_res: bool = True,
|
151 |
+
resample_method: str = "bilinear",
|
152 |
+
batch_size: int = 0,
|
153 |
+
color_map: str = "Spectral",
|
154 |
+
show_progress_bar: bool = True,
|
155 |
+
) -> DepthMasterDepthOutput:
|
156 |
+
"""
|
157 |
+
Function invoked when calling the pipeline.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
input_image (`Image`):
|
161 |
+
Input RGB (or gray-scale) image.
|
162 |
+
processing_res (`int`, *optional*, defaults to `None`):
|
163 |
+
Effective processing resolution. When set to `0`, processes at the original image resolution. This
|
164 |
+
produces crisper predictions, but may also lead to the overall loss of global context. The default
|
165 |
+
value `None` resolves to the optimal value from the model config.
|
166 |
+
match_input_res (`bool`, *optional*, defaults to `True`):
|
167 |
+
Resize depth prediction to match input resolution.
|
168 |
+
Only valid if `processing_res` > 0.
|
169 |
+
resample_method: (`str`, *optional*, defaults to `bilinear`):
|
170 |
+
Resampling method used to resize images and depth predictions. This can be one of `bilinear`, `bicubic` or `nearest`, defaults to: `bilinear`.
|
171 |
+
batch_size (`int`, *optional*, defaults to `0`):
|
172 |
+
Inference batch size, no bigger than `num_ensemble`.
|
173 |
+
If set to 0, the script will automatically decide the proper batch size.
|
174 |
+
show_progress_bar (`bool`, *optional*, defaults to `True`):
|
175 |
+
Display a progress bar of diffusion denoising.
|
176 |
+
color_map (`str`, *optional*, defaults to `"Spectral"`, pass `None` to skip colorized depth map generation):
|
177 |
+
Colormap used to colorize the depth map.
|
178 |
+
Returns:
|
179 |
+
`DepthMasterDepthOutput`: Output class for DepthMaster monocular depth prediction pipeline, including:
|
180 |
+
- **depth_np** (`np.ndarray`) Predicted depth map, with depth values in the range of [0, 1]
|
181 |
+
- **depth_colored** (`PIL.Image.Image`) Colorized depth map, with the shape of [3, H, W] and values in [0, 1], None if `color_map` is `None`
|
182 |
+
"""
|
183 |
+
# Model-specific optimal default values leading to fast and reasonable results.
|
184 |
+
if processing_res is None:
|
185 |
+
processing_res = self.default_processing_resolution
|
186 |
+
|
187 |
+
assert processing_res >= 0
|
188 |
+
|
189 |
+
resample_method: InterpolationMode = get_tv_resample_method(resample_method)
|
190 |
+
|
191 |
+
# ----------------- Image Preprocess -----------------
|
192 |
+
# Convert to torch tensor
|
193 |
+
if isinstance(input_image, Image.Image):
|
194 |
+
input_image = input_image.convert("RGB")
|
195 |
+
# convert to torch tensor [H, W, rgb] -> [rgb, H, W]
|
196 |
+
rgb = pil_to_tensor(input_image)
|
197 |
+
rgb = rgb.unsqueeze(0) # [1, rgb, H, W]
|
198 |
+
elif isinstance(input_image, torch.Tensor):
|
199 |
+
rgb = input_image
|
200 |
+
else:
|
201 |
+
raise TypeError(f"Unknown input type: {type(input_image) = }")
|
202 |
+
input_size = rgb.shape
|
203 |
+
assert (
|
204 |
+
4 == rgb.dim() and 3 == input_size[-3]
|
205 |
+
), f"Wrong input shape {input_size}, expected [1, rgb, H, W]"
|
206 |
+
# --------------- Image Processing ------------------------
|
207 |
+
# Resize image
|
208 |
+
if processing_res > 0:
|
209 |
+
rgb = resize_max_res(
|
210 |
+
rgb,
|
211 |
+
max_edge_resolution=processing_res,
|
212 |
+
resample_method=resample_method,
|
213 |
+
)
|
214 |
+
|
215 |
+
# Normalize rgb values
|
216 |
+
rgb_norm: torch.Tensor = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
|
217 |
+
rgb_norm = rgb_norm.to(self.dtype)
|
218 |
+
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
|
219 |
+
|
220 |
+
# ----------------- Predicting depth -----------------
|
221 |
+
# Batch repeated input image
|
222 |
+
duplicated_rgb = rgb_norm.expand(1, -1, -1, -1)
|
223 |
+
single_rgb_dataset = TensorDataset(duplicated_rgb)
|
224 |
+
# find the batch size
|
225 |
+
if batch_size > 0:
|
226 |
+
_bs = batch_size
|
227 |
+
else:
|
228 |
+
_bs = 1
|
229 |
+
|
230 |
+
single_rgb_loader = DataLoader(
|
231 |
+
single_rgb_dataset, batch_size=_bs, shuffle=False
|
232 |
+
)
|
233 |
+
|
234 |
+
# Predict depth maps (batched)
|
235 |
+
depth_pred_ls = []
|
236 |
+
if show_progress_bar:
|
237 |
+
iterable = tqdm(
|
238 |
+
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
|
239 |
+
)
|
240 |
+
else:
|
241 |
+
iterable = single_rgb_loader
|
242 |
+
for batch in iterable:
|
243 |
+
(batched_img,) = batch # here the image is still around 0-1
|
244 |
+
depth_pred_raw = self.single_infer(
|
245 |
+
rgb_in=batched_img,
|
246 |
+
)
|
247 |
+
depth_pred_ls.append(depth_pred_raw.detach())
|
248 |
+
depth_preds = torch.concat(depth_pred_ls, dim=0)
|
249 |
+
torch.cuda.empty_cache() # clear vram cache for ensembling
|
250 |
+
|
251 |
+
depth_pred = depth_preds
|
252 |
+
pred_uncert = None
|
253 |
+
|
254 |
+
# Resize back to original resolution
|
255 |
+
if match_input_res:
|
256 |
+
depth_pred = resize(
|
257 |
+
depth_pred,
|
258 |
+
input_size[-2:],
|
259 |
+
interpolation=resample_method,
|
260 |
+
antialias=True,
|
261 |
+
)
|
262 |
+
|
263 |
+
# Convert to numpy
|
264 |
+
depth_pred = depth_pred.squeeze()
|
265 |
+
depth_pred = depth_pred.cpu().numpy()
|
266 |
+
if pred_uncert is not None:
|
267 |
+
pred_uncert = pred_uncert.squeeze().cpu().numpy()
|
268 |
+
|
269 |
+
# Clip output range
|
270 |
+
depth_pred = depth_pred.clip(0, 1)
|
271 |
+
|
272 |
+
# Colorize
|
273 |
+
if color_map is not None:
|
274 |
+
depth_colored = colorize_depth_maps(
|
275 |
+
depth_pred, 0, 1, cmap=color_map
|
276 |
+
).squeeze() # [3, H, W], value in (0, 1)
|
277 |
+
depth_colored = (depth_colored * 255).astype(np.uint8)
|
278 |
+
depth_colored_hwc = chw2hwc(depth_colored)
|
279 |
+
depth_colored_img = Image.fromarray(depth_colored_hwc)
|
280 |
+
else:
|
281 |
+
depth_colored_img = None
|
282 |
+
|
283 |
+
return DepthMasterDepthOutput(
|
284 |
+
depth_np=depth_pred,
|
285 |
+
depth_colored=depth_colored_img,
|
286 |
+
uncertainty=pred_uncert,
|
287 |
+
)
|
288 |
+
|
289 |
+
|
290 |
+
def encode_empty_text(self):
|
291 |
+
"""
|
292 |
+
Encode text embedding for empty prompt
|
293 |
+
"""
|
294 |
+
prompt = ""
|
295 |
+
text_inputs = self.tokenizer(
|
296 |
+
prompt,
|
297 |
+
padding="do_not_pad",
|
298 |
+
max_length=self.tokenizer.model_max_length,
|
299 |
+
truncation=True,
|
300 |
+
return_tensors="pt",
|
301 |
+
)
|
302 |
+
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device) #[1,2]
|
303 |
+
self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype) #[1,2,1024]
|
304 |
+
|
305 |
+
@torch.no_grad()
|
306 |
+
def single_infer(
|
307 |
+
self,
|
308 |
+
rgb_in: torch.Tensor,
|
309 |
+
) -> torch.Tensor:
|
310 |
+
"""
|
311 |
+
Perform an individual depth prediction without ensembling.
|
312 |
+
|
313 |
+
Args:
|
314 |
+
rgb_in (`torch.Tensor`):
|
315 |
+
Input RGB image.
|
316 |
+
Returns:
|
317 |
+
`torch.Tensor`: Predicted depth map.
|
318 |
+
"""
|
319 |
+
device = self.device
|
320 |
+
rgb_in = rgb_in.to(device)
|
321 |
+
|
322 |
+
# Encode image
|
323 |
+
rgb_latent = self.encode_rgb(rgb_in) # 1/8 Resolution with a channel nums of 4.
|
324 |
+
|
325 |
+
|
326 |
+
# Batched empty text embedding
|
327 |
+
if self.empty_text_embed is None:
|
328 |
+
self.encode_empty_text()
|
329 |
+
batch_empty_text_embed = self.empty_text_embed.repeat(
|
330 |
+
(rgb_latent.shape[0], 1, 1)
|
331 |
+
).to(device) # [B, 2, 1024]
|
332 |
+
|
333 |
+
|
334 |
+
unet_output = self.unet(
|
335 |
+
rgb_latent,
|
336 |
+
1,
|
337 |
+
encoder_hidden_states=batch_empty_text_embed,
|
338 |
+
).sample # [B, 4, h, w]
|
339 |
+
|
340 |
+
torch.cuda.empty_cache()
|
341 |
+
depth = self.decode_depth(unet_output) # [B, 1, h, w]
|
342 |
+
|
343 |
+
# clip prediction
|
344 |
+
depth = torch.clip(depth, -1.0, 1.0)
|
345 |
+
# shift to [0, 1]
|
346 |
+
depth = (depth + 1.0) / 2.0
|
347 |
+
|
348 |
+
return depth
|
349 |
+
|
350 |
+
def encode_rgb(self, rgb_in: torch.Tensor) -> torch.Tensor:
|
351 |
+
"""
|
352 |
+
Encode RGB image into latent.
|
353 |
+
|
354 |
+
Args:
|
355 |
+
rgb_in (`torch.Tensor`):
|
356 |
+
Input RGB image to be encoded.
|
357 |
+
|
358 |
+
Returns:
|
359 |
+
`torch.Tensor`: Image latent.
|
360 |
+
"""
|
361 |
+
# encode
|
362 |
+
h = self.vae.encoder(rgb_in)
|
363 |
+
moments = self.vae.quant_conv(h)
|
364 |
+
mean, logvar = torch.chunk(moments, 2, dim=1)
|
365 |
+
# scale latent
|
366 |
+
rgb_latent = mean * self.rgb_latent_scale_factor
|
367 |
+
return rgb_latent
|
368 |
+
|
369 |
+
def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
|
370 |
+
"""
|
371 |
+
Decode depth latent into depth map.
|
372 |
+
|
373 |
+
Args:
|
374 |
+
depth_latent (`torch.Tensor`):
|
375 |
+
Depth latent to be decoded.
|
376 |
+
|
377 |
+
Returns:
|
378 |
+
`torch.Tensor`: Decoded depth map.
|
379 |
+
"""
|
380 |
+
# scale latent
|
381 |
+
depth_latent = depth_latent / self.depth_latent_scale_factor
|
382 |
+
# decode
|
383 |
+
z = self.vae.post_quant_conv(depth_latent)
|
384 |
+
stacked = self.vae.decoder(z)
|
385 |
+
# mean of output channels
|
386 |
+
depth_mean = stacked.mean(dim=1, keepdim=True)
|
387 |
+
return depth_mean
|
depthmaster/modules/unet_2d_blocks.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
depthmaster/modules/unet_2d_condition.py
ADDED
@@ -0,0 +1,1322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
|
23 |
+
from diffusers.loaders.single_file_model import FromOriginalModelMixin
|
24 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
25 |
+
from diffusers.models.activations import get_activation
|
26 |
+
from diffusers.models.attention_processor import (
|
27 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
28 |
+
CROSS_ATTENTION_PROCESSORS,
|
29 |
+
Attention,
|
30 |
+
AttentionProcessor,
|
31 |
+
AttnAddedKVProcessor,
|
32 |
+
AttnProcessor,
|
33 |
+
FusedAttnProcessor2_0,
|
34 |
+
)
|
35 |
+
from diffusers.models.embeddings import (
|
36 |
+
GaussianFourierProjection,
|
37 |
+
GLIGENTextBoundingboxProjection,
|
38 |
+
ImageHintTimeEmbedding,
|
39 |
+
ImageProjection,
|
40 |
+
ImageTimeEmbedding,
|
41 |
+
TextImageProjection,
|
42 |
+
TextImageTimeEmbedding,
|
43 |
+
TextTimeEmbedding,
|
44 |
+
TimestepEmbedding,
|
45 |
+
Timesteps,
|
46 |
+
)
|
47 |
+
from diffusers.models.modeling_utils import ModelMixin
|
48 |
+
from depthmaster.modules.unet_2d_blocks import (
|
49 |
+
get_down_block,
|
50 |
+
get_mid_block,
|
51 |
+
get_up_block,
|
52 |
+
BlockFE,
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
57 |
+
|
58 |
+
|
59 |
+
@dataclass
|
60 |
+
class UNet2DConditionOutput(BaseOutput):
|
61 |
+
"""
|
62 |
+
The output of [`UNet2DConditionModel`].
