ZeroShape / model /shape_engine.py
zxhuang1698's picture
initial commit
414b431
raw
history blame
32 kB
import numpy as np
import os, time, datetime
import torch
import torch.utils.tensorboard
import torch.profiler
import importlib
import shutil
import utils.util as util
import utils.util_vis as util_vis
import utils.eval_3D as eval_3D
from torch.nn.parallel import DistributedDataParallel as DDP
from utils.util import print_eval, setup, cleanup
from utils.util import EasyDict as edict
from copy import deepcopy
from model.compute_graph import graph_shape
# ============================ main engine for training and evaluation ============================
class Runner():
def __init__(self, opt):
super().__init__()
if os.path.isdir(opt.output_path) and opt.resume == False and opt.device == 0:
for filename in os.listdir(opt.output_path):
if "tfevents" in filename: os.remove(os.path.join(opt.output_path, filename))
if "html" in filename: os.remove(os.path.join(opt.output_path, filename))
if "vis" in filename: shutil.rmtree(os.path.join(opt.output_path, filename))
if "embedding" in filename: shutil.rmtree(os.path.join(opt.output_path, filename))
if opt.device == 0:
os.makedirs(opt.output_path,exist_ok=True)
setup(opt.device, opt.world_size, opt.port)
opt.batch_size = opt.batch_size // opt.world_size
def get_viz_data(self, opt):
# get data for visualization
viz_data_list = []
sample_range = len(self.viz_loader)
viz_interval = sample_range // opt.eval.n_vis
for i in range(sample_range):
current_batch = next(self.viz_loader_iter)
if i % viz_interval != 0: continue
viz_data_list.append(current_batch)
return viz_data_list
def load_dataset(self, opt, eval_split="test"):
data_train = importlib.import_module('data.{}'.format(opt.data.dataset_train))
data_test = importlib.import_module('data.{}'.format(opt.data.dataset_test))
if opt.device == 0: print("loading training data...")
self.train_data = data_train.Dataset(opt, split="train")
self.train_loader = self.train_data.setup_loader(opt, shuffle=True, use_ddp=True, drop_last=True)
self.num_batches = len(self.train_loader)
if opt.device == 0: print("loading test data...")
self.test_data = data_test.Dataset(opt, split=eval_split)
self.test_loader = self.test_data.setup_loader(opt, shuffle=False, use_ddp=True, drop_last=True, batch_size=opt.eval.batch_size)
self.num_batches_test = len(self.test_loader)
if len(self.test_loader.sampler) * opt.world_size < len(self.test_data):
self.aux_test_dataset = torch.utils.data.Subset(self.test_data,
range(len(self.test_loader.sampler) * opt.world_size, len(self.test_data)))
self.aux_test_loader = torch.utils.data.DataLoader(
self.aux_test_dataset, batch_size=opt.eval.batch_size, shuffle=False, drop_last=False,
num_workers=opt.data.num_workers)
if opt.device == 0:
print("creating data for visualization...")
self.viz_loader = self.test_data.setup_loader(opt, shuffle=False, use_ddp=False, drop_last=False, batch_size=1)
self.viz_loader_iter = iter(self.viz_loader)
self.viz_data = self.get_viz_data(opt)
def build_networks(self, opt):
if opt.device == 0: print("building networks...")
self.graph = DDP(graph_shape.Graph(opt).to(opt.device), device_ids=[opt.device], find_unused_parameters=(not opt.optim.fix_dpt or not opt.optim.fix_clip))
# =================================================== set up training =========================================================
def setup_optimizer(self, opt):
if opt.device == 0: print("setting up optimizers...")
