File size: 11,179 Bytes
91ef820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import math
import torch
import random
from PIL import Image, ImageEnhance, ImageFilter

import numpy as np
import torchvision.transforms as T
import torchvision.transforms.functional as F

from utils.box_utils import xyxy2xywh
from utils.misc import interpolate


def crop(image, box, region, negBoxs=None):
    cropped_image = F.crop(image, *region)

    i, j, h, w = region

    max_size = torch.as_tensor([w, h], dtype=torch.float32)
    cropped_box = box - torch.as_tensor([j, i, j, i])
    cropped_box = torch.min(cropped_box.reshape(2, 2), max_size)
    cropped_box = cropped_box.clamp(min=0)
    cropped_box = cropped_box.reshape(-1)
    if negBoxs is not None:
        cropped_negBoxs = []
        for negBox in negBoxs:
            cropped_negBox = negBox - torch.as_tensor([j, i, j, i])
            cropped_negBox = torch.min(cropped_negBox.reshape(2, 2), max_size)
            cropped_negBox = cropped_negBox.clamp(min=0)
            cropped_negBox = cropped_negBox.reshape(-1)
            cropped_negBoxs.append(cropped_negBox)
        return cropped_image, cropped_box, cropped_negBoxs

    return cropped_image, cropped_box


def resize_according_to_long_side(img, box, size, negBoxs=None):
    h, w = img.height, img.width
    ratio = float(size / float(max(h, w)))
    new_w, new_h = round(w* ratio), round(h * ratio)
    img = F.resize(img, (new_h, new_w))
    box = box * ratio
    if negBoxs is not None:
        negBoxs = [negBox * ratio for negBox in negBoxs]
        return img, box, negBoxs
    return img, box


def resize_according_to_short_side(img, box, size, negBoxs=None):
    h, w = img.height, img.width
    ratio = float(size / float(min(h, w)))
    new_w, new_h = round(w* ratio), round(h * ratio)
    img = F.resize(img, (new_h, new_w))
    box = box * ratio

    if negBoxs is not None:
        negBoxs = [negBox * ratio for negBox in negBoxs]
        return img, box, negBoxs
    return img, box


class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, input_dict):
        for t in self.transforms:
            input_dict = t(input_dict)
        return input_dict

    def __repr__(self):
        format_string = self.__class__.__name__ + "("
        for t in self.transforms:
            format_string += "\n"
            format_string += "    {0}".format(t)
        format_string += "\n)"
        return format_string


class RandomBrightness(object):
    def __init__(self, brightness=0.4):
        assert brightness >= 0.0
        assert brightness <= 1.0
        self.brightness = brightness

    def __call__(self, img):
        brightness_factor = random.uniform(1-self.brightness, 1+self.brightness)
        
        enhancer = ImageEnhance.Brightness(img)
        img = enhancer.enhance(brightness_factor)
        return img
        

class RandomContrast(object):
    def __init__(self, contrast=0.4):
        assert contrast >= 0.0
        assert contrast <= 1.0
        self.contrast = contrast

    def __call__(self, img):
        contrast_factor = random.uniform(1-self.contrast, 1+self.contrast)

        enhancer = ImageEnhance.Contrast(img)
        img = enhancer.enhance(contrast_factor)

        return img
        

class RandomSaturation(object):
    def __init__(self, saturation=0.4):
        assert saturation >= 0.0
        assert saturation <= 1.0
        self.saturation = saturation
    
    def __call__(self, img):
        saturation_factor = random.uniform(1-self.saturation, 1+self.saturation)
        
        enhancer = ImageEnhance.Color(img)
        img = enhancer.enhance(saturation_factor)
        return img


class ColorJitter(object):
    def __init__(self, brightness=0.4, contrast=0.4, saturation=0.4):
        self.rand_brightness = RandomBrightness(brightness)
        self.rand_contrast   = RandomContrast(contrast)
        self.rand_saturation = RandomSaturation(saturation)

    def __call__(self, input_dict):
        if random.random() < 0.8:
            image = input_dict['img']
            func_inds = list(np.random.permutation(3))
            for func_id in func_inds:
                if func_id == 0:
                    image = self.rand_brightness(image)
                elif func_id == 1:
                    image = self.rand_contrast(image)
                elif func_id == 2:
                    image = self.rand_saturation(image)
            input_dict['img'] = image

        return input_dict


class GaussianBlur(object):
    def __init__(self, sigma=[.1, 2.], aug_blur=False):
        self.sigma = sigma
        self.p = 0.5 if aug_blur else 0.
    
    def __call__(self, input_dict):
        if random.random() < self.p:
            img = input_dict['img']
            sigma = random.uniform(self.sigma[0], self.sigma[1])
            img = img.filter(ImageFilter.GaussianBlur(radius=sigma))
            input_dict['img'] = img

        return input_dict


class RandomHorizontalFlip(object):
    def __call__(self, input_dict):
        if random.random() < 0.5:
            img = input_dict['img']
            box = input_dict['box']
            text = input_dict['text']

            img = F.hflip(img)
            text = text.replace('right','*&^special^&*').replace('left','right').replace('*&^special^&*','left')
            h, w = img.height, img.width
            box = box[[2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0])

            input_dict['img'] = img
            input_dict['box'] = box
            input_dict['text'] = text
            if 'NegBBoxs' in input_dict.keys():
                input_dict['NegBBoxs'] = [negBox[[2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0]) for negBox in input_dict['NegBBoxs']]

