zy5830850
First model version
91ef820
raw
history blame
4.03 kB
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
DETR model and criterion classes.
"""
import torch
import torch.nn.functional as F
from torch import nn
from utils.misc import (NestedTensor, nested_tensor_from_tensor_list)
from .backbone import build_backbone
from .transformer import build_transformer
class DETR(nn.Module):
""" This is the DETR module that performs object detection """
def __init__(self, backbone, transformer, num_queries, train_backbone, train_transformer, aux_loss=False):
""" Initializes the model.
Parameters:
backbone: torch module of the backbone to be used. See backbone.py
transformer: torch module of the transformer architecture. See transformer.py
num_classes: number of object classes
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
DETR can detect in a single image. For COCO, we recommend 100 queries.
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
"""
super().__init__()
self.num_queries = num_queries
self.transformer = transformer
self.backbone = backbone
if self.transformer is not None:
hidden_dim = transformer.d_model
self.input_proj = nn.Conv2d(backbone.num_channels, hidden_dim, kernel_size=1)
else:
hidden_dim = backbone.num_channels
if not train_backbone:
for p in self.backbone.parameters():
p.requires_grad_(False)
if self.transformer is not None and not train_transformer:
for m in [self.transformer, self.input_proj]:
for p in m.parameters():
p.requires_grad_(False)
self.num_channels = hidden_dim
def forward(self, samples: NestedTensor):
""" The forward expects a NestedTensor, which consists of:
- samples.tensor: batched images, of shape [batch_size x 3 x H x W]
- samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels
It returns a dict with the following elements:
- "pred_logits": the classification logits (including no-object) for all queries.
Shape= [batch_size x num_queries x (num_classes + 1)]
- "pred_boxes": The normalized boxes coordinates for all queries, represented as
(center_x, center_y, height, width). These values are normalized in [0, 1],
relative to the size of each individual image (disregarding possible padding).
See PostProcess for information on how to retrieve the unnormalized bounding box.
- "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
dictionnaries containing the two above keys for each decoder layer.
"""
if isinstance(samples, (list, torch.Tensor)):
samples = nested_tensor_from_tensor_list(samples)
features, pos = self.backbone(samples)
src, mask = features[-1].decompose()
assert mask is not None
if self.transformer is not None:
out = self.transformer(self.input_proj(src), mask, pos[-1], query_embed=None)
else:
out = [mask.flatten(1), src.flatten(2).permute(2, 0, 1)]
return out
def build_detr(args):
backbone = build_backbone(args)
train_backbone = args.lr_visu_cnn > 0
train_transformer = args.lr_visu_tra > 0
if args.detr_enc_num > 0:
transformer = build_transformer(args)
else:
transformer = None
model = DETR(
backbone,
transformer,
num_queries=args.num_queries,
train_backbone=train_backbone,
train_transformer=train_transformer
)
return model