|
63 |
+
|
64 |
+
Args:
|
65 |
+
sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
|
66 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
67 |
+
"""
|
68 |
+
|
69 |
+
sample: torch.Tensor = None
|
70 |
+
feat_64: torch.Tensor = None
|
71 |
+
|
72 |
+
|
73 |
+
class UNet2DConditionModel(
|
74 |
+
ModelMixin, ConfigMixin, FromOriginalModelMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin
|
75 |
+
):
|
76 |
+
r"""
|
77 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
78 |
+
shaped output.
|
79 |
+
|
80 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
81 |
+
for all models (such as downloading or saving).
|
82 |
+
|
83 |
+
Parameters:
|
84 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
85 |
+
Height and width of input/output sample.
|
86 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
87 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
88 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
89 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
|
90 |
+
Whether to flip the sin to cos in the time embedding.
|
91 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
92 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
93 |
+
The tuple of downsample blocks to use.
|
94 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
95 |
+
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
96 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
97 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
98 |
+
The tuple of upsample blocks to use.
|
99 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
100 |
+
Whether to include self-attention in the basic transformer blocks, see
|
101 |
+
[`~models.attention.BasicTransformerBlock`].
|
102 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
103 |
+
The tuple of output channels for each block.
|
104 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
105 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
106 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
107 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
108 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
109 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
110 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
111 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
112 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
113 |
+
The dimension of the cross attention features.
|
114 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
115 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
116 |
+
[`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
|
117 |
+
[`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
118 |
+
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
119 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
120 |
+
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
121 |
+
[`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
|
122 |
+
[`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
123 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
124 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
125 |
+
dimension to `cross_attention_dim`.
|
126 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
127 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
128 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
129 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
130 |
+
num_attention_heads (`int`, *optional*):
|
131 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
132 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
133 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
134 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
135 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
136 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
137 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
138 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
139 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
140 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
141 |
+
Dimension for the timestep embeddings.
|
142 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
143 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
144 |
+
class conditioning with `class_embed_type` equal to `None`.
|
145 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
146 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
147 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
148 |
+
An optional override for the dimension of the projected time embedding.
|
149 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
150 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
151 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
152 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
153 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
154 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
155 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
156 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
157 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
158 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
159 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
160 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
161 |
+
embeddings with the class embeddings.
|
162 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
163 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
164 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
165 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
166 |
+
otherwise.
|
167 |
+
"""
|
168 |
+
|
169 |
+
_supports_gradient_checkpointing = True
|
170 |
+
_no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D", "CrossAttnUpBlock2D"]
|
171 |
+
|
172 |
+
@register_to_config
|
173 |
+
def __init__(
|
174 |
+
self,
|
175 |
+
sample_size: Optional[int] = None,
|
176 |
+
in_channels: int = 4,
|
177 |
+
out_channels: int = 4,
|
178 |
+
center_input_sample: bool = False,
|
179 |
+
flip_sin_to_cos: bool = True,
|
180 |
+
freq_shift: int = 0,
|
181 |
+
down_block_types: Tuple[str] = (
|
182 |
+
"CrossAttnDownBlock2D",
|
183 |
+
"CrossAttnDownBlock2D",
|
184 |
+
"CrossAttnDownBlock2D",
|
185 |
+
"DownBlock2D",
|
186 |
+
),
|
187 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
188 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
189 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
190 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
191 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
192 |
+
downsample_padding: int = 1,
|
193 |
+
mid_block_scale_factor: float = 1,
|
194 |
+
dropout: float = 0.0,
|
195 |
+
act_fn: str = "silu",
|
196 |
+
norm_num_groups: Optional[int] = 32,
|
197 |
+
norm_eps: float = 1e-5,
|
198 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
199 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
200 |
+
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
201 |
+
encoder_hid_dim: Optional[int] = None,
|
202 |
+
encoder_hid_dim_type: Optional[str] = None,
|
203 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
204 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
205 |
+
dual_cross_attention: bool = False,
|
206 |
+
use_linear_projection: bool = False,
|
207 |
+
class_embed_type: Optional[str] = None,
|
208 |
+
addition_embed_type: Optional[str] = None,
|
209 |
+
addition_time_embed_dim: Optional[int] = None,
|
210 |
+
num_class_embeds: Optional[int] = None,
|
211 |
+
upcast_attention: bool = False,
|
212 |
+
resnet_time_scale_shift: str = "default",
|
213 |
+
resnet_skip_time_act: bool = False,
|
214 |
+
resnet_out_scale_factor: float = 1.0,
|
215 |
+
time_embedding_type: str = "positional",
|
216 |
+
time_embedding_dim: Optional[int] = None,
|
217 |
+
time_embedding_act_fn: Optional[str] = None,
|
218 |
+
timestep_post_act: Optional[str] = None,
|
219 |
+
time_cond_proj_dim: Optional[int] = None,
|
220 |
+
conv_in_kernel: int = 3,
|
221 |
+
conv_out_kernel: int = 3,
|
222 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
223 |
+
attention_type: str = "default",
|
224 |
+
class_embeddings_concat: bool = False,
|
225 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
226 |
+
cross_attention_norm: Optional[str] = None,
|
227 |
+
addition_embed_type_num_heads: int = 64,
|
228 |
+
):
|
229 |
+
super().__init__()
|
230 |
+
# print('loaded correct file')
|
231 |
+
|
232 |
+
self.sample_size = sample_size
|
233 |
+
|
234 |
+
if num_attention_heads is not None:
|
235 |
+
raise ValueError(
|
236 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
237 |
+
)
|
238 |
+
|
239 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
240 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
241 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
242 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
243 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
244 |
+
# which is why we correct for the naming here.
|
245 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
246 |
+
|
247 |
+
# Check inputs
|
248 |
+
self._check_config(
|
249 |
+
down_block_types=down_block_types,
|
250 |
+
up_block_types=up_block_types,
|
251 |
+
only_cross_attention=only_cross_attention,
|
252 |
+
block_out_channels=block_out_channels,
|
253 |
+
layers_per_block=layers_per_block,
|
254 |
+
cross_attention_dim=cross_attention_dim,
|
255 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
256 |
+
reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
|
257 |
+
attention_head_dim=attention_head_dim,
|
258 |
+
num_attention_heads=num_attention_heads,
|
259 |
+
)
|
260 |
+
|
261 |
+
# input
|
262 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
263 |
+
self.conv_in = nn.Conv2d(
|
264 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
265 |
+
)
|
266 |
+
|
267 |
+
# time
|
268 |
+
time_embed_dim, timestep_input_dim = self._set_time_proj(
|
269 |
+
time_embedding_type,
|
270 |
+
block_out_channels=block_out_channels,
|
271 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
272 |
+
freq_shift=freq_shift,
|
273 |
+
time_embedding_dim=time_embedding_dim,
|
274 |
+
)
|
275 |
+
|
276 |
+
self.time_embedding = TimestepEmbedding(
|
277 |
+
timestep_input_dim,
|
278 |
+
time_embed_dim,
|
279 |
+
act_fn=act_fn,
|
280 |
+
post_act_fn=timestep_post_act,
|
281 |
+
cond_proj_dim=time_cond_proj_dim,
|
282 |
+
)
|
283 |
+
|
284 |
+
self._set_encoder_hid_proj(
|
285 |
+
encoder_hid_dim_type,
|
286 |
+
cross_attention_dim=cross_attention_dim,
|
287 |
+
encoder_hid_dim=encoder_hid_dim,
|
288 |
+
)
|
289 |
+
|
290 |
+
# class embedding
|
291 |
+
self._set_class_embedding(
|
292 |
+
class_embed_type,
|
293 |
+
act_fn=act_fn,
|
294 |
+
num_class_embeds=num_class_embeds,
|
295 |
+
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
296 |
+
time_embed_dim=time_embed_dim,
|
297 |
+
timestep_input_dim=timestep_input_dim,
|
298 |
+
)
|
299 |
+
|
300 |
+
self._set_add_embedding(
|
301 |
+
addition_embed_type,
|
302 |
+
addition_embed_type_num_heads=addition_embed_type_num_heads,
|
303 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
304 |
+
cross_attention_dim=cross_attention_dim,
|
305 |
+
encoder_hid_dim=encoder_hid_dim,
|
306 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
307 |
+
freq_shift=freq_shift,
|
308 |
+
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
309 |
+
time_embed_dim=time_embed_dim,
|
310 |
+
)
|
311 |
+
|
312 |
+
if time_embedding_act_fn is None:
|
313 |
+
self.time_embed_act = None
|
314 |
+
else:
|
315 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
316 |
+
|
317 |
+
self.down_blocks = nn.ModuleList([])
|
318 |
+
self.up_blocks = nn.ModuleList([])
|
319 |
+
|
320 |
+
if isinstance(only_cross_attention, bool):
|
321 |
+
if mid_block_only_cross_attention is None:
|
322 |
+
mid_block_only_cross_attention = only_cross_attention
|
323 |
+
|
324 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
325 |
+
|
326 |
+
if mid_block_only_cross_attention is None:
|
327 |
+
mid_block_only_cross_attention = False
|
328 |
+
|
329 |
+
if isinstance(num_attention_heads, int):
|
330 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
331 |
+
|
332 |
+
if isinstance(attention_head_dim, int):
|
333 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
334 |
+
|
335 |
+
if isinstance(cross_attention_dim, int):
|
336 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
337 |
+
|
338 |
+
if isinstance(layers_per_block, int):
|
339 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
340 |
+
|
341 |
+
if isinstance(transformer_layers_per_block, int):
|
342 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
343 |
+
|
344 |
+
if class_embeddings_concat:
|
345 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
346 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
347 |
+
# regular time embeddings
|
348 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
349 |
+
else:
|
350 |
+
blocks_time_embed_dim = time_embed_dim
|
351 |
+
|
352 |
+
# down
|
353 |
+
output_channel = block_out_channels[0]
|
354 |
+
for i, down_block_type in enumerate(down_block_types):
|
355 |
+
input_channel = output_channel
|
356 |
+
output_channel = block_out_channels[i]
|
357 |
+
is_final_block = i == len(block_out_channels) - 1
|
358 |
+
|
359 |
+
down_block = get_down_block(
|
360 |
+
down_block_type,
|
361 |
+
num_layers=layers_per_block[i],
|
362 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
363 |
+
in_channels=input_channel,
|
364 |
+
out_channels=output_channel,
|
365 |
+
temb_channels=blocks_time_embed_dim,
|
366 |
+
add_downsample=not is_final_block,
|
367 |
+
resnet_eps=norm_eps,
|
368 |
+
resnet_act_fn=act_fn,
|
369 |
+
resnet_groups=norm_num_groups,
|
370 |
+
cross_attention_dim=cross_attention_dim[i],
|
371 |
+
num_attention_heads=num_attention_heads[i],
|
372 |
+
downsample_padding=downsample_padding,
|
373 |
+
dual_cross_attention=dual_cross_attention,
|
374 |
+
use_linear_projection=use_linear_projection,
|
375 |
+
only_cross_attention=only_cross_attention[i],
|
376 |
+
upcast_attention=upcast_attention,
|
377 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
378 |
+
attention_type=attention_type,
|
379 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