        return input_dict


class RandomResize(object):
    def __init__(self, sizes, with_long_side=True):
        assert isinstance(sizes, (list, tuple))
        self.sizes = sizes
        self.with_long_side = with_long_side

    def __call__(self, input_dict):
        img = input_dict['img']
        box = input_dict['box']
        size = random.choice(self.sizes)
        if 'NegBBoxs' in input_dict.keys():
            if self.with_long_side:
                resized_img, resized_box, NegBBoxs = resize_according_to_long_side(img, box, size, input_dict['NegBBoxs'])
            else:
                resized_img, resized_box, NegBBoxs = resize_according_to_short_side(img, box, size, input_dict['NegBBoxs'])
            input_dict['NegBBoxs'] = NegBBoxs
        else:
            if self.with_long_side:
                resized_img, resized_box = resize_according_to_long_side(img, box, size)
            else:
                resized_img, resized_box = resize_according_to_short_side(img, box, size)

        input_dict['img'] = resized_img
        input_dict['box'] = resized_box
        return input_dict
        

class RandomSizeCrop(object):
    def __init__(self, min_size: int, max_size: int, max_try: int=20):
        self.min_size = min_size
        self.max_size = max_size
        self.max_try  = max_try
    
    def __call__(self, input_dict):
        img = input_dict['img']
        box = input_dict['box']

        num_try = 0
        while num_try < self.max_try:
            num_try += 1
            w = random.randint(self.min_size, min(img.width, self.max_size))
            h = random.randint(self.min_size, min(img.height, self.max_size))
            region = T.RandomCrop.get_params(img, [h, w]) # [i, j, target_w, target_h] [j, i, target_h, target_w]
            box_xywh = xyxy2xywh(box)
            box_x, box_y = box_xywh[0], box_xywh[1]
            # if box_x > region[0] and box_y > region[1]:  # ζ„Ÿθ§‰θΏ™ι‡Œε†™ι”™δΊ†,w hζžεδΊ†
            if box_x > region[1] and box_y > region[0]:
                if 'NegBBoxs' in input_dict.keys():
                    img, box, NegBBoxs = crop(img, box, region, input_dict['NegBBoxs'])
                    input_dict['NegBBoxs'] = NegBBoxs
                img, box = crop(img, box, region)
                input_dict['img'] = img
                input_dict['box'] = box
                return input_dict

        return input_dict


class RandomSelect(object):
    def __init__(self, transforms1, transforms2, p=0.5):
        self.transforms1 = transforms1
        self.transforms2 = transforms2
        self.p = p
    
    def __call__(self, input_dict):
        text = input_dict['text']
        
        dir_words = ['left', 'right', 'top', 'bottom', 'middle']
        for wd in dir_words:
            if wd in text:
                return self.transforms1(input_dict)

        if random.random() < self.p:
            return self.transforms2(input_dict)
        else:
            return self.transforms1(input_dict)


class ToTensor(object):
    def __call__(self, input_dict):
        img = input_dict['img']
        # img = img.transpose((2,0,1))
        # img = torch.from_numpy(img).float()
        img = F.to_tensor(img)
        input_dict['img'] = img
        
        return input_dict


class NormalizeAndPad(object):
    def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], size=640, aug_translate=False):
        self.mean = mean
        self.std = std
        self.size = size
        self.aug_translate = aug_translate
    
    def __call__(self, input_dict):
        img = input_dict['img']
        img = F.normalize(img, mean=self.mean, std=self.std)
        
        h, w = img.shape[1:]
        dw = self.size - w
        dh = self.size - h

        if self.aug_translate:
            top = random.randint(0, dh)
            left = random.randint(0, dw)
        else:
            top = round(dh / 2.0 - 0.1)
            left = round(dw / 2.0 - 0.1)

        # dw = (self.size - w) / 2.0
        # dh = (self.size - h) / 2.0
        # top, bottom = round(dh - 0.1), round(dh + 0.1)
        # left, right = round(dw - 0.1), round(dw + 0.1)

        out_img = torch.zeros((3, self.size, self.size)).float()
        out_mask = torch.ones((self.size, self.size)).int()

        out_img[:, top:top+h, left:left+w] = img
        out_mask[top:top+h, left:left+w] = 0

        input_dict['img'] = out_img
        input_dict['mask'] = out_mask

        if 'box' in input_dict.keys():
            box = input_dict['box']
            box[0], box[2] = box[0]+left, box[2]+left
            box[1], box[3] = box[1]+top, box[3]+top
            h, w = out_img.shape[-2:]
            box = xyxy2xywh(box)
            box = box / torch.tensor([w, h, w, h], dtype=torch.float32)
            input_dict['box'] = box
        if 'NegBBoxs' in input_dict.keys():
            NegBBoxs = input_dict['NegBBoxs']
            new_NegBBoxs = []
            for NegBBox in NegBBoxs:
                NegBBox[0], NegBBox[2] = NegBBox[0] + left, NegBBox[2] + left
                NegBBox[1], NegBBox[3] = NegBBox[1] + top, NegBBox[3] + top
                h, w = out_img.shape[-2:]
                NegBBox = xyxy2xywh(NegBBox)
                NegBBox = NegBBox / torch.tensor([w, h, w, h], dtype=torch.float32)
                new_NegBBoxs.append(NegBBox)
            input_dict['NegBBoxs'] = new_NegBBoxs

        return input_dict