File size: 11,179 Bytes
91ef820 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import math
import torch
import random
from PIL import Image, ImageEnhance, ImageFilter
import numpy as np
import torchvision.transforms as T
import torchvision.transforms.functional as F
from utils.box_utils import xyxy2xywh
from utils.misc import interpolate
def crop(image, box, region, negBoxs=None):
cropped_image = F.crop(image, *region)
i, j, h, w = region
max_size = torch.as_tensor([w, h], dtype=torch.float32)
cropped_box = box - torch.as_tensor([j, i, j, i])
cropped_box = torch.min(cropped_box.reshape(2, 2), max_size)
cropped_box = cropped_box.clamp(min=0)
cropped_box = cropped_box.reshape(-1)
if negBoxs is not None:
cropped_negBoxs = []
for negBox in negBoxs:
cropped_negBox = negBox - torch.as_tensor([j, i, j, i])
cropped_negBox = torch.min(cropped_negBox.reshape(2, 2), max_size)
cropped_negBox = cropped_negBox.clamp(min=0)
cropped_negBox = cropped_negBox.reshape(-1)
cropped_negBoxs.append(cropped_negBox)
return cropped_image, cropped_box, cropped_negBoxs
return cropped_image, cropped_box
def resize_according_to_long_side(img, box, size, negBoxs=None):
h, w = img.height, img.width
ratio = float(size / float(max(h, w)))
new_w, new_h = round(w* ratio), round(h * ratio)
img = F.resize(img, (new_h, new_w))
box = box * ratio
if negBoxs is not None:
negBoxs = [negBox * ratio for negBox in negBoxs]
return img, box, negBoxs
return img, box
def resize_according_to_short_side(img, box, size, negBoxs=None):
h, w = img.height, img.width
ratio = float(size / float(min(h, w)))
new_w, new_h = round(w* ratio), round(h * ratio)
img = F.resize(img, (new_h, new_w))
box = box * ratio
if negBoxs is not None:
negBoxs = [negBox * ratio for negBox in negBoxs]
return img, box, negBoxs
return img, box
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, input_dict):
for t in self.transforms:
input_dict = t(input_dict)
return input_dict
def __repr__(self):
format_string = self.__class__.__name__ + "("
for t in self.transforms:
format_string += "\n"
format_string += " {0}".format(t)
format_string += "\n)"
return format_string
class RandomBrightness(object):
def __init__(self, brightness=0.4):
assert brightness >= 0.0
assert brightness <= 1.0
self.brightness = brightness
def __call__(self, img):
brightness_factor = random.uniform(1-self.brightness, 1+self.brightness)
enhancer = ImageEnhance.Brightness(img)
img = enhancer.enhance(brightness_factor)
return img
class RandomContrast(object):
def __init__(self, contrast=0.4):
assert contrast >= 0.0
assert contrast <= 1.0
self.contrast = contrast
def __call__(self, img):
contrast_factor = random.uniform(1-self.contrast, 1+self.contrast)
enhancer = ImageEnhance.Contrast(img)
img = enhancer.enhance(contrast_factor)
return img
class RandomSaturation(object):
def __init__(self, saturation=0.4):
assert saturation >= 0.0
assert saturation <= 1.0
self.saturation = saturation
def __call__(self, img):
saturation_factor = random.uniform(1-self.saturation, 1+self.saturation)
enhancer = ImageEnhance.Color(img)
img = enhancer.enhance(saturation_factor)
return img
class ColorJitter(object):
def __init__(self, brightness=0.4, contrast=0.4, saturation=0.4):
self.rand_brightness = RandomBrightness(brightness)
self.rand_contrast = RandomContrast(contrast)
self.rand_saturation = RandomSaturation(saturation)
def __call__(self, input_dict):
if random.random() < 0.8:
image = input_dict['img']
func_inds = list(np.random.permutation(3))
for func_id in func_inds:
if func_id == 0:
image = self.rand_brightness(image)
elif func_id == 1:
image = self.rand_contrast(image)
elif func_id == 2:
image = self.rand_saturation(image)
input_dict['img'] = image
return input_dict
class GaussianBlur(object):
def __init__(self, sigma=[.1, 2.], aug_blur=False):
self.sigma = sigma
self.p = 0.5 if aug_blur else 0.