380 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
381 |
+
cross_attention_norm=cross_attention_norm,
|
382 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
383 |
+
dropout=dropout,
|
384 |
+
)
|
385 |
+
self.down_blocks.append(down_block)
|
386 |
+
|
387 |
+
# mid
|
388 |
+
self.mid_block = get_mid_block(
|
389 |
+
mid_block_type,
|
390 |
+
temb_channels=blocks_time_embed_dim,
|
391 |
+
in_channels=block_out_channels[-1],
|
392 |
+
resnet_eps=norm_eps,
|
393 |
+
resnet_act_fn=act_fn,
|
394 |
+
resnet_groups=norm_num_groups,
|
395 |
+
output_scale_factor=mid_block_scale_factor,
|
396 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
397 |
+
num_attention_heads=num_attention_heads[-1],
|
398 |
+
cross_attention_dim=cross_attention_dim[-1],
|
399 |
+
dual_cross_attention=dual_cross_attention,
|
400 |
+
use_linear_projection=use_linear_projection,
|
401 |
+
mid_block_only_cross_attention=mid_block_only_cross_attention,
|
402 |
+
upcast_attention=upcast_attention,
|
403 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
404 |
+
attention_type=attention_type,
|
405 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
406 |
+
cross_attention_norm=cross_attention_norm,
|
407 |
+
attention_head_dim=attention_head_dim[-1],
|
408 |
+
dropout=dropout,
|
409 |
+
)
|
410 |
+
|
411 |
+
self.fftblock = BlockFE()
|
412 |
+
|
413 |
+
# count how many layers upsample the images
|
414 |
+
self.num_upsamplers = 0
|
415 |
+
|
416 |
+
# up
|
417 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
418 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
419 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
420 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
421 |
+
reversed_transformer_layers_per_block = (
|
422 |
+
list(reversed(transformer_layers_per_block))
|
423 |
+
if reverse_transformer_layers_per_block is None
|
424 |
+
else reverse_transformer_layers_per_block
|
425 |
+
)
|
426 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
427 |
+
|
428 |
+
output_channel = reversed_block_out_channels[0]
|
429 |
+
for i, up_block_type in enumerate(up_block_types):
|
430 |
+
is_final_block = i == len(block_out_channels) - 1
|
431 |
+
|
432 |
+
prev_output_channel = output_channel
|
433 |
+
output_channel = reversed_block_out_channels[i]
|
434 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
435 |
+
|
436 |
+
# add upsample block for all BUT final layer
|
437 |
+
if not is_final_block:
|
438 |
+
add_upsample = True
|
439 |
+
self.num_upsamplers += 1
|
440 |
+
else:
|
441 |
+
add_upsample = False
|
442 |
+
|
443 |
+
up_block = get_up_block(
|
444 |
+
up_block_type,
|
445 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
446 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
447 |
+
in_channels=input_channel,
|
448 |
+
out_channels=output_channel,
|
449 |
+
prev_output_channel=prev_output_channel,
|
450 |
+
temb_channels=blocks_time_embed_dim,
|
451 |
+
add_upsample=add_upsample,
|
452 |
+
resnet_eps=norm_eps,
|
453 |
+
resnet_act_fn=act_fn,
|
454 |
+
resolution_idx=i,
|
455 |
+
resnet_groups=norm_num_groups,
|
456 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
457 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
458 |
+
dual_cross_attention=dual_cross_attention,
|
459 |
+
use_linear_projection=use_linear_projection,
|
460 |
+
only_cross_attention=only_cross_attention[i],
|
461 |
+
upcast_attention=upcast_attention,
|
462 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
463 |
+
attention_type=attention_type,
|
464 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
465 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
466 |
+
cross_attention_norm=cross_attention_norm,
|
467 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
468 |
+
dropout=dropout,
|
469 |
+
)
|
470 |
+
self.up_blocks.append(up_block)
|
471 |
+
prev_output_channel = output_channel
|
472 |
+
|
473 |
+
# out
|
474 |
+
if norm_num_groups is not None:
|
475 |
+
self.conv_norm_out = nn.GroupNorm(
|
476 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
477 |
+
)
|
478 |
+
|
479 |
+
self.conv_act = get_activation(act_fn)
|
480 |
+
|
481 |
+
else:
|
482 |
+
self.conv_norm_out = None
|
483 |
+
self.conv_act = None
|
484 |
+
|
485 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
486 |
+
self.conv_out = nn.Conv2d(
|
487 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
488 |
+
)
|
489 |
+
|
490 |
+
self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
|
491 |
+
|
492 |
+
def _check_config(
|
493 |
+
self,
|
494 |
+
down_block_types: Tuple[str],
|
495 |
+
up_block_types: Tuple[str],
|
496 |
+
only_cross_attention: Union[bool, Tuple[bool]],
|
497 |
+
block_out_channels: Tuple[int],
|
498 |
+
layers_per_block: Union[int, Tuple[int]],
|
499 |
+
cross_attention_dim: Union[int, Tuple[int]],
|
500 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
|
501 |
+
reverse_transformer_layers_per_block: bool,
|
502 |
+
attention_head_dim: int,
|
503 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]],
|
504 |
+
):
|
505 |
+
if len(down_block_types) != len(up_block_types):
|
506 |
+
raise ValueError(
|
507 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
508 |
+
)
|
509 |
+
|
510 |
+
if len(block_out_channels) != len(down_block_types):
|
511 |
+
raise ValueError(
|
512 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
513 |
+
)
|
514 |
+
|
515 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
516 |
+
raise ValueError(
|
517 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
518 |
+
)
|
519 |
+
|
520 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
521 |
+
raise ValueError(
|
522 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
523 |
+
)
|
524 |
+
|
525 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
526 |
+
raise ValueError(
|
527 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
528 |
+
)
|
529 |
+
|
530 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
531 |
+
raise ValueError(
|
532 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
533 |
+
)
|
534 |
+
|
535 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
536 |
+
raise ValueError(
|
537 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
538 |
+
)
|
539 |
+
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
|
540 |
+
for layer_number_per_block in transformer_layers_per_block:
|
541 |
+
if isinstance(layer_number_per_block, list):
|
542 |
+
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
543 |
+
|
544 |
+
def _set_time_proj(
|
545 |
+
self,
|
546 |
+
time_embedding_type: str,
|
547 |
+
block_out_channels: int,
|
548 |
+
flip_sin_to_cos: bool,
|
549 |
+
freq_shift: float,
|
550 |
+
time_embedding_dim: int,
|
551 |
+
) -> Tuple[int, int]:
|
552 |
+
if time_embedding_type == "fourier":
|
553 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
554 |
+
if time_embed_dim % 2 != 0:
|
555 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
556 |
+
self.time_proj = GaussianFourierProjection(
|
557 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
558 |
+
)
|
559 |
+
timestep_input_dim = time_embed_dim
|
560 |
+
elif time_embedding_type == "positional":
|
561 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
562 |
+
|
563 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
564 |
+
timestep_input_dim = block_out_channels[0]
|
565 |
+
else:
|
566 |
+
raise ValueError(
|
567 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
568 |
+
)
|
569 |
+
|
570 |
+
return time_embed_dim, timestep_input_dim
|
571 |
+
|
572 |
+
def _set_encoder_hid_proj(
|
573 |
+
self,
|
574 |
+
encoder_hid_dim_type: Optional[str],
|
575 |
+
cross_attention_dim: Union[int, Tuple[int]],
|
576 |
+
encoder_hid_dim: Optional[int],
|
577 |
+
):
|
578 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
579 |
+
encoder_hid_dim_type = "text_proj"
|
580 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
581 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
582 |
+
|
583 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
584 |
+
raise ValueError(
|
585 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
586 |
+
)
|
587 |
+
|
588 |
+
if encoder_hid_dim_type == "text_proj":
|
589 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
590 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
591 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
592 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
593 |
+
# case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
|
594 |
+
self.encoder_hid_proj = TextImageProjection(
|
595 |
+
text_embed_dim=encoder_hid_dim,
|
596 |
+
image_embed_dim=cross_attention_dim,
|
597 |
+
cross_attention_dim=cross_attention_dim,
|
598 |
+
)
|
599 |
+
elif encoder_hid_dim_type == "image_proj":
|
600 |
+
# Kandinsky 2.2
|
601 |
+
self.encoder_hid_proj = ImageProjection(
|
602 |
+
image_embed_dim=encoder_hid_dim,
|
603 |
+
cross_attention_dim=cross_attention_dim,
|
604 |
+
)
|
605 |
+
elif encoder_hid_dim_type is not None:
|
606 |
+
raise ValueError(
|
607 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
608 |
+
)
|
609 |
+
else:
|
610 |
+
self.encoder_hid_proj = None
|
611 |
+
|
612 |
+
def _set_class_embedding(
|
613 |
+
self,
|
614 |
+
class_embed_type: Optional[str],
|
615 |
+
act_fn: str,
|
616 |
+
num_class_embeds: Optional[int],
|
617 |
+
projection_class_embeddings_input_dim: Optional[int],
|
618 |
+
time_embed_dim: int,
|
619 |
+
timestep_input_dim: int,
|
620 |
+
):
|
621 |
+
if class_embed_type is None and num_class_embeds is not None:
|
622 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
623 |
+
elif class_embed_type == "timestep":
|
624 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
625 |
+
elif class_embed_type == "identity":
|
626 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
627 |
+
elif class_embed_type == "projection":
|
628 |
+
if projection_class_embeddings_input_dim is None:
|
629 |
+
raise ValueError(
|
630 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
631 |
+
)
|
632 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
633 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
634 |
+
# 2. it projects from an arbitrary input dimension.
|
635 |
+
#
|
636 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
637 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
638 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
639 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
640 |
+
elif class_embed_type == "simple_projection":
|
641 |
+
if projection_class_embeddings_input_dim is None:
|
642 |
+
raise ValueError(
|
643 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
644 |
+
)
|
645 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
646 |
+
else:
|
647 |
+
self.class_embedding = None
|
648 |
+
|
649 |
+
def _set_add_embedding(
|
650 |
+
self,
|
651 |
+
addition_embed_type: str,
|
652 |
+
addition_embed_type_num_heads: int,
|
653 |
+
addition_time_embed_dim: Optional[int],
|
654 |
+
flip_sin_to_cos: bool,
|
655 |
+
freq_shift: float,
|
656 |
+
cross_attention_dim: Optional[int],
|
657 |
+
encoder_hid_dim: Optional[int],
|
658 |
+
projection_class_embeddings_input_dim: Optional[int],
|
659 |
+
time_embed_dim: int,
|
660 |
+
):
|
661 |
+
if addition_embed_type == "text":
|
662 |
+
if encoder_hid_dim is not None:
|
663 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
664 |
+
else:
|
665 |
+
text_time_embedding_from_dim = cross_attention_dim
|
666 |
+
|
667 |
+
self.add_embedding = TextTimeEmbedding(
|
668 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
669 |
+
)
|
670 |
+
elif addition_embed_type == "text_image":
|
671 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
672 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
673 |
+
# case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
|
674 |
+
self.add_embedding = TextImageTimeEmbedding(
|
675 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
676 |
+
)
|
677 |
+
elif addition_embed_type == "text_time":
|
678 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
679 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
680 |
+
elif addition_embed_type == "image":
|
681 |
+
# Kandinsky 2.2
|
682 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
683 |
+
elif addition_embed_type == "image_hint":
|
684 |
+
# Kandinsky 2.2 ControlNet
|
685 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
686 |
+
elif addition_embed_type is not None:
|
687 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
688 |
+
|
689 |
+
def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
|
690 |
+
if attention_type in ["gated", "gated-text-image"]:
|
691 |
+
positive_len = 768
|
692 |
+
if isinstance(cross_attention_dim, int):
|
693 |
+
positive_len = cross_attention_dim
|
694 |
+
elif isinstance(cross_attention_dim, (list, tuple)):
|
695 |
+
positive_len = cross_attention_dim[0]
|
696 |
+
|
697 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
698 |
+
self.position_net = GLIGENTextBoundingboxProjection(
|
699 |
+
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
700 |
+
)
|
701 |
+
|
702 |
+
@property
|
703 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
704 |
+
r"""
|
705 |
+
Returns:
|
706 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
707 |
+
indexed by its weight name.
|
708 |
+
"""
|
709 |
+
# set recursively
|
710 |
+
processors = {}
|
711 |
+
|
712 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
713 |
+
if hasattr(module, "get_processor"):
|
714 |
+
processors[f"{name}.processor"] = module.get_processor()
|
715 |
+
|
716 |
+
for sub_name, child in module.named_children():
|
717 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
718 |
+
|
719 |
+
return processors
|
720 |
+
|
721 |
+
for name, module in self.named_children():
|
722 |
+
fn_recursive_add_processors(name, module, processors)
|
723 |
+
|
724 |
+
return processors
|
725 |
+
|
726 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
727 |
+
r"""
|
728 |
+
Sets the attention processor to use to compute attention.
|
729 |
+
|
730 |
+
Parameters:
|
731 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
732 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
733 |
+
for **all** `Attention` layers.