if opt.optim.fix_dpt:
# when we do not need to train the dpt depth, every param will start from scratch
scratch_param_decay = []
scratch_param_nodecay = []
# loop over all params
for name, param in self.graph.named_parameters():
# skip and fixed params
if not param.requires_grad or 'dpt_depth' in name or 'intr_' in name:
continue
# do not add wd on bias or low-dim params
if param.ndim <= 1 or name.endswith(".bias"):
scratch_param_nodecay.append(param)
# print("{} -> scratch_param_nodecay".format(name))
else:
scratch_param_decay.append(param)
# print("{} -> scratch_param_decay".format(name))
# create the optim dictionary
optim_dict = [
{'params': scratch_param_nodecay, 'lr': opt.optim.lr, 'weight_decay': 0.},
{'params': scratch_param_decay, 'lr': opt.optim.lr, 'weight_decay': opt.optim.weight_decay}
]
else:
# when we need to train dpt as well, related params should go to finetune list
finetune_param_nodecay = []
scratch_param_nodecay = []
finetune_param_decay = []
scratch_param_decay = []
for name, param in self.graph.named_parameters():
# skip and fixed params
if not param.requires_grad:
continue
# put dpt params into finetune list
if 'dpt_depth' in name or 'intr_' in name:
if param.ndim <= 1 or name.endswith(".bias"):
# print("{} -> finetune_param_nodecay".format(name))
finetune_param_nodecay.append(param)
else:
finetune_param_decay.append(param)
# print("{} -> finetune_param_decay".format(name))
# all other params go to scratch list
else:
if param.ndim <= 1 or name.endswith(".bias"):
scratch_param_nodecay.append(param)
# print("{} -> scratch_param_nodecay".format(name))
else:
scratch_param_decay.append(param)
# print("{} -> scratch_param_decay".format(name))
# create the optim dictionary
optim_dict = [
{'params': finetune_param_nodecay, 'lr': opt.optim.lr_ft, 'weight_decay': 0.},
{'params': finetune_param_decay, 'lr': opt.optim.lr_ft, 'weight_decay': opt.optim.weight_decay},
{'params': scratch_param_nodecay, 'lr': opt.optim.lr, 'weight_decay': 0.},
{'params': scratch_param_decay, 'lr': opt.optim.lr, 'weight_decay': opt.optim.weight_decay}
]
self.optim = torch.optim.AdamW(optim_dict, betas=(0.9, 0.95))
if opt.optim.sched:
self.sched = torch.optim.lr_scheduler.CosineAnnealingLR(self.optim, opt.max_epoch)
if opt.optim.amp:
self.scaler = torch.cuda.amp.GradScaler()
def restore_checkpoint(self, opt, best=False, evaluate=False):
epoch_start, iter_start = None, None
if opt.resume:
if opt.device == 0: print("resuming from previous checkpoint...")
epoch_start, iter_start, best_val, best_ep = util.restore_checkpoint(opt, self, resume=opt.resume, best=best, evaluate=evaluate)
self.best_val = best_val
self.best_ep = best_ep
elif opt.load is not None:
if opt.device == 0: print("loading weights from checkpoint {}...".format(opt.load))
epoch_start, iter_start, best_val, best_ep = util.restore_checkpoint(opt, self, load_name=opt.load)
else:
if opt.device == 0: print("initializing weights from scratch...")
self.epoch_start = epoch_start or 0
self.iter_start = iter_start or 0
def setup_visualizer(self, opt, test=False):
if opt.device == 0:
print("setting up visualizers...")
