|  |  | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.autograd import Function | 
					
						
						|  | from torch.autograd.function import once_differentiable | 
					
						
						|  | from torch.nn.modules.utils import _pair | 
					
						
						|  |  | 
					
						
						|  | from detectron2 import _C | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class _ROIAlign(Function): | 
					
						
						|  | @staticmethod | 
					
						
						|  | def forward(ctx, input, roi, output_size, spatial_scale, sampling_ratio, aligned): | 
					
						
						|  | ctx.save_for_backward(roi) | 
					
						
						|  | ctx.output_size = _pair(output_size) | 
					
						
						|  | ctx.spatial_scale = spatial_scale | 
					
						
						|  | ctx.sampling_ratio = sampling_ratio | 
					
						
						|  | ctx.input_shape = input.size() | 
					
						
						|  | ctx.aligned = aligned | 
					
						
						|  | output = _C.roi_align_forward( | 
					
						
						|  | input, roi, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned | 
					
						
						|  | ) | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | @once_differentiable | 
					
						
						|  | def backward(ctx, grad_output): | 
					
						
						|  | (rois,) = ctx.saved_tensors | 
					
						
						|  | output_size = ctx.output_size | 
					
						
						|  | spatial_scale = ctx.spatial_scale | 
					
						
						|  | sampling_ratio = ctx.sampling_ratio | 
					
						
						|  | bs, ch, h, w = ctx.input_shape | 
					
						
						|  | grad_input = _C.roi_align_backward( | 
					
						
						|  | grad_output, | 
					
						
						|  | rois, | 
					
						
						|  | spatial_scale, | 
					
						
						|  | output_size[0], | 
					
						
						|  | output_size[1], | 
					
						
						|  | bs, | 
					
						
						|  | ch, | 
					
						
						|  | h, | 
					
						
						|  | w, | 
					
						
						|  | sampling_ratio, | 
					
						
						|  | ctx.aligned, | 
					
						
						|  | ) | 
					
						
						|  | return grad_input, None, None, None, None, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | roi_align = _ROIAlign.apply | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ROIAlign(nn.Module): | 
					
						
						|  | def __init__(self, output_size, spatial_scale, sampling_ratio, aligned=True): | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | output_size (tuple): h, w | 
					
						
						|  | spatial_scale (float): scale the input boxes by this number | 
					
						
						|  | sampling_ratio (int): number of inputs samples to take for each output | 
					
						
						|  | sample. 0 to take samples densely. | 
					
						
						|  | aligned (bool): if False, use the legacy implementation in | 
					
						
						|  | Detectron. If True, align the results more perfectly. | 
					
						
						|  |  | 
					
						
						|  | Note: | 
					
						
						|  | The meaning of aligned=True: | 
					
						
						|  |  | 
					
						
						|  | Given a continuous coordinate c, its two neighboring pixel indices (in our | 
					
						
						|  | pixel model) are computed by floor(c - 0.5) and ceil(c - 0.5). For example, | 
					
						
						|  | c=1.3 has pixel neighbors with discrete indices [0] and [1] (which are sampled | 
					
						
						|  | from the underlying signal at continuous coordinates 0.5 and 1.5). But the original | 
					
						
						|  | roi_align (aligned=False) does not subtract the 0.5 when computing neighboring | 
					
						
						|  | pixel indices and therefore it uses pixels with a slightly incorrect alignment | 
					
						
						|  | (relative to our pixel model) when performing bilinear interpolation. | 
					
						
						|  |  | 
					
						
						|  | With `aligned=True`, | 
					
						
						|  | we first appropriately scale the ROI and then shift it by -0.5 | 
					
						
						|  | prior to calling roi_align. This produces the correct neighbors; see | 
					
						
						|  | detectron2/tests/test_roi_align.py for verification. | 
					
						
						|  |  | 
					
						
						|  | The difference does not make a difference to the model's performance if | 
					
						
						|  | ROIAlign is used together with conv layers. | 
					
						
						|  | """ | 
					
						
						|  | super(ROIAlign, self).__init__() | 
					
						
						|  | self.output_size = output_size | 
					
						
						|  | self.spatial_scale = spatial_scale | 
					
						
						|  | self.sampling_ratio = sampling_ratio | 
					
						
						|  | self.aligned = aligned | 
					
						
						|  |  | 
					
						
						|  | def forward(self, input, rois): | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | input: NCHW images | 
					
						
						|  | rois: Bx5 boxes. First column is the index into N. The other 4 columns are xyxy. | 
					
						
						|  | """ | 
					
						
						|  | assert rois.dim() == 2 and rois.size(1) == 5 | 
					
						
						|  | return roi_align( | 
					
						
						|  | input, rois, self.output_size, self.spatial_scale, self.sampling_ratio, self.aligned | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def __repr__(self): | 
					
						
						|  | tmpstr = self.__class__.__name__ + "(" | 
					
						
						|  | tmpstr += "output_size=" + str(self.output_size) | 
					
						
						|  | tmpstr += ", spatial_scale=" + str(self.spatial_scale) | 
					
						
						|  | tmpstr += ", sampling_ratio=" + str(self.sampling_ratio) | 
					
						
						|  | tmpstr += ", aligned=" + str(self.aligned) | 
					
						
						|  | tmpstr += ")" | 
					
						
						|  | return tmpstr | 
					
						
						|  |  |