|
734 |
+
|
735 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
736 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
737 |
+
|
738 |
+
"""
|
739 |
+
count = len(self.attn_processors.keys())
|
740 |
+
|
741 |
+
if isinstance(processor, dict) and len(processor) != count:
|
742 |
+
raise ValueError(
|
743 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
744 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
745 |
+
)
|
746 |
+
|
747 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
748 |
+
if hasattr(module, "set_processor"):
|
749 |
+
if not isinstance(processor, dict):
|
750 |
+
module.set_processor(processor)
|
751 |
+
else:
|
752 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
753 |
+
|
754 |
+
for sub_name, child in module.named_children():
|
755 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
756 |
+
|
757 |
+
for name, module in self.named_children():
|
758 |
+
fn_recursive_attn_processor(name, module, processor)
|
759 |
+
|
760 |
+
def set_default_attn_processor(self):
|
761 |
+
"""
|
762 |
+
Disables custom attention processors and sets the default attention implementation.
|
763 |
+
"""
|
764 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
765 |
+
processor = AttnAddedKVProcessor()
|
766 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
767 |
+
processor = AttnProcessor()
|
768 |
+
else:
|
769 |
+
raise ValueError(
|
770 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
771 |
+
)
|
772 |
+
|
773 |
+
self.set_attn_processor(processor)
|
774 |
+
|
775 |
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
|
776 |
+
r"""
|
777 |
+
Enable sliced attention computation.
|
778 |
+
|
779 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
780 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
781 |
+
|
782 |
+
Args:
|
783 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
784 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
785 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
786 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
787 |
+
must be a multiple of `slice_size`.
|
788 |
+
"""
|
789 |
+
sliceable_head_dims = []
|
790 |
+
|
791 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
792 |
+
if hasattr(module, "set_attention_slice"):
|
793 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
794 |
+
|
795 |
+
for child in module.children():
|
796 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
797 |
+
|
798 |
+
# retrieve number of attention layers
|
799 |
+
for module in self.children():
|
800 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
801 |
+
|
802 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
803 |
+
|
804 |
+
if slice_size == "auto":
|
805 |
+
# half the attention head size is usually a good trade-off between
|
806 |
+
# speed and memory
|
807 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
808 |
+
elif slice_size == "max":
|
809 |
+
# make smallest slice possible
|
810 |
+
slice_size = num_sliceable_layers * [1]
|
811 |
+
|
812 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
813 |
+
|
814 |
+
if len(slice_size) != len(sliceable_head_dims):
|
815 |
+
raise ValueError(
|
816 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
817 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
818 |
+
)
|
819 |
+
|
820 |
+
for i in range(len(slice_size)):
|
821 |
+
size = slice_size[i]
|
822 |
+
dim = sliceable_head_dims[i]
|
823 |
+
if size is not None and size > dim:
|
824 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
825 |
+
|
826 |
+
# Recursively walk through all the children.
|
827 |
+
# Any children which exposes the set_attention_slice method
|
828 |
+
# gets the message
|
829 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
830 |
+
if hasattr(module, "set_attention_slice"):
|
831 |
+
module.set_attention_slice(slice_size.pop())
|
832 |
+
|
833 |
+
for child in module.children():
|
834 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
835 |
+
|
836 |
+
reversed_slice_size = list(reversed(slice_size))
|
837 |
+
for module in self.children():
|
838 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
839 |
+
|
840 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
841 |
+
if hasattr(module, "gradient_checkpointing"):
|
842 |
+
module.gradient_checkpointing = value
|
843 |
+
|
844 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
845 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
846 |
+
|
847 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
848 |
+
|
849 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
850 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
851 |
+
|
852 |
+
Args:
|
853 |
+
s1 (`float`):
|
854 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
855 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
856 |
+
s2 (`float`):
|
857 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
858 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
859 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
860 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
861 |
+
"""
|
862 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
863 |
+
setattr(upsample_block, "s1", s1)
|
864 |
+
setattr(upsample_block, "s2", s2)
|
865 |
+
setattr(upsample_block, "b1", b1)
|
866 |
+
setattr(upsample_block, "b2", b2)
|
867 |
+
|
868 |
+
def disable_freeu(self):
|
869 |
+
"""Disables the FreeU mechanism."""
|
870 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
871 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
872 |
+
for k in freeu_keys:
|
873 |
+
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
|
874 |
+
setattr(upsample_block, k, None)
|
875 |
+
|
876 |
+
def fuse_qkv_projections(self):
|
877 |
+
"""
|
878 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
879 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
880 |
+
|
881 |
+
<Tip warning={true}>
|
882 |
+
|
883 |
+
This API is 🧪 experimental.
|
884 |
+
|
885 |
+
</Tip>
|
886 |
+
"""
|
887 |
+
self.original_attn_processors = None
|
888 |
+
|
889 |
+
for _, attn_processor in self.attn_processors.items():
|
890 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
891 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
892 |
+
|
893 |
+
self.original_attn_processors = self.attn_processors
|
894 |
+
|
895 |
+
for module in self.modules():
|
896 |
+
if isinstance(module, Attention):
|
897 |
+
module.fuse_projections(fuse=True)
|
898 |
+
|
899 |
+
self.set_attn_processor(FusedAttnProcessor2_0())
|
900 |
+
|
901 |
+
def unfuse_qkv_projections(self):
|
902 |
+
"""Disables the fused QKV projection if enabled.
|
903 |
+
|
904 |
+
<Tip warning={true}>
|
905 |
+
|
906 |
+
This API is 🧪 experimental.
|
907 |
+
|
908 |
+
</Tip>
|
909 |
+
|
910 |
+
"""
|
911 |
+
if self.original_attn_processors is not None:
|
912 |
+
self.set_attn_processor(self.original_attn_processors)
|
913 |
+
|
914 |
+
def get_time_embed(
|
915 |
+
self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
|
916 |
+
) -> Optional[torch.Tensor]:
|
917 |
+
timesteps = timestep
|
918 |
+
if not torch.is_tensor(timesteps):
|
919 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
920 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
921 |
+
is_mps = sample.device.type == "mps"
|
922 |
+
if isinstance(timestep, float):
|
923 |
+
dtype = torch.float32 if is_mps else torch.float64
|
924 |
+
else:
|
925 |
+
dtype = torch.int32 if is_mps else torch.int64
|
926 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
927 |
+
elif len(timesteps.shape) == 0:
|
928 |
+
timesteps = timesteps[None].to(sample.device)
|
929 |
+
|
930 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
931 |
+
timesteps = timesteps.expand(sample.shape[0])
|
932 |
+
|
933 |
+
t_emb = self.time_proj(timesteps)
|
934 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
935 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
936 |
+
# there might be better ways to encapsulate this.
|
937 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
938 |
+
return t_emb
|
939 |
+
|
940 |
+
def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
|
941 |
+
class_emb = None
|
942 |
+
if self.class_embedding is not None:
|
943 |
+
if class_labels is None:
|
944 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
945 |
+
|
946 |
+
if self.config.class_embed_type == "timestep":
|
947 |
+
class_labels = self.time_proj(class_labels)
|
948 |
+
|
949 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
950 |
+
# there might be better ways to encapsulate this.
|
951 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
952 |
+
|
953 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
954 |
+
return class_emb
|
955 |
+
|
956 |
+
def get_aug_embed(
|
957 |
+
self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
958 |
+
) -> Optional[torch.Tensor]:
|
959 |
+
aug_emb = None
|
960 |
+
if self.config.addition_embed_type == "text":
|
961 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
962 |
+
elif self.config.addition_embed_type == "text_image":
|
963 |
+
# Kandinsky 2.1 - style
|
964 |
+
if "image_embeds" not in added_cond_kwargs:
|
965 |
+
raise ValueError(
|
966 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
967 |
+
)
|
968 |
+
|
969 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
970 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
971 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
972 |
+
elif self.config.addition_embed_type == "text_time":
|
973 |
+
# SDXL - style
|
974 |
+
if "text_embeds" not in added_cond_kwargs:
|
975 |
+
raise ValueError(
|
976 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
977 |
+
)
|
978 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
979 |
+
if "time_ids" not in added_cond_kwargs:
|
980 |
+
raise ValueError(
|
981 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
982 |
+
)
|
983 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
984 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
985 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
986 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
987 |
+
add_embeds = add_embeds.to(emb.dtype)
|
988 |
+
aug_emb = self.add_embedding(add_embeds)
|
989 |
+
elif self.config.addition_embed_type == "image":
|
990 |
+
# Kandinsky 2.2 - style
|
991 |
+
if "image_embeds" not in added_cond_kwargs:
|
992 |
+
raise ValueError(
|
993 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
994 |
+
)
|
995 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
996 |
+
aug_emb = self.add_embedding(image_embs)
|
997 |
+
elif self.config.addition_embed_type == "image_hint":
|
998 |
+
# Kandinsky 2.2 - style
|
999 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
1000 |
+
raise ValueError(
|
1001 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1002 |
+
)
|
1003 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1004 |
+
hint = added_cond_kwargs.get("hint")
|
1005 |
+
aug_emb = self.add_embedding(image_embs, hint)
|
1006 |
+
return aug_emb
|
1007 |
+
|
1008 |
+
def process_encoder_hidden_states(
|
1009 |
+
self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
1010 |
+
) -> torch.Tensor:
|
1011 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1012 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1013 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1014 |
+
# Kandinsky 2.1 - style
|
1015 |
+
if "image_embeds" not in added_cond_kwargs:
|
1016 |
+
raise ValueError(
|
1017 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1018 |
+
)
|
1019 |
+
|
1020 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1021 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1022 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1023 |
+
# Kandinsky 2.2 - style
|
1024 |
+
if "image_embeds" not in added_cond_kwargs:
|
1025 |
+
raise ValueError(
|
1026 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1027 |
+
)
|
1028 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1029 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1030 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
|
1031 |
+
if "image_embeds" not in added_cond_kwargs:
|
1032 |
+
raise ValueError(
|
1033 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1034 |
+
)
|
1035 |
+
|
1036 |
+
if hasattr(self, "text_encoder_hid_proj") and self.text_encoder_hid_proj is not None:
|
1037 |
+
encoder_hidden_states = self.text_encoder_hid_proj(encoder_hidden_states)
|
1038 |
+
|
1039 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1040 |
+
image_embeds = self.encoder_hid_proj(image_embeds)
|
1041 |
+
encoder_hidden_states = (encoder_hidden_states, image_embeds)
|
1042 |
+
return encoder_hidden_states
|
1043 |
+
|
1044 |
+
def forward(
|
1045 |
+
self,
|
1046 |
+
sample: torch.Tensor,
|
1047 |
+
timestep: Union[torch.Tensor, float, int],
|
1048 |
+
encoder_hidden_states: torch.Tensor,
|
1049 |
+
class_labels: Optional[torch.Tensor] = None,
|
1050 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
1051 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1052 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1053 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
1054 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1055 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
1056 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1057 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1058 |
+
return_dict: bool = True,
|
1059 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
1060 |
+
r"""
|
1061 |
+
The [`UNet2DConditionModel`] forward method.
|
1062 |
+
|
1063 |
+
Args:
|
1064 |
+
sample (`torch.Tensor`):
|
1065 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
1066 |
+
timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
|
1067 |
+
encoder_hidden_states (`torch.Tensor`):
|
1068 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
1069 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
1070 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
1071 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
1072 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
1073 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
1074 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
1075 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
1076 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
1077 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
1078 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1079 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1080 |
+
`self.processor` in
|
1081 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1082 |
+
added_cond_kwargs: (`dict`, *optional*):
|
1083 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
1084 |
+
are passed along to the UNet blocks.
|
1085 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
1086 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
1087 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
1088 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
1089 |
+
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
1090 |
+
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
1091 |
+
encoder_attention_mask (`torch.Tensor`):
|
1092 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
1093 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
1094 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
1095 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1096 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
1097 |
+
tuple.
|
1098 |
+
|
1099 |
+
Returns:
|
1100 |
+
[`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
1101 |
+
If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
|
1102 |
+
otherwise a `tuple` is returned where the first element is the sample tensor.