def __call__(self, input_dict):
if random.random() < self.p:
img = input_dict['img']
sigma = random.uniform(self.sigma[0], self.sigma[1])
img = img.filter(ImageFilter.GaussianBlur(radius=sigma))
input_dict['img'] = img
return input_dict
class RandomHorizontalFlip(object):
def __call__(self, input_dict):
if random.random() < 0.5:
img = input_dict['img']
box = input_dict['box']
text = input_dict['text']
img = F.hflip(img)
text = text.replace('right','*&^special^&*').replace('left','right').replace('*&^special^&*','left')
h, w = img.height, img.width
box = box[[2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0])
input_dict['img'] = img
input_dict['box'] = box
input_dict['text'] = text
if 'NegBBoxs' in input_dict.keys():
input_dict['NegBBoxs'] = [negBox[[2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0]) for negBox in input_dict['NegBBoxs']]
return input_dict
class RandomResize(object):
def __init__(self, sizes, with_long_side=True):
assert isinstance(sizes, (list, tuple))
self.sizes = sizes
self.with_long_side = with_long_side
def __call__(self, input_dict):
img = input_dict['img']
box = input_dict['box']
size = random.choice(self.sizes)
if 'NegBBoxs' in input_dict.keys():
if self.with_long_side:
resized_img, resized_box, NegBBoxs = resize_according_to_long_side(img, box, size, input_dict['NegBBoxs'])
else:
resized_img, resized_box, NegBBoxs = resize_according_to_short_side(img, box, size, input_dict['NegBBoxs'])
input_dict['NegBBoxs'] = NegBBoxs
else:
if self.with_long_side:
resized_img, resized_box = resize_according_to_long_side(img, box, size)
else:
resized_img, resized_box = resize_according_to_short_side(img, box, size)
input_dict['img'] = resized_img
input_dict['box'] = resized_box
return input_dict
class RandomSizeCrop(object):
def __init__(self, min_size: int, max_size: int, max_try: int=20):
self.min_size = min_size
self.max_size = max_size
self.max_try = max_try
def __call__(self, input_dict):
img = input_dict['img']
box = input_dict['box']
num_try = 0
while num_try < self.max_try:
num_try += 1
w = random.randint(self.min_size, min(img.width, self.max_size))
h = random.randint(self.min_size, min(img.height, self.max_size))
region = T.RandomCrop.get_params(img, [h, w]) # [i, j, target_w, target_h] [j, i, target_h, target_w]
box_xywh = xyxy2xywh(box)
box_x, box_y = box_xywh[0], box_xywh[1]
# if box_x > region[0] and box_y > region[1]: # ζθ§θΏιειδΊ,w hζεδΊ
if box_x > region[1] and box_y > region[0]:
if 'NegBBoxs' in input_dict.keys():
img, box, NegBBoxs = crop(img, box, region, input_dict['NegBBoxs'])
input_dict['NegBBoxs'] = NegBBoxs
img, box = crop(img, box, region)
input_dict['img'] = img
input_dict['box'] = box
return input_dict
return input_dict
class RandomSelect(object):
def __init__(self, transforms1, transforms2, p=0.5):
self.transforms1 = transforms1
self.transforms2 = transforms2
self.p = p
def __call__(self, input_dict):
text = input_dict['text']
dir_words = ['left', 'right', 'top', 'bottom', 'middle']
for wd in dir_words:
if wd in text:
return self.transforms1(input_dict)
if random.random() < self.p:
return self.transforms2(input_dict)
else:
return self.transforms1(input_dict)
class ToTensor(object):
def __call__(self, input_dict):
img = input_dict['img']
# img = img.transpose((2,0,1))
# img = torch.from_numpy(img).float()
img = F.to_tensor(img)
input_dict['img'] = img
return input_dict
class NormalizeAndPad(object):
def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], size=640, aug_translate=False):
self.mean = mean
self.std = std
self.size = size
self.aug_translate = aug_translate
def __call__(self, input_dict):
img = input_dict['img']
img = F.normalize(img, mean=self.mean, std=self.std)
h, w = img.shape[1:]
dw = self.size - w
dh = self.size - h
if self.aug_translate:
top = random.randint(0, dh)
left = random.randint(0, dw)
else:
top = round(dh / 2.0 - 0.1)
left = round(dw / 2.0 - 0.1)
# dw = (self.size - w) / 2.0
# dh = (self.size - h) / 2.0
# top, bottom = round(dh - 0.1), round(dh + 0.1)
# left, right = round(dw - 0.1), round(dw + 0.1)
out_img = torch.zeros((3, self.size, self.size)).float()
out_mask = torch.ones((self.size, self.size)).int()
out_img[:, top:top+h, left:left+w] = img
out_mask[top:top+h, left:left+w] = 0
input_dict['img'] = out_img
input_dict['mask'] = out_mask
if 'box' in input_dict.keys():
box = input_dict['box']
box[0], box[2] = box[0]+left, box[2]+left
box[1], box[3] = box[1]+top, box[3]+top
h, w = out_img.shape[-2:]
box = xyxy2xywh(box)
box = box / torch.tensor([w, h, w, h], dtype=torch.float32)
input_dict['box'] = box
if 'NegBBoxs' in input_dict.keys():
NegBBoxs = input_dict['NegBBoxs']
new_NegBBoxs = []
for NegBBox in NegBBoxs:
NegBBox[0], NegBBox[2] = NegBBox[0] + left, NegBBox[2] + left
NegBBox[1], NegBBox[3] = NegBBox[1] + top, NegBBox[3] + top
h, w = out_img.shape[-2:]
NegBBox = xyxy2xywh(NegBBox)
NegBBox = NegBBox / torch.tensor([w, h, w, h], dtype=torch.float32)
new_NegBBoxs.append(NegBBox)
input_dict['NegBBoxs'] = new_NegBBoxs
return input_dict
|