|
|
|
from torch import nn |
|
from torch.autograd import Function |
|
from torch.autograd.function import once_differentiable |
|
from torch.nn.modules.utils import _pair |
|
|
|
from detectron2 import _C |
|
|
|
|
|
class _ROIAlign(Function): |
|
@staticmethod |
|
def forward(ctx, input, roi, output_size, spatial_scale, sampling_ratio, aligned): |
|
ctx.save_for_backward(roi) |
|
ctx.output_size = _pair(output_size) |
|
ctx.spatial_scale = spatial_scale |
|
ctx.sampling_ratio = sampling_ratio |
|
ctx.input_shape = input.size() |
|
ctx.aligned = aligned |
|
output = _C.roi_align_forward( |
|
input, roi, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned |
|
) |
|
return output |
|
|
|
@staticmethod |
|
@once_differentiable |
|
def backward(ctx, grad_output): |
|
(rois,) = ctx.saved_tensors |
|
output_size = ctx.output_size |
|
spatial_scale = ctx.spatial_scale |
|
sampling_ratio = ctx.sampling_ratio |
|
bs, ch, h, w = ctx.input_shape |
|
grad_input = _C.roi_align_backward( |
|
grad_output, |
|
rois, |
|
spatial_scale, |
|
output_size[0], |
|
output_size[1], |
|
bs, |
|
ch, |
|
h, |
|
w, |
|
sampling_ratio, |
|
ctx.aligned, |
|
) |
|
return grad_input, None, None, None, None, None |
|
|
|
|
|
roi_align = _ROIAlign.apply |
|
|
|
|
|
class ROIAlign(nn.Module): |
|
def __init__(self, output_size, spatial_scale, sampling_ratio, aligned=True): |
|
""" |
|
Args: |
|
output_size (tuple): h, w |
|
spatial_scale (float): scale the input boxes by this number |
|
sampling_ratio (int): number of inputs samples to take for each output |
|
sample. 0 to take samples densely. |
|
aligned (bool): if False, use the legacy implementation in |
|
Detectron. If True, align the results more perfectly. |
|
|
|
Note: |
|
The meaning of aligned=True: |
|
|
|
Given a continuous coordinate c, its two neighboring pixel indices (in our |
|
pixel model) are computed by floor(c - 0.5) and ceil(c - 0.5). For example, |
|
c=1.3 has pixel neighbors with discrete indices [0] and [1] (which are sampled |
|
from the underlying signal at continuous coordinates 0.5 and 1.5). But the original |
|
roi_align (aligned=False) does not subtract the 0.5 when computing neighboring |
|
pixel indices and therefore it uses pixels with a slightly incorrect alignment |
|
(relative to our pixel model) when performing bilinear interpolation. |
|
|
|
With `aligned=True`, |
|
we first appropriately scale the ROI and then shift it by -0.5 |
|
prior to calling roi_align. This produces the correct neighbors; see |
|
detectron2/tests/test_roi_align.py for verification. |
|
|
|
The difference does not make a difference to the model's performance if |
|
ROIAlign is used together with conv layers. |
|
""" |
|
super(ROIAlign, self).__init__() |
|
self.output_size = output_size |
|
self.spatial_scale = spatial_scale |
|
self.sampling_ratio = sampling_ratio |
|
self.aligned = aligned |
|
|
|
def forward(self, input, rois): |
|
""" |
|
Args: |
|
input: NCHW images |
|
rois: Bx5 boxes. First column is the index into N. The other 4 columns are xyxy. |
|
""" |
|
assert rois.dim() == 2 and rois.size(1) == 5 |
|
return roi_align( |
|
input, rois, self.output_size, self.spatial_scale, self.sampling_ratio, self.aligned |
|
) |
|
|
|
def __repr__(self): |
|
tmpstr = self.__class__.__name__ + "(" |
|
tmpstr += "output_size=" + str(self.output_size) |
|
tmpstr += ", spatial_scale=" + str(self.spatial_scale) |
|
tmpstr += ", sampling_ratio=" + str(self.sampling_ratio) |
|
tmpstr += ", aligned=" + str(self.aligned) |
|
tmpstr += ")" |
|
return tmpstr |
|
|