|
1103 |
+
"""
|
1104 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
1105 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
1106 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
1107 |
+
# on the fly if necessary.
|
1108 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
1109 |
+
|
1110 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
1111 |
+
forward_upsample_size = False
|
1112 |
+
upsample_size = None
|
1113 |
+
|
1114 |
+
for dim in sample.shape[-2:]:
|
1115 |
+
if dim % default_overall_up_factor != 0:
|
1116 |
+
# Forward upsample size to force interpolation output size.
|
1117 |
+
forward_upsample_size = True
|
1118 |
+
break
|
1119 |
+
|
1120 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
1121 |
+
# expects mask of shape:
|
1122 |
+
# [batch, key_tokens]
|
1123 |
+
# adds singleton query_tokens dimension:
|
1124 |
+
# [batch, 1, key_tokens]
|
1125 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
1126 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
1127 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
1128 |
+
if attention_mask is not None:
|
1129 |
+
# assume that mask is expressed as:
|
1130 |
+
# (1 = keep, 0 = discard)
|
1131 |
+
# convert mask into a bias that can be added to attention scores:
|
1132 |
+
# (keep = +0, discard = -10000.0)
|
1133 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
1134 |
+
attention_mask = attention_mask.unsqueeze(1)
|
1135 |
+
|
1136 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
1137 |
+
if encoder_attention_mask is not None:
|
1138 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
1139 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
1140 |
+
|
1141 |
+
# 0. center input if necessary
|
1142 |
+
if self.config.center_input_sample:
|
1143 |
+
sample = 2 * sample - 1.0
|
1144 |
+
|
1145 |
+
# 1. time
|
1146 |
+
t_emb = self.get_time_embed(sample=sample, timestep=timestep)
|
1147 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
1148 |
+
aug_emb = None
|
1149 |
+
|
1150 |
+
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
|
1151 |
+
if class_emb is not None:
|
1152 |
+
if self.config.class_embeddings_concat:
|
1153 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
1154 |
+
else:
|
1155 |
+
emb = emb + class_emb
|
1156 |
+
|
1157 |
+
aug_emb = self.get_aug_embed(
|
1158 |
+
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1159 |
+
)
|
1160 |
+
if self.config.addition_embed_type == "image_hint":
|
1161 |
+
aug_emb, hint = aug_emb
|
1162 |
+
sample = torch.cat([sample, hint], dim=1)
|
1163 |
+
|
1164 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1165 |
+
|
1166 |
+
if self.time_embed_act is not None:
|
1167 |
+
emb = self.time_embed_act(emb)
|
1168 |
+
|
1169 |
+
encoder_hidden_states = self.process_encoder_hidden_states(
|
1170 |
+
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1171 |
+
)
|
1172 |
+
|
1173 |
+
# 2. pre-process
|
1174 |
+
sample = self.conv_in(sample)
|
1175 |
+
|
1176 |
+
# 2.5 GLIGEN position net
|
1177 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
1178 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1179 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
1180 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
1181 |
+
|
1182 |
+
# 3. down
|
1183 |
+
# we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
|
1184 |
+
# to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
|
1185 |
+
if cross_attention_kwargs is not None:
|
1186 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1187 |
+
lora_scale = cross_attention_kwargs.pop("scale", 1.0)
|
1188 |
+
else:
|
1189 |
+
lora_scale = 1.0
|
1190 |
+
|
1191 |
+
if USE_PEFT_BACKEND:
|
1192 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1193 |
+
scale_lora_layers(self, lora_scale)
|
1194 |
+
|
1195 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1196 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1197 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
1198 |
+
# maintain backward compatibility for legacy usage, where
|
1199 |
+
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1200 |
+
# but can only use one or the other
|
1201 |
+
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
1202 |
+
deprecate(
|
1203 |
+
"T2I should not use down_block_additional_residuals",
|
1204 |
+
"1.3.0",
|
1205 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1206 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1207 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1208 |
+
standard_warn=False,
|
1209 |
+
)
|
1210 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
1211 |
+
is_adapter = True
|
1212 |
+
|
1213 |
+
down_block_res_samples = (sample,)
|
1214 |
+
for downsample_block in self.down_blocks:
|
1215 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1216 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1217 |
+
additional_residuals = {}
|
1218 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1219 |
+
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
1220 |
+
|
1221 |
+
sample, res_samples = downsample_block(
|
1222 |
+
hidden_states=sample,
|
1223 |
+
temb=emb,
|
1224 |
+
encoder_hidden_states=encoder_hidden_states,
|
1225 |
+
attention_mask=attention_mask,
|
1226 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1227 |
+
encoder_attention_mask=encoder_attention_mask,
|
1228 |
+
**additional_residuals,
|
1229 |
+
)
|
1230 |
+
else:
|
1231 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
1232 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1233 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1234 |
+
|
1235 |
+
down_block_res_samples += res_samples
|
1236 |
+
|
1237 |
+
if is_controlnet:
|
1238 |
+
new_down_block_res_samples = ()
|
1239 |
+
|
1240 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1241 |
+
down_block_res_samples, down_block_additional_residuals
|
1242 |
+
):
|
1243 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1244 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1245 |
+
|
1246 |
+
down_block_res_samples = new_down_block_res_samples
|
1247 |
+
|
1248 |
+
# 4. mid
|
1249 |
+
if self.mid_block is not None:
|
1250 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
1251 |
+
sample = self.mid_block(
|
1252 |
+
sample,
|
1253 |
+
emb,
|
1254 |
+
encoder_hidden_states=encoder_hidden_states,
|
1255 |
+
attention_mask=attention_mask,
|
1256 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1257 |
+
encoder_attention_mask=encoder_attention_mask,
|
1258 |
+
)
|
1259 |
+
else:
|
1260 |
+
sample = self.mid_block(sample, emb)
|
1261 |
+
|
1262 |
+
# To support T2I-Adapter-XL
|
1263 |
+
if (
|
1264 |
+
is_adapter
|
1265 |
+
and len(down_intrablock_additional_residuals) > 0
|
1266 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1267 |
+
):
|
1268 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1269 |
+
|
1270 |
+
if is_controlnet:
|
1271 |
+
sample = sample + mid_block_additional_residual
|
1272 |
+
|
1273 |
+
feat_64 = sample
|
1274 |
+
|
1275 |
+
# fe transform
|
1276 |
+
sample = self.fftblock(sample)
|
1277 |
+
|
1278 |
+
# 5. up
|
1279 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1280 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1281 |
+
|
1282 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1283 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1284 |
+
|
1285 |
+
# if we have not reached the final block and need to forward the
|
1286 |
+
# upsample size, we do it here
|
1287 |
+
if not is_final_block and forward_upsample_size:
|
1288 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1289 |
+
|
1290 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1291 |
+
sample = upsample_block(
|
1292 |
+
hidden_states=sample,
|
1293 |
+
temb=emb,
|
1294 |
+
res_hidden_states_tuple=res_samples,
|
1295 |
+
encoder_hidden_states=encoder_hidden_states,
|
1296 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1297 |
+
upsample_size=upsample_size,
|
1298 |
+
attention_mask=attention_mask,
|
1299 |
+
encoder_attention_mask=encoder_attention_mask,
|
1300 |
+
)
|
1301 |
+
else:
|
1302 |
+
sample = upsample_block(
|
1303 |
+
hidden_states=sample,
|
1304 |
+
temb=emb,
|
1305 |
+
res_hidden_states_tuple=res_samples,
|
1306 |
+
upsample_size=upsample_size,
|
1307 |
+
)
|
1308 |
+
|
1309 |
+
# 6. post-process
|
1310 |
+
if self.conv_norm_out:
|
1311 |
+
sample = self.conv_norm_out(sample)
|
1312 |
+
sample = self.conv_act(sample)
|
1313 |
+
sample = self.conv_out(sample)
|
1314 |
+
|
1315 |
+
if USE_PEFT_BACKEND:
|
1316 |
+
# remove `lora_scale` from each PEFT layer
|
1317 |
+
unscale_lora_layers(self, lora_scale)
|
1318 |
+
|
1319 |
+
if not return_dict:
|
1320 |
+
return (sample,)
|
1321 |
+
|
1322 |
+
return UNet2DConditionOutput(sample=sample, feat_64=feat_64)
|
depthmaster/util/batchsize.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Last modified: 2025-01-14
|
2 |
+
#
|
3 |
+
# Copyright 2025 Ziyang Song, USTC. All rights reserved.
|
4 |
+
#
|
5 |
+
# This file has been modified from the original version.
|
6 |
+
# Original copyright (c) 2023 Bingxin Ke, ETH Zurich. All rights reserved.
|
7 |
+
#
|
8 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
9 |
+
# you may not use this file except in compliance with the License.
|
10 |
+
# You may obtain a copy of the License at
|
11 |
+
#
|
12 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
13 |
+
#
|
14 |
+
# Unless required by applicable law or agreed to in writing, software
|
15 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
16 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
17 |
+
# See the License for the specific language governing permissions and
|
18 |
+
# limitations under the License.
|
19 |
+
# --------------------------------------------------------------------------
|
20 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
21 |
+
# Please find bibtex at: https://github.com/indu1ge/DepthMaster#-citation
|
22 |
+
# More information about the method can be found at https://indu1ge.github.io/DepthMaster_page
|
23 |
+
# --------------------------------------------------------------------------
|
24 |
+
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import math
|
28 |
+
|
29 |
+
|
30 |
+
# Search table for suggested max. inference batch size
|
31 |
+
bs_search_table = [
|
32 |
+
# tested on A100-PCIE-80GB
|
33 |
+
{"res": 768, "total_vram": 79, "bs": 35, "dtype": torch.float32},
|
34 |
+
{"res": 1024, "total_vram": 79, "bs": 20, "dtype": torch.float32},
|
35 |
+
# tested on A100-PCIE-40GB
|
36 |
+
{"res": 768, "total_vram": 39, "bs": 15, "dtype": torch.float32},
|
37 |
+
{"res": 1024, "total_vram": 39, "bs": 8, "dtype": torch.float32},
|
38 |
+
{"res": 768, "total_vram": 39, "bs": 30, "dtype": torch.float16},
|
39 |
+
{"res": 1024, "total_vram": 39, "bs": 15, "dtype": torch.float16},
|
40 |
+
# tested on RTX3090, RTX4090
|
41 |
+
{"res": 512, "total_vram": 23, "bs": 20, "dtype": torch.float32},
|
42 |
+
{"res": 768, "total_vram": 23, "bs": 7, "dtype": torch.float32},
|
43 |
+
{"res": 1024, "total_vram": 23, "bs": 3, "dtype": torch.float32},
|
44 |
+
{"res": 512, "total_vram": 23, "bs": 40, "dtype": torch.float16},
|
45 |
+
{"res": 768, "total_vram": 23, "bs": 18, "dtype": torch.float16},
|
46 |
+
{"res": 1024, "total_vram": 23, "bs": 10, "dtype": torch.float16},
|
47 |
+
# tested on GTX1080Ti
|
48 |
+
{"res": 512, "total_vram": 10, "bs": 5, "dtype": torch.float32},
|
49 |
+
{"res": 768, "total_vram": 10, "bs": 2, "dtype": torch.float32},
|
50 |
+
{"res": 512, "total_vram": 10, "bs": 10, "dtype": torch.float16},
|
51 |
+
{"res": 768, "total_vram": 10, "bs": 5, "dtype": torch.float16},
|
52 |
+
{"res": 1024, "total_vram": 10, "bs": 3, "dtype": torch.float16},
|
53 |
+
]
|
54 |
+
|
55 |
+
|
56 |
+
def find_batch_size(ensemble_size: int, input_res: int, dtype: torch.dtype) -> int:
|
57 |
+
"""
|
58 |
+
Automatically search for suitable operating batch size.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
ensemble_size (`int`):
|
62 |
+
Number of predictions to be ensembled.
|
63 |
+
input_res (`int`):
|
64 |
+
Operating resolution of the input image.