if opt.tb:
if test == False:
self.tb = torch.utils.tensorboard.SummaryWriter(log_dir=opt.output_path, flush_secs=10)
else:
embedding_folder = os.path.join(opt.output_path, 'embedding')
os.makedirs(embedding_folder, exist_ok=True)
self.tb = torch.utils.tensorboard.SummaryWriter(log_dir=embedding_folder, flush_secs=10)
def train(self, opt):
# before training
torch.cuda.set_device(opt.device)
torch.cuda.empty_cache()
if opt.device == 0: print("TRAINING START")
self.train_metric_logger = util.MetricLogger(delimiter=" ")
self.train_metric_logger.add_meter('lr', util.SmoothedValue(window_size=1, fmt='{value:.6f}'))
self.iter_skip = self.iter_start % len(self.train_loader)
self.it = self.iter_start
self.skip_dis = False
if not opt.resume:
self.best_val = np.inf
self.best_ep = 1
# training
if self.iter_start == 0 and not opt.debug: self.evaluate(opt, ep=0, training=True)
for self.ep in range(self.epoch_start, opt.max_epoch):
self.train_epoch(opt)
# after training
if opt.device == 0: self.save_checkpoint(opt, ep=self.ep, it=self.it, best_val=self.best_val, best_ep=self.best_ep)
if opt.tb and opt.device == 0:
self.tb.flush()
self.tb.close()
if opt.device == 0:
print("TRAINING DONE")
print("Best CD: %.4f @ epoch %d" % (self.best_val, self.best_ep))
cleanup()
def train_epoch(self, opt):
# before train epoch
self.train_loader.sampler.set_epoch(self.ep)
if opt.device == 0:
print("training epoch {}".format(self.ep+1))
batch_progress = range(self.num_batches)
self.graph.train()
# train epoch
loader = iter(self.train_loader)
if opt.debug and opt.profile:
with torch.profiler.profile(
schedule=torch.profiler.schedule(wait=3, warmup=3, active=5, repeat=2),
on_trace_ready=torch.profiler.tensorboard_trace_handler('debug/profiler_log'),
record_shapes=True,
profile_memory=True,
with_stack=False
) as prof:
for batch_id in batch_progress:
if batch_id >= (1 + 1 + 3) * 2:
# exit the program after 2 iterations of the warmup, active, and repeat steps
exit()
# if resuming from previous checkpoint, skip until the last iteration number is reached
if self.iter_skip>0:
self.iter_skip -= 1
continue
batch = next(loader)
# train iteration
var = edict(batch)
opt.H, opt.W = opt.image_size
var = util.move_to_device(var, opt.device)
loss = self.train_iteration(opt, var, batch_progress)
prof.step()
else:
for batch_id in batch_progress:
# if resuming from previous checkpoint, skip until the last iteration number is reached
if self.iter_skip>0:
self.iter_skip -= 1
continue
batch = next(loader)
# train iteration
var = edict(batch)
opt.H, opt.W = opt.image_size
var = util.move_to_device(var, opt.device)
loss = self.train_iteration(opt, var, batch_progress)
# after train epoch
if opt.optim.sched: self.sched.step()
if (self.ep + 1) % opt.freq.eval == 0:
if opt.device == 0: print("validating epoch {}".format(self.ep+1))
current_val = self.evaluate(opt, ep=self.ep+1, training=True)
if current_val < self.best_val and opt.device == 0:
self.best_val = current_val
self.best_ep = self.ep + 1
self.save_checkpoint(opt, ep=self.ep, it=self.it, best_val=self.best_val, best_ep=self.best_ep, best=True, latest=True)
def train_iteration(self, opt, var, batch_progress):
# before train iteration
torch.distributed.barrier()
# train iteration
with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=opt.optim.amp):
var, loss = self.graph.forward(opt, var, training=True, get_loss=True)
loss = self.summarize_loss(opt, var, loss)
loss_scaled = loss.all / opt.optim.accum
# backward
if opt.optim.amp:
self.scaler.scale(loss_scaled).backward()
# skip update if accumulating gradient
if (self.it + 1) % opt.optim.accum == 0:
self.scaler.unscale_(self.optim)
# gradient clipping
if opt.optim.clip_norm:
