# modified from https://github.com/isl-org/DPT import torch import torch.nn as nn import torch.nn.functional as F from .base_model import BaseModel from .blocks import ( FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder, forward_vit, ) def _make_fusion_block(features, use_bn): return FeatureFusionBlock_custom( features, nn.ReLU(False), deconv=False, bn=use_bn, expand=False, align_corners=True, ) class DPT(BaseModel): def __init__( self, head, features=256, backbone="vitb_rn50_384", readout="project", channels_last=False, use_bn=False, ): super(DPT, self).__init__() self.channels_last = channels_last hooks = { "vitb_rn50_384": [0, 1, 8, 11], "vitb16_384": [2, 5, 8, 11], "vitl16_384": [5, 11, 17, 23], } # Instantiate backbone and reassemble blocks self.pretrained, self.scratch = _make_encoder( backbone, features, True, # Set to true of you want to train from scratch, uses ImageNet weights groups=1, expand=False, exportable=False, hooks=hooks[backbone], use_readout=readout, ) self.scratch.refinenet1 = _make_fusion_block(features, use_bn) self.scratch.refinenet2 = _make_fusion_block(features, use_bn) self.scratch.refinenet3 = _make_fusion_block(features, use_bn) self.scratch.refinenet4 = _make_fusion_block(features, use_bn) self.scratch.output_conv = head def forward(self, x, get_feat=False): if self.channels_last == True: x.contiguous(memory_format=torch.channels_last) layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x) # res 8x -> 4x -> 2x -> 1x base_size # base_size = H / 32 # all n_channels same (256 by default) after these layer_1_rn = self.scratch.layer1_rn(layer_1) layer_2_rn = self.scratch.layer2_rn(layer_2) layer_3_rn = self.scratch.layer3_rn(layer_3) layer_4_rn = self.scratch.layer4_rn(layer_4) # upsample by two with out changing n_channels each time, conv-sum for fusing path_4 = self.scratch.refinenet4(layer_4_rn) path_3 = self.scratch.refinenet3(path_4, layer_3_rn) path_2 = self.scratch.refinenet2(path_3, layer_2_rn) path_1 = self.scratch.refinenet1(path_2, layer_1_rn) out = self.scratch.output_conv(path_1) # save the feat if required if get_feat: return out, layer_4 return out class DPTDepthModel(DPT): def __init__(self, path=None, non_negative=True, num_channels=1, **kwargs): features = kwargs["features"] if "features" in kwargs else 256 head = nn.Sequential( nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1), Interpolate(scale_factor=2, mode="bilinear", align_corners=True), nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(True), nn.Conv2d(32, num_channels, kernel_size=1, stride=1, padding=0), nn.ReLU(True) if non_negative else nn.Identity(), nn.Identity(), ) nn.init.constant_(head[-3].bias, 0.05) super().__init__(head, **kwargs) if path is not None: self.load(path) def forward(self, image, get_feat=False): x = image * 2 - 1 if get_feat: output, feat = super().forward(x, get_feat=get_feat) output = output.clamp(min=0, max=1) return output, feat else: output = super().forward(x, get_feat=get_feat).clamp(min=0, max=1) return output