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
`int`: Operating batch size.
|
68 |
+
"""
|
69 |
+
if not torch.cuda.is_available():
|
70 |
+
return 1
|
71 |
+
|
72 |
+
total_vram = torch.cuda.mem_get_info()[1] / 1024.0**3
|
73 |
+
filtered_bs_search_table = [s for s in bs_search_table if s["dtype"] == dtype]
|
74 |
+
for settings in sorted(
|
75 |
+
filtered_bs_search_table,
|
76 |
+
key=lambda k: (k["res"], -k["total_vram"]),
|
77 |
+
):
|
78 |
+
if input_res <= settings["res"] and total_vram >= settings["total_vram"]:
|
79 |
+
bs = settings["bs"]
|
80 |
+
if bs > ensemble_size:
|
81 |
+
bs = ensemble_size
|
82 |
+
elif bs > math.ceil(ensemble_size / 2) and bs < ensemble_size:
|
83 |
+
bs = math.ceil(ensemble_size / 2)
|
84 |
+
return bs
|
85 |
+
|
86 |
+
return 1
|
depthmaster/util/ensemble.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Last modified: 2025-01-14
|
2 |
+
#
|
3 |
+
# Copyright 2025 Ziyang Song, USTC. All rights reserved.
|
4 |
+
#
|
5 |
+
# This file has been modified from the original version.
|
6 |
+
# Original copyright (c) 2023 Bingxin Ke, ETH Zurich. All rights reserved.
|
7 |
+
#
|
8 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
9 |
+
# you may not use this file except in compliance with the License.
|
10 |
+
# You may obtain a copy of the License at
|
11 |
+
#
|
12 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
13 |
+
#
|
14 |
+
# Unless required by applicable law or agreed to in writing, software
|
15 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
16 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
17 |
+
# See the License for the specific language governing permissions and
|
18 |
+
# limitations under the License.
|
19 |
+
# --------------------------------------------------------------------------
|
20 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
21 |
+
# Please find bibtex at: https://github.com/indu1ge/DepthMaster#-citation
|
22 |
+
# More information about the method can be found at https://indu1ge.github.io/DepthMaster_page
|
23 |
+
# --------------------------------------------------------------------------
|
24 |
+
|
25 |
+
|
26 |
+
from functools import partial
|
27 |
+
from typing import Optional, Tuple
|
28 |
+
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
|
32 |
+
from .image_util import get_tv_resample_method, resize_max_res
|
33 |
+
|
34 |
+
|
35 |
+
def inter_distances(tensors: torch.Tensor):
|
36 |
+
"""
|
37 |
+
To calculate the distance between each two depth maps.
|
38 |
+
"""
|
39 |
+
distances = []
|
40 |
+
for i, j in torch.combinations(torch.arange(tensors.shape[0])):
|
41 |
+
arr1 = tensors[i : i + 1]
|
42 |
+
arr2 = tensors[j : j + 1]
|
43 |
+
distances.append(arr1 - arr2)
|
44 |
+
dist = torch.concatenate(distances, dim=0)
|
45 |
+
return dist
|
46 |
+
|
47 |
+
|
48 |
+
def ensemble_depth(
|
49 |
+
depth: torch.Tensor,
|
50 |
+
scale_invariant: bool = True,
|
51 |
+
shift_invariant: bool = True,
|
52 |
+
output_uncertainty: bool = False,
|
53 |
+
reduction: str = "median",
|
54 |
+
regularizer_strength: float = 0.02,
|
55 |
+
max_iter: int = 2,
|
56 |
+
tol: float = 1e-3,
|
57 |
+
max_res: int = 1024,
|
58 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
59 |
+
"""
|
60 |
+
Ensembles depth maps represented by the `depth` tensor with expected shape `(B, 1, H, W)`, where B is the
|
61 |
+
number of ensemble members for a given prediction of size `(H x W)`. Even though the function is designed for
|
62 |
+
depth maps, it can also be used with disparity maps as long as the input tensor values are non-negative. The
|
63 |
+
alignment happens when the predictions have one or more degrees of freedom, that is when they are either
|
64 |
+
affine-invariant (`scale_invariant=True` and `shift_invariant=True`), or just scale-invariant (only
|
65 |
+
`scale_invariant=True`). For absolute predictions (`scale_invariant=False` and `shift_invariant=False`)
|
66 |
+
alignment is skipped and only ensembling is performed.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
depth (`torch.Tensor`):
|
70 |
+
Input ensemble depth maps.
|
71 |
+
scale_invariant (`bool`, *optional*, defaults to `True`):
|
72 |
+
Whether to treat predictions as scale-invariant.
|
73 |
+
shift_invariant (`bool`, *optional*, defaults to `True`):
|
74 |
+
Whether to treat predictions as shift-invariant.
|
75 |
+
output_uncertainty (`bool`, *optional*, defaults to `False`):
|
76 |
+
Whether to output uncertainty map.
|
77 |
+
reduction (`str`, *optional*, defaults to `"median"`):
|
78 |
+
Reduction method used to ensemble aligned predictions. The accepted values are: `"mean"` and
|
79 |
+
`"median"`.
|
80 |
+
regularizer_strength (`float`, *optional*, defaults to `0.02`):
|
81 |
+
Strength of the regularizer that pulls the aligned predictions to the unit range from 0 to 1.
|
82 |
+
max_iter (`int`, *optional*, defaults to `2`):
|
83 |
+
Maximum number of the alignment solver steps. Refer to `scipy.optimize.minimize` function, `options`
|
84 |
+
argument.
|
85 |
+
tol (`float`, *optional*, defaults to `1e-3`):
|
86 |
+
Alignment solver tolerance. The solver stops when the tolerance is reached.
|
87 |
+
max_res (`int`, *optional*, defaults to `1024`):
|
88 |
+
Resolution at which the alignment is performed; `None` matches the `processing_resolution`.
|
89 |
+
Returns:
|
90 |
+
A tensor of aligned and ensembled depth maps and optionally a tensor of uncertainties of the same shape:
|
91 |
+
`(1, 1, H, W)`.
|
92 |
+
"""
|
93 |
+
if depth.dim() != 4 or depth.shape[1] != 1:
|
94 |
+
raise ValueError(f"Expecting 4D tensor of shape [B,1,H,W]; got {depth.shape}.")
|
95 |
+
if reduction not in ("mean", "median"):
|
96 |
+
raise ValueError(f"Unrecognized reduction method: {reduction}.")
|
97 |
+
if not scale_invariant and shift_invariant:
|
98 |
+
raise ValueError("Pure shift-invariant ensembling is not supported.")
|
99 |
+
|
100 |
+
def init_param(depth: torch.Tensor):
|
101 |
+
init_min = depth.reshape(ensemble_size, -1).min(dim=1).values
|
102 |
+
init_max = depth.reshape(ensemble_size, -1).max(dim=1).values
|
103 |
+
|
104 |
+
if scale_invariant and shift_invariant:
|
105 |
+
init_s = 1.0 / (init_max - init_min).clamp(min=1e-6)
|
106 |
+
init_t = -init_s * init_min
|
107 |
+
param = torch.cat((init_s, init_t)).cpu().numpy()
|
108 |
+
elif scale_invariant:
|
109 |
+
init_s = 1.0 / init_max.clamp(min=1e-6)
|
110 |
+
param = init_s.cpu().numpy()
|
111 |
+
else:
|
112 |
+
raise ValueError("Unrecognized alignment.")
|
113 |
+
|
114 |
+
return param
|
115 |
+
|
116 |
+
def align(depth: torch.Tensor, param: np.ndarray) -> torch.Tensor:
|
117 |
+
if scale_invariant and shift_invariant:
|
118 |
+
s, t = np.split(param, 2)
|
119 |
+
s = torch.from_numpy(s).to(depth).view(ensemble_size, 1, 1, 1)
|
120 |
+
t = torch.from_numpy(t).to(depth).view(ensemble_size, 1, 1, 1)
|
121 |
+
out = depth * s + t
|
122 |
+
elif scale_invariant:
|
123 |
+
s = torch.from_numpy(param).to(depth).view(ensemble_size, 1, 1, 1)
|
124 |
+
out = depth * s
|
125 |
+
else:
|
126 |
+
raise ValueError("Unrecognized alignment.")
|
127 |
+
return out
|
128 |
+
|
129 |
+
def ensemble(
|
130 |
+
depth_aligned: torch.Tensor, return_uncertainty: bool = False
|
131 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
132 |
+
uncertainty = None
|
133 |
+
if reduction == "mean":
|
134 |
+
prediction = torch.mean(depth_aligned, dim=0, keepdim=True)
|
135 |
+
if return_uncertainty:
|
136 |
+
uncertainty = torch.std(depth_aligned, dim=0, keepdim=True)
|
137 |
+
elif reduction == "median":
|
138 |
+
prediction = torch.median(depth_aligned, dim=0, keepdim=True).values
|
139 |
+
if return_uncertainty:
|
140 |
+
uncertainty = torch.median(
|
141 |
+
torch.abs(depth_aligned - prediction), dim=0, keepdim=True
|
142 |
+
).values
|
143 |
+
else:
|
144 |
+
raise ValueError(f"Unrecognized reduction method: {reduction}.")
|
145 |
+
return prediction, uncertainty
|
146 |
+
|
147 |
+
def cost_fn(param: np.ndarray, depth: torch.Tensor) -> float:
|
148 |
+
cost = 0.0
|
149 |
+
depth_aligned = align(depth, param)
|
150 |
+
|
151 |
+
for i, j in torch.combinations(torch.arange(ensemble_size)):
|
152 |
+
diff = depth_aligned[i] - depth_aligned[j]
|
153 |
+
cost += (diff**2).mean().sqrt().item()
|
154 |
+
|
155 |
+
if regularizer_strength > 0:
|
156 |
+
prediction, _ = ensemble(depth_aligned, return_uncertainty=False)
|
157 |
+
err_near = (0.0 - prediction.min()).abs().item()
|
158 |
+
err_far = (1.0 - prediction.max()).abs().item()
|
159 |
+
cost += (err_near + err_far) * regularizer_strength
|
160 |
+
|
161 |
+
return cost
|
162 |
+
|
163 |
+
def compute_param(depth: torch.Tensor):
|
164 |
+
import scipy
|
165 |
+
|
166 |
+
depth_to_align = depth.to(torch.float32)
|
167 |
+
if max_res is not None and max(depth_to_align.shape[2:]) > max_res:
|
168 |
+
depth_to_align = resize_max_res(
|
169 |
+
depth_to_align, max_res, get_tv_resample_method("nearest-exact")
|
170 |
+
)
|
171 |
+
|
172 |
+
param = init_param(depth_to_align)
|
173 |
+
|
174 |
+
res = scipy.optimize.minimize(
|
175 |
+
partial(cost_fn, depth=depth_to_align),
|
176 |
+
param,
|
177 |
+
method="BFGS",
|
178 |
+
tol=tol,
|
179 |
+
options={"maxiter": max_iter, "disp": False},
|
180 |
+
)
|
181 |
+
|
182 |
+
return res.x
|
183 |
+
|
184 |
+
requires_aligning = scale_invariant or shift_invariant
|
185 |
+
ensemble_size = depth.shape[0]
|
186 |
+
|
187 |
+
if requires_aligning:
|
188 |
+
param = compute_param(depth)
|
189 |
+
depth = align(depth, param)
|
190 |
+
|
191 |
+
depth, uncertainty = ensemble(depth, return_uncertainty=output_uncertainty)
|
192 |
+
|
193 |
+
depth_max = depth.max()
|
194 |
+
if scale_invariant and shift_invariant:
|
195 |
+
depth_min = depth.min()
|
196 |
+
elif scale_invariant:
|
197 |
+
depth_min = 0
|
198 |
+
else:
|
199 |
+
raise ValueError("Unrecognized alignment.")
|
200 |
+
depth_range = (depth_max - depth_min).clamp(min=1e-6)
|
201 |
+
depth = (depth - depth_min) / depth_range
|
202 |
+
if output_uncertainty:
|
203 |
+
uncertainty /= depth_range
|
204 |
+
|
205 |
+
return depth, uncertainty # [1,1,H,W], [1,1,H,W]
|
depthmaster/util/image_util.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Last modified: 2025-01-14
|
2 |
+
#
|
3 |
+
# Copyright 2025 Ziyang Song, USTC. All rights reserved.
|
4 |
+
#
|
5 |
+
# This file has been modified from the original version.
|
6 |
+
# Original copyright (c) 2023 Bingxin Ke, ETH Zurich. All rights reserved.
|
7 |
+
#
|
8 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
9 |
+
# you may not use this file except in compliance with the License.
|
10 |
+
# You may obtain a copy of the License at
|
11 |
+
#
|
12 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
13 |
+
#
|
14 |
+
# Unless required by applicable law or agreed to in writing, software
|
15 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
16 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
17 |
+
# See the License for the specific language governing permissions and
|
18 |
+
# limitations under the License.
|
19 |
+
# --------------------------------------------------------------------------
|
20 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
21 |
+
# Please find bibtex at: https://github.com/indu1ge/DepthMaster#-citation
|
22 |
+
# More information about the method can be found at https://indu1ge.github.io/DepthMaster_page
|
23 |
+
# --------------------------------------------------------------------------
|
24 |
+
|
25 |
+
|
26 |
+
import matplotlib
|
27 |
+
import numpy as np
|
28 |
+
import torch
|
29 |
+
from torchvision.transforms import InterpolationMode
|
30 |
+
from torchvision.transforms.functional import resize
|
31 |
+
|
32 |
+
|
33 |
+
def colorize_depth_maps(
|
34 |
+
depth_map, min_depth, max_depth, cmap="Spectral", valid_mask=None
|
35 |
+
):
|
36 |
+
"""
|
37 |
+
Colorize depth maps.