norm = torch.nn.utils.clip_grad_norm_(self.graph.parameters(), opt.optim.clip_norm)
if opt.debug: print("Grad norm: {}".format(norm))
self.scaler.step(self.optim)
self.scaler.update()
self.optim.zero_grad()
else:
loss_scaled.backward()
if (self.it + 1) % opt.optim.accum == 0:
if opt.optim.clip_norm:
norm = torch.nn.utils.clip_grad_norm_(self.graph.parameters(), opt.optim.clip_norm)
if opt.debug: print("Grad norm: {}".format(norm))
self.optim.step()
self.optim.zero_grad()
# after train iteration
lr = self.sched.get_last_lr()[0] if opt.optim.sched else opt.optim.lr
self.train_metric_logger.update(lr=lr)
self.train_metric_logger.update(loss=loss.all)
if opt.device == 0:
self.graph.eval()
# if (self.it) % opt.freq.vis == 0: self.visualize(opt, var, step=self.it, split="train")
if (self.it) % opt.freq.ckpt_latest == 0 and not opt.debug:
self.save_checkpoint(opt, ep=self.ep, it=self.it, best_val=self.best_val, best_ep=self.best_ep, latest=True)
if (self.it) % opt.freq.scalar == 0 and not opt.debug:
self.log_scalars(opt, var, loss, step=self.it, split="train")
if (self.it) % (opt.freq.save_vis * (self.it//10000*10+1)) == 0 and not opt.debug:
self.vis_train_iter(opt)
if (self.it) % opt.freq.print == 0:
print('[{}] '.format(datetime.datetime.now().time()), end='')
print(f'Train Iter {self.it}/{self.num_batches*opt.max_epoch}: {self.train_metric_logger}')
self.graph.train()
self.it += 1
return loss
@torch.no_grad()
def vis_train_iter(self, opt):
for i in range(len(self.viz_data)):
var_viz = edict(deepcopy(self.viz_data[i]))
var_viz = util.move_to_device(var_viz, opt.device)
var_viz = self.graph.module(opt, var_viz, training=False, get_loss=False)
eval_3D.eval_metrics(opt, var_viz, self.graph.module.impl_network, vis_only=True)
vis_folder = "vis_log/iter_{}".format(self.it)
os.makedirs("{}/{}".format(opt.output_path, vis_folder), exist_ok=True)
util_vis.dump_images(opt, var_viz.idx, "image_input", var_viz.rgb_input_map, masks=None, from_range=(0, 1), folder=vis_folder)
util_vis.dump_images(opt, var_viz.idx, "mask_input", var_viz.mask_input_map, folder=vis_folder)
util_vis.dump_meshes_viz(opt, var_viz.idx, "mesh_viz", var_viz.mesh_pred, folder=vis_folder)
if 'depth_pred' in var_viz:
util_vis.dump_depths(opt, var_viz.idx, "depth_est", var_viz.depth_pred, var_viz.mask_input_map, rescale=True, folder=vis_folder)
if 'depth_input_map' in var_viz:
util_vis.dump_depths(opt, var_viz.idx, "depth_input", var_viz.depth_input_map, var_viz.mask_input_map, rescale=True, folder=vis_folder)
if 'attn_vis' in var_viz:
util_vis.dump_attentions(opt, var_viz.idx, "attn", var_viz.attn_vis, folder=vis_folder)
if 'gt_surf_points' in var_viz and 'seen_points' in var_viz:
util_vis.dump_pointclouds_compare(opt, var_viz.idx, "seen_surface", var_viz.seen_points, var_viz.gt_surf_points, folder=vis_folder)
def summarize_loss(self, opt, var, loss, non_act_loss_key=[]):
loss_all = 0.
assert("all" not in loss)
# weigh losses
for key in loss:
assert(key in opt.loss_weight)
if opt.loss_weight[key] is not None:
assert not torch.isinf(loss[key].mean()), "loss {} is Inf".format(key)
assert not torch.isnan(loss[key].mean()), "loss {} is NaN".format(key)
loss_all += float(opt.loss_weight[key])*loss[key].mean() if key not in non_act_loss_key else 0.0*loss[key].mean()
loss.update(all=loss_all)
return loss
# =================================================== set up evaluation =========================================================
@torch.no_grad()
def evaluate(self, opt, ep, training=False):
self.graph.eval()
# lists for metrics
cd_accs = []
cd_comps = []
f_scores = []
cat_indices = []
loss_eval = edict()
metric_eval = dict(dist_acc=0., dist_cov=0.)
eval_metric_logger = util.MetricLogger(delimiter=" ")
# result file on the fly
if not training:
assert opt.device == 0
full_results_file = open(os.path.join(opt.output_path, '{}_full_results.txt'.format(opt.data.dataset_test)), 'w')
full_results_file.write("IND, CD, ACC, COMP, ")
full_results_file.write(", ".join(["F-score@{:.2f}".format(opt.eval.f_thresholds[i]*100) for i in range(len(opt.eval.f_thresholds))]))
# dataloader on the test set
with torch.cuda.device(opt.device):
for it, batch in enumerate(self.test_loader):
# inference the model
var = edict(batch)
var = self.evaluate_batch(opt, var, ep, it, single_gpu=False)
# record CD for evaluation
dist_acc, dist_cov = eval_3D.eval_metrics(opt, var, self.graph.module.impl_network)
# accumulate the scores
cd_accs.append(var.cd_acc)
cd_comps.append(var.cd_comp)
f_scores.append(var.f_score)
cat_indices.append(var.category_label)
eval_metric_logger.update(ACC=dist_acc)
eval_metric_logger.update(COMP=dist_cov)
eval_metric_logger.update(CD=(dist_acc+dist_cov) / 2)
if opt.device == 0 and it % opt.freq.print_eval == 0:
print('[{}] '.format(datetime.datetime.now().time()), end='')
print(f'Eval Iter {it}/{len(self.test_loader)} @ EP {ep}: {eval_metric_logger}')
# write to file
if not training:
full_results_file.write("\n")
full_results_file.write("{:d}".format(var.idx.item()))
full_results_file.write("\t{:.4f}".format((var.cd_acc.item() + var.cd_comp.item()) / 2))
full_results_file.write("\t{:.4f}".format(var.cd_acc.item()))
full_results_file.write("\t{:.4f}".format(var.cd_comp.item()))
full_results_file.write("\t" + "\t".join(["{:.4f}".format(var.f_score[0][i].item()) for i in range(len(opt.eval.f_thresholds))]))
full_results_file.flush()
# dump the result if in eval mode
if not training:
self.dump_results(opt, var, ep, write_new=(it == 0))
# save the predicted mesh for vis data if in train mode
if it == 0 and training and opt.device == 0:
print("visualizing and saving results...")
for i in range(len(self.viz_data)):
var_viz = edict(deepcopy(self.viz_data[i]))
var_viz = self.evaluate_batch(opt, var_viz, ep, it, single_gpu=True)
eval_3D.eval_metrics(opt, var_viz, self.graph.module.impl_network, vis_only=True)
# self.visualize(opt, var_viz, step=ep, split="eval")
self.dump_results(opt, var_viz, ep, train=True)
# write html that organizes the results
util_vis.create_gif_html(os.path.join(opt.output_path, "vis_{}".format(ep)),
os.path.join(opt.output_path, "results_ep{}.html".format(ep)),
skip_every=1)
# collect the eval results into tensors
cd_accs = torch.cat(cd_accs, dim=0)
cd_comps = torch.cat(cd_comps, dim=0)
f_scores = torch.cat(f_scores, dim=0)
cat_indices = torch.cat(cat_indices, dim=0)
if opt.world_size > 1:
# empty tensors for gathering
cd_accs_all = [torch.zeros_like(cd_accs).to(opt.device) for _ in range(opt.world_size)]
cd_comps_all = [torch.zeros_like(cd_comps).to(opt.device) for _ in range(opt.world_size)]
f_scores_all = [torch.zeros_like(f_scores).to(opt.device) for _ in range(opt.world_size)]
cat_indices_all = [torch.zeros_like(cat_indices).long().to(opt.device) for _ in range(opt.world_size)]
# gather the metrics
torch.distributed.barrier()
torch.distributed.all_gather(cd_accs_all, cd_accs)
torch.distributed.all_gather(cd_comps_all, cd_comps)
torch.distributed.all_gather(f_scores_all, f_scores)
torch.distributed.all_gather(cat_indices_all, cat_indices)
cd_accs_all = torch.cat(cd_accs_all, dim=0)
cd_comps_all = torch.cat(cd_comps_all, dim=0)
f_scores_all = torch.cat(f_scores_all, dim=0)
cat_indices_all = torch.cat(cat_indices_all, dim=0)
else:
cd_accs_all = cd_accs
cd_comps_all = cd_comps
f_scores_all = f_scores