|
38 |
+
"""
|
39 |
+
assert len(depth_map.shape) >= 2, "Invalid dimension"
|
40 |
+
|
41 |
+
if isinstance(depth_map, torch.Tensor):
|
42 |
+
depth = depth_map.detach().squeeze().numpy()
|
43 |
+
elif isinstance(depth_map, np.ndarray):
|
44 |
+
depth = depth_map.copy().squeeze()
|
45 |
+
# reshape to [ (B,) H, W ]
|
46 |
+
if depth.ndim < 3:
|
47 |
+
depth = depth[np.newaxis, :, :]
|
48 |
+
|
49 |
+
# colorize
|
50 |
+
cm = matplotlib.colormaps[cmap]
|
51 |
+
depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1)
|
52 |
+
img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] # value from 0 to 1
|
53 |
+
img_colored_np = np.rollaxis(img_colored_np, 3, 1)
|
54 |
+
|
55 |
+
if valid_mask is not None:
|
56 |
+
if isinstance(depth_map, torch.Tensor):
|
57 |
+
valid_mask = valid_mask.detach().numpy()
|
58 |
+
valid_mask = valid_mask.squeeze() # [H, W] or [B, H, W]
|
59 |
+
if valid_mask.ndim < 3:
|
60 |
+
valid_mask = valid_mask[np.newaxis, np.newaxis, :, :]
|
61 |
+
else:
|
62 |
+
valid_mask = valid_mask[:, np.newaxis, :, :]
|
63 |
+
valid_mask = np.repeat(valid_mask, 3, axis=1)
|
64 |
+
img_colored_np[~valid_mask] = 0
|
65 |
+
|
66 |
+
if isinstance(depth_map, torch.Tensor):
|
67 |
+
img_colored = torch.from_numpy(img_colored_np).float()
|
68 |
+
elif isinstance(depth_map, np.ndarray):
|
69 |
+
img_colored = img_colored_np
|
70 |
+
|
71 |
+
return img_colored
|
72 |
+
|
73 |
+
|
74 |
+
def chw2hwc(chw):
|
75 |
+
assert 3 == len(chw.shape)
|
76 |
+
if isinstance(chw, torch.Tensor):
|
77 |
+
hwc = torch.permute(chw, (1, 2, 0))
|
78 |
+
elif isinstance(chw, np.ndarray):
|
79 |
+
hwc = np.moveaxis(chw, 0, -1)
|
80 |
+
return hwc
|
81 |
+
|
82 |
+
|
83 |
+
def resize_max_res(
|
84 |
+
img: torch.Tensor,
|
85 |
+
max_edge_resolution: int,
|
86 |
+
resample_method: InterpolationMode = InterpolationMode.BILINEAR,
|
87 |
+
) -> torch.Tensor:
|
88 |
+
"""
|
89 |
+
Resize image to limit maximum edge length while keeping aspect ratio.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
img (`torch.Tensor`):
|
93 |
+
Image tensor to be resized. Expected shape: [B, C, H, W]
|
94 |
+
max_edge_resolution (`int`):
|
95 |
+
Maximum edge length (pixel).
|
96 |
+
resample_method (`PIL.Image.Resampling`):
|
97 |
+
Resampling method used to resize images.
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
`torch.Tensor`: Resized image.
|
101 |
+
"""
|
102 |
+
assert 4 == img.dim(), f"Invalid input shape {img.shape}"
|
103 |
+
|
104 |
+
original_height, original_width = img.shape[-2:]
|
105 |
+
downscale_factor = min(
|
106 |
+
max_edge_resolution / original_width, max_edge_resolution / original_height
|
107 |
+
)
|
108 |
+
|
109 |
+
new_width = int(original_width * downscale_factor)
|
110 |
+
new_height = int(original_height * downscale_factor)
|
111 |
+
|
112 |
+
resized_img = resize(img, (new_height, new_width), resample_method, antialias=True)
|
113 |
+
return resized_img
|
114 |
+
|
115 |
+
|
116 |
+
def get_tv_resample_method(method_str: str) -> InterpolationMode:
|
117 |
+
resample_method_dict = {
|
118 |
+
"bilinear": InterpolationMode.BILINEAR,
|
119 |
+
"bicubic": InterpolationMode.BICUBIC,
|
120 |
+
"nearest": InterpolationMode.NEAREST_EXACT,
|
121 |
+
"nearest-exact": InterpolationMode.NEAREST_EXACT,
|
122 |
+
}
|
123 |
+
resample_method = resample_method_dict.get(method_str, None)
|
124 |
+
if resample_method is None:
|
125 |
+
raise ValueError(f"Unknown resampling method: {resample_method}")
|
126 |
+
else:
|
127 |
+
return resample_method
|
requirements.txt
CHANGED
@@ -1,6 +1,129 @@
|
|
1 |
-
accelerate
|
2 |
-
diffusers
|
3 |
invisible_watermark
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
invisible_watermark
|
2 |
+
absl-py==2.1.0
|
3 |
+
accelerate==0.31.0
|
4 |
+
aiohttp==3.9.5
|
5 |
+
aiosignal==1.3.1
|
6 |
+
antlr4-python3-runtime==4.9.3
|
7 |
+
asttokens @ file:///home/conda/feedstock_root/build_artifacts/asttokens_1698341106958/work
|
8 |
+
async-timeout==4.0.3
|
9 |
+
attrs==23.2.0
|
10 |
+
bitsandbytes==0.43.1
|
11 |
+
certifi==2024.6.2
|
12 |
+
charset-normalizer==3.3.2
|
13 |
+
click==8.1.7
|
14 |
+
comm @ file:///home/conda/feedstock_root/build_artifacts/comm_1710320294760/work
|
15 |
+
contourpy==1.2.1
|
16 |
+
cycler==0.12.1
|
17 |
+
datasets==2.19.2
|
18 |
+
debugpy @ file:///croot/debugpy_1690905042057/work
|
19 |
+
decorator @ file:///home/conda/feedstock_root/build_artifacts/decorator_1641555617451/work
|
20 |
+
diffusers==0.29.0
|
21 |
+
dill==0.3.8
|
22 |
+
docker-pycreds==0.4.0
|
23 |
+
einops==0.8.0
|
24 |
+
entrypoints @ file:///home/conda/feedstock_root/build_artifacts/entrypoints_1643888246732/work
|
25 |
+
exceptiongroup @ file:///home/conda/feedstock_root/build_artifacts/exceptiongroup_1704921103267/work
|
26 |
+
executing @ file:///home/conda/feedstock_root/build_artifacts/executing_1698579936712/work
|
27 |
+
filelock==3.13.1
|
28 |
+
fonttools==4.53.0
|
29 |
+
frozenlist==1.4.1
|
30 |
+
fsspec==2024.2.0
|
31 |
+
gitdb==4.0.11
|
32 |
+
GitPython==3.1.43
|
33 |
+
grpcio==1.64.1
|
34 |
+
h5py==3.11.0
|
35 |
+
huggingface-hub==0.27.1
|
36 |
+
idna==3.7
|
37 |
+
imageio==2.34.1
|
38 |
+
imgaug==0.4.0
|
39 |
+
importlib_metadata==7.1.0
|
40 |
+
ipykernel @ file:///home/conda/feedstock_root/build_artifacts/ipykernel_1717717528849/work
|
41 |
+
ipython @ file:///home/conda/feedstock_root/build_artifacts/ipython_1717182742060/work
|
42 |
+
jedi @ file:///home/conda/feedstock_root/build_artifacts/jedi_1696326070614/work
|
43 |
+
Jinja2==3.1.3
|
44 |
+
jupyter-client @ file:///home/conda/feedstock_root/build_artifacts/jupyter_client_1654730843242/work
|
45 |
+
jupyter_core @ file:///home/conda/feedstock_root/build_artifacts/jupyter_core_1710257277185/work
|
46 |
+
kiwisolver==1.4.5
|
47 |
+
lazy_loader==0.4
|
48 |
+
lightning-utilities==0.11.2
|
49 |
+
Markdown==3.6
|
50 |
+
MarkupSafe==2.1.5
|
51 |
+
matplotlib==3.9.0
|
52 |
+
matplotlib-inline @ file:///home/conda/feedstock_root/build_artifacts/matplotlib-inline_1713250518406/work
|
53 |
+
mpmath==1.3.0
|
54 |
+
multidict==6.0.5
|
55 |
+
multiprocess==0.70.16
|
56 |
+
nest_asyncio @ file:///home/conda/feedstock_root/build_artifacts/nest-asyncio_1705850609492/work
|
57 |
+
networkx==3.2.1
|
58 |
+
numpy==1.26.3
|
59 |
+
nvidia-cublas-cu11==11.11.3.6
|
60 |
+
nvidia-cuda-cupti-cu11==11.8.87
|
61 |
+
nvidia-cuda-nvrtc-cu11==11.8.89
|
62 |
+
nvidia-cuda-runtime-cu11==11.8.89
|
63 |
+
nvidia-cudnn-cu11==8.7.0.84
|
64 |
+
nvidia-cufft-cu11==10.9.0.58
|
65 |
+
nvidia-curand-cu11==10.3.0.86
|
66 |
+
nvidia-cusolver-cu11==11.4.1.48
|
67 |
+
nvidia-cusparse-cu11==11.7.5.86
|
68 |
+
nvidia-nccl-cu11==2.20.5
|
69 |
+
nvidia-nvtx-cu11==11.8.86
|
70 |
+
omegaconf==2.3.0
|
71 |
+
opencv-python==4.10.0.82
|
72 |
+
packaging @ file:///home/conda/feedstock_root/build_artifacts/packaging_1718189413536/work
|
73 |
+
pandas==2.2.2
|
74 |
+
parso @ file:///home/conda/feedstock_root/build_artifacts/parso_1712320355065/work
|
75 |
+
peft==0.11.1
|
76 |
+
pexpect @ file:///home/conda/feedstock_root/build_artifacts/pexpect_1706113125309/work
|
77 |
+
pickleshare @ file:///home/conda/feedstock_root/build_artifacts/pickleshare_1602536217715/work
|
78 |
+
pillow==10.2.0
|
79 |
+
platformdirs @ file:///home/conda/feedstock_root/build_artifacts/platformdirs_1715777629804/work
|
80 |
+
prompt_toolkit @ file:///home/conda/feedstock_root/build_artifacts/prompt-toolkit_1718047967974/work
|
81 |
+
protobuf==4.25.3
|
82 |
+
psutil @ file:///opt/conda/conda-bld/psutil_1656431268089/work
|
83 |
+
ptyprocess @ file:///home/conda/feedstock_root/build_artifacts/ptyprocess_1609419310487/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl
|
84 |
+
pure-eval @ file:///home/conda/feedstock_root/build_artifacts/pure_eval_1642875951954/work
|
85 |
+
pyarrow==16.1.0
|
86 |
+
pyarrow-hotfix==0.6
|
87 |
+
Pygments @ file:///home/conda/feedstock_root/build_artifacts/pygments_1714846767233/work
|
88 |
+
pyparsing==3.1.2
|
89 |
+
python-dateutil @ file:///home/conda/feedstock_root/build_artifacts/python-dateutil_1709299778482/work
|
90 |
+
pytorch-lightning==2.2.5
|
91 |
+
pytz==2024.1
|
92 |
+
PyYAML==6.0.1
|
93 |
+
pyzmq @ file:///croot/pyzmq_1705605076900/work
|
94 |
+
regex==2024.5.15
|
95 |
+
requests==2.32.3
|
96 |
+
safetensors==0.4.3
|
97 |
+
scikit-image==0.23.2
|
98 |
+
scipy==1.13.1
|
99 |
+
sentry-sdk==2.5.1
|
100 |
+
setproctitle==1.3.3
|
101 |
+
shapely==2.0.4
|
102 |
+
six @ file:///home/conda/feedstock_root/build_artifacts/six_1620240208055/work
|
103 |
+
smmap==5.0.1
|
104 |
+
stack-data @ file:///home/conda/feedstock_root/build_artifacts/stack_data_1669632077133/work
|
105 |
+
sympy==1.12
|
106 |
+
tabulate==0.9.0
|
107 |
+
tensorboard==2.17.0
|
108 |
+
tensorboard-data-server==0.7.2
|
109 |
+
tifffile==2024.5.22
|
110 |
+
tokenizers==0.19.1
|
111 |
+
torch==2.3.0+cu118
|
112 |
+
torchaudio==2.3.1+cu118
|
113 |
+
torchmetrics==1.4.0.post0
|
114 |
+
torchvision==0.18.1+cu118
|
115 |
+
tornado @ file:///home/conda/feedstock_root/build_artifacts/tornado_1648827254365/work
|
116 |
+
tqdm==4.66.4
|
117 |
+
traitlets @ file:///home/conda/feedstock_root/build_artifacts/traitlets_1713535121073/work
|
118 |
+
transformers==4.41.2
|
119 |
+
triton==2.3.0
|
120 |
+
typing_extensions @ file:///home/conda/feedstock_root/build_artifacts/typing_extensions_1717802530399/work
|
121 |
+
tzdata==2024.1
|
122 |
+
urllib3==2.2.1
|
123 |
+
wandb==0.17.1
|
124 |
+
wcwidth @ file:///home/conda/feedstock_root/build_artifacts/wcwidth_1704731205417/work
|
125 |
+
Werkzeug==3.0.3
|
126 |
+
xformers==0.0.26.post1+cu118
|
127 |
+
xxhash==3.4.1
|
128 |
+
yarl==1.9.4
|
129 |
+
zipp==3.19.2
|
run.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Last modified: 2025-01-14
|
2 |
+
#
|
3 |
+
# Copyright 2025 Ziyang Song, USTC. All rights reserved.
|
4 |
+
#
|
5 |
+
# This file has been modified from the original version.
|
6 |
+
# Original copyright (c) 2023 Bingxin Ke, ETH Zurich. All rights reserved.
|
7 |
+
#
|
8 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
9 |
+
# you may not use this file except in compliance with the License.
|
10 |
+
# You may obtain a copy of the License at
|
11 |
+
#
|
12 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
13 |
+
#
|
14 |
+
# Unless required by applicable law or agreed to in writing, software
|
15 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
16 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
17 |
+
# See the License for the specific language governing permissions and
|
18 |
+
# limitations under the License.
|
19 |
+
# --------------------------------------------------------------------------
|
20 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
21 |
+
# Please find bibtex at: https://github.com/indu1ge/DepthMaster#-citation
|
22 |
+
# More information about the method can be found at https://indu1ge.github.io/DepthMaster_page
|
23 |
+
# --------------------------------------------------------------------------
|
24 |
+
|
25 |
+
|
26 |
+
import argparse
|
27 |
+
import logging
|
28 |
+
import os
|
29 |
+
from glob import glob
|
30 |
+
|
31 |
+
import numpy as np
|
32 |
+
import torch
|
33 |
+
from PIL import Image
|
34 |
+
from tqdm.auto import tqdm
|
35 |
+
|
36 |
+
from depthmaster import DepthMasterPipeline
|
37 |
+
|
38 |
+
EXTENSION_LIST = [".jpg", ".png"]
|
39 |
+
|
40 |
+
|
41 |
+
if "__main__" == __name__:
|
42 |
+
logging.basicConfig(level=logging.INFO)
|
43 |
+
|
44 |
+
# -------------------- Arguments --------------------
|
45 |
+
parser = argparse.ArgumentParser(
|
46 |
+
description="Run single-image depth estimation using Marigold."
|
47 |
+
)
|
48 |
+
parser.add_argument(
|
49 |
+
"--checkpoint",
|
50 |
+
type=str,
|
51 |
+
default="ckpt/depthmaster",
|
52 |
+
help="Checkpoint path or hub name.",
|
53 |
+
)
|
54 |
+
|
55 |
+
parser.add_argument(
|
56 |
+
"--input_rgb_dir",
|
57 |
+
type=str,
|
58 |
+
required=True,
|
59 |
+
help="Path to the input image folder.",
|
60 |
+
)
|
61 |
+
|
62 |
+
parser.add_argument(
|
63 |
+
"--output_dir", type=str, required=True, help="Output directory."
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
parser.add_argument(
|
68 |
+
"--half_precision",
|
69 |
+
"--fp16",
|
70 |
+
action="store_true",
|
71 |
+
help="Run with half-precision (16-bit float), might lead to suboptimal result.",
|
72 |
+
)
|
73 |
+
|
74 |
+
# resolution setting
|
75 |
+
parser.add_argument(
|
76 |
+
"--processing_res",
|
77 |
+
type=int,
|
78 |
+
default=None,
|
79 |
+
help="Maximum resolution of processing. 0 for using input image resolution. Default: 768.",
|
80 |
+
)
|
81 |
+
parser.add_argument(
|
82 |
+
"--output_processing_res",
|
83 |
+
action="store_true",
|
84 |
+
help="When input is resized, out put depth at resized operating resolution. Default: False.",
|
85 |
+
)
|
86 |
+
parser.add_argument(
|
87 |
+
"--resample_method",
|
88 |
+
choices=["bilinear", "bicubic", "nearest"],
|
89 |
+
default="bilinear",
|
90 |
+
help="Resampling method used to resize images and depth predictions. This can be one of `bilinear`, `bicubic` or `nearest`. Default: `bilinear`",
|
91 |
+
)
|
92 |
+
|
93 |
+
# depth map colormap
|
94 |
+
parser.add_argument(
|
95 |
+
"--color_map",
|
96 |
+
type=str,
|
97 |
+
default="Spectral",
|
98 |
+
help="Colormap used to render depth predictions.",
|
99 |
+
)
|
100 |
+
|
101 |
+
# other settings
|
102 |
+
parser.add_argument(
|
103 |
+
"--batch_size",
|
104 |
+
type=int,
|
105 |
+
default=0,
|
106 |
+
help="Inference batch size. Default: 0 (will be set automatically).",
|
107 |
+
)
|
108 |
+
parser.add_argument(
|
109 |
+
"--apple_silicon",
|
110 |
+
action="store_true",
|
111 |
+
help="Flag of running on Apple Silicon.",
|
112 |
+
)
|
113 |
+
|
114 |
+
args = parser.parse_args()
|
115 |
+
|
116 |
+
checkpoint_path = args.checkpoint
|
117 |
+
input_rgb_dir = args.input_rgb_dir
|
118 |
+
output_dir = args.output_dir
|
119 |
+
|
120 |
+
half_precision = args.half_precision
|
121 |
+
|
122 |
+
processing_res = args.processing_res
|
123 |
+
match_input_res = not args.output_processing_res
|
124 |
+
if 0 == processing_res and match_input_res is False:
|
125 |
+
logging.warning(
|
126 |
+
"Processing at native resolution without resizing output might NOT lead to exactly the same resolution, due to the padding and pooling properties of conv layers."
|
127 |
+
)
|
128 |
+
resample_method = args.resample_method
|
129 |
+
|
130 |
+
color_map = args.color_map
|
131 |
+
batch_size = args.batch_size
|
132 |
+
apple_silicon = args.apple_silicon
|
133 |
+
if apple_silicon and 0 == batch_size:
|
134 |
+
batch_size = 1 # set default batchsize
|
135 |
+
|
136 |
+
# -------------------- Preparation --------------------
|
137 |
+
# Output directories
|
138 |
+
output_dir_color = os.path.join(output_dir, "depth_colored")
|
139 |
+
output_dir_tif = os.path.join(output_dir, "depth_bw")
|
140 |
+
# output_dir_npy = os.path.join(output_dir, "depth_npy")
|
141 |
+
os.makedirs(output_dir, exist_ok=True)
|
142 |
+
os.makedirs(output_dir_color, exist_ok=True)
|
143 |
+
os.makedirs(output_dir_tif, exist_ok=True)
|
144 |
+
# os.makedirs(output_dir_npy, exist_ok=True)
|
145 |
+
logging.info(f"output dir = {output_dir}")
|
146 |
+
|
147 |
+
# -------------------- Device --------------------
|
148 |
+
if apple_silicon:
|
149 |
+
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
|
150 |
+
device = torch.device("mps:0")
|
151 |
+
else:
|
152 |
+
device = torch.device("cpu")
|
153 |
+
logging.warning("MPS is not available. Running on CPU will be slow.")
|
154 |
+
else:
|
155 |
+
if torch.cuda.is_available():
|
156 |
+
device = torch.device("cuda")
|
157 |
+
else:
|
158 |
+
device = torch.device("cpu")
|
159 |
+
logging.warning("CUDA is not available. Running on CPU will be slow.")
|
160 |
+
logging.info(f"device = {device}")
|
161 |
+
|
162 |
+
# -------------------- Data --------------------
|
163 |
+
rgb_filename_list = glob(os.path.join(input_rgb_dir, "*"))
|
164 |
+
rgb_filename_list = [
|
165 |
+
f for f in rgb_filename_list if os.path.splitext(f)[1].lower() in EXTENSION_LIST
|
166 |
+
]
|
167 |
+
rgb_filename_list = sorted(rgb_filename_list)
|
168 |
+
n_images = len(rgb_filename_list)
|
169 |
+
if n_images > 0:
|
170 |
+
logging.info(f"Found {n_images} images")
|
171 |
+
else:
|
172 |
+
logging.error(f"No image found in '{input_rgb_dir}'")
|
173 |
+
exit(1)
|
174 |
+
|
175 |
+
# -------------------- Model --------------------
|
176 |
+
if half_precision:
|
177 |
+
dtype = torch.float16
|
178 |
+
variant = "fp16"
|
179 |
+
logging.info(
|
180 |
+
f"Running with half precision ({dtype}), might lead to suboptimal result."
|
181 |
+
)
|
182 |
+
else:
|
183 |
+
dtype = torch.float32
|
184 |
+
variant = None
|
185 |
+
|
186 |
+
pipe: DepthMasterPipeline = DepthMasterPipeline.from_pretrained(
|
187 |
+
checkpoint_path, variant=variant, torch_dtype=dtype
|
188 |
+
)
|
189 |
+
|
190 |
+
try:
|
191 |
+
pipe.enable_xformers_memory_efficient_attention()
|
192 |
+
except ImportError:
|
193 |
+
pass # run without xformers
|
194 |
+
|
195 |
+
pipe = pipe.to(device)
|
196 |
+
logging.info(
|
197 |
+
f"scale_invariant: {pipe.scale_invariant}, shift_invariant: {pipe.shift_invariant}"
|
198 |
+
)
|
199 |
+
|
200 |
+
# Print out config
|
201 |
+
logging.info(
|
202 |
+
f"Inference settings: checkpoint = `{checkpoint_path}`, "
|
203 |
+
f"processing resolution = {processing_res or pipe.default_processing_resolution}, "
|
204 |
+
f"color_map = {color_map}."
|
205 |
+
)
|
206 |
+
|
207 |
+
# -------------------- Inference and saving --------------------
|
208 |
+
with torch.no_grad():
|
209 |
+
os.makedirs(output_dir, exist_ok=True)
|
210 |
+
|
211 |
+
for rgb_path in tqdm(rgb_filename_list, desc="Estimating depth", leave=True):
|
212 |
+
# Read input image
|
213 |
+
input_image = Image.open(rgb_path)
|
214 |
+
|
215 |
+
# Predict depth
|
216 |
+
with torch.no_grad():
|
217 |
+
pipe_out = pipe(
|
218 |
+
input_image,
|
219 |
+
processing_res=processing_res,
|
220 |
+
match_input_res=match_input_res,
|
221 |
+
batch_size=batch_size,
|
222 |
+
color_map=color_map,
|
223 |
+
show_progress_bar=True,
|
224 |
+
resample_method=resample_method,
|
225 |
+
)
|
226 |
+
|
227 |
+
depth_pred: np.ndarray = pipe_out.depth_np
|
228 |
+
depth_colored: Image.Image = pipe_out.depth_colored
|
229 |
+
|
230 |
+
# Save as npy
|
231 |
+
rgb_name_base = os.path.splitext(os.path.basename(rgb_path))[0]
|
232 |
+
pred_name_base = rgb_name_base + "_pred"
|
233 |
+
# npy_save_path = os.path.join(output_dir_npy, f"{pred_name_base}.npy")
|
234 |
+
# if os.path.exists(npy_save_path):
|
235 |
+
# logging.warning(f"Existing file: '{npy_save_path}' will be overwritten")
|
236 |
+
# np.save(npy_save_path, depth_pred)
|
237 |
+
|
238 |
+
# Save as 16-bit uint png
|
239 |
+
depth_to_save = (depth_pred * 65535.0).astype(np.uint16)
|
240 |
+
png_save_path = os.path.join(output_dir_tif, f"{pred_name_base}.png")
|
241 |
+
if os.path.exists(png_save_path):
|
242 |
+
logging.warning(f"Existing file: '{png_save_path}' will be overwritten")
|
243 |
+
Image.fromarray(depth_to_save).save(png_save_path, mode="I;16")
|
244 |
+
|
245 |
+
# Colorize
|
246 |
+
colored_save_path = os.path.join(
|
247 |
+
output_dir_color, f"{pred_name_base}_colored.png"
|
248 |
+
)
|
249 |
+
if os.path.exists(colored_save_path):
|
250 |
+
logging.warning(
|
251 |
+
f"Existing file: '{colored_save_path}' will be overwritten"
|
252 |
+
)
|
253 |
+
depth_colored.save(colored_save_path)
|