cat_indices_all = cat_indices
# handle last batch, if any
if len(self.test_loader.sampler) * opt.world_size < len(self.test_data):
cd_accs_all = [cd_accs_all]
cd_comps_all = [cd_comps_all]
f_scores_all = [f_scores_all]
cat_indices_all = [cat_indices_all]
for batch in self.aux_test_loader:
# inference the model
var = edict(batch)
var = self.evaluate_batch(opt, var, ep, it, single_gpu=False)
# record CD for evaluation
dist_acc, dist_cov = eval_3D.eval_metrics(opt, var, self.graph.module.impl_network)
# accumulate the scores
cd_accs_all.append(var.cd_acc)
cd_comps_all.append(var.cd_comp)
f_scores_all.append(var.f_score)
cat_indices_all.append(var.category_label)
# dump the result if in eval mode
if not training and opt.device == 0:
self.dump_results(opt, var, ep, write_new=(it == 0))
cd_accs_all = torch.cat(cd_accs_all, dim=0)
cd_comps_all = torch.cat(cd_comps_all, dim=0)
f_scores_all = torch.cat(f_scores_all, dim=0)
cat_indices_all = torch.cat(cat_indices_all, dim=0)
assert cd_accs_all.shape[0] == len(self.test_data)
if not training:
full_results_file.close()
# printout and save the metrics
if opt.device == 0:
metric_eval["dist_acc"] = cd_accs_all.mean()
metric_eval["dist_cov"] = cd_comps_all.mean()
# print eval info
print_eval(opt, loss=None, chamfer=(metric_eval["dist_acc"],
metric_eval["dist_cov"]))
val_metric = (metric_eval["dist_acc"] + metric_eval["dist_cov"]) / 2
if training:
# log/visualize results to tb/vis
self.log_scalars(opt, var, loss_eval, metric=metric_eval, step=ep, split="eval")
if not training:
# save the per-cat evaluation metrics if on shapenet
per_cat_cd_file = os.path.join(opt.output_path, 'cd_cat.txt')
with open(per_cat_cd_file, "w") as outfile:
outfile.write("CD Acc Comp Count Cat\n")
for i in range(opt.data.num_classes_test):
if (cat_indices_all==i).sum() == 0:
continue
acc_i = cd_accs_all[cat_indices_all==i].mean().item()
comp_i = cd_comps_all[cat_indices_all==i].mean().item()
counts_cat = torch.sum(cat_indices_all==i)
cd_i = (acc_i + comp_i) / 2
outfile.write("%.4f %.4f %.4f %5d %s\n" % (cd_i, acc_i, comp_i, counts_cat, self.test_data.label2cat[i]))
# print f_scores
f_scores_avg = f_scores_all.mean(dim=0)
print('##############################')
for i in range(len(opt.eval.f_thresholds)):
print('F-score @ %.2f: %.4f' % (opt.eval.f_thresholds[i]*100, f_scores_avg[i].item()))
print('##############################')
# write to file
result_file = os.path.join(opt.output_path, 'quantitative_{}.txt'.format(opt.data.dataset_test))
with open(result_file, "w") as outfile:
outfile.write('CD Acc Comp \n')
outfile.write('%.4f %.4f %.4f\n' % (val_metric, metric_eval["dist_acc"], metric_eval["dist_cov"]))
for i in range(len(opt.eval.f_thresholds)):
outfile.write('F-score @ %.2f: %.4f\n' % (opt.eval.f_thresholds[i]*100, f_scores_avg[i].item()))
# write html that organizes the results
util_vis.create_gif_html(os.path.join(opt.output_path, "dump_{}".format(opt.data.dataset_test)),
os.path.join(opt.output_path, "results_test.html"), skip_every=10)
# torch.cuda.empty_cache()
return val_metric.item()
return float('inf')
def evaluate_batch(self, opt, var, ep=None, it=None, single_gpu=False):
var = util.move_to_device(var, opt.device)
if single_gpu:
var = self.graph.module(opt, var, training=False, get_loss=False)
else:
var = self.graph(opt, var, training=False, get_loss=False)
return var
@torch.no_grad()
def log_scalars(self, opt, var, loss, metric=None, step=0, split="train"):
if split=="train":
dist_acc, dist_cov = eval_3D.eval_metrics(opt, var, self.graph.module.impl_network)
metric = dict(dist_acc=dist_acc, dist_cov=dist_cov)
for key, value in loss.items():
if key=="all": continue
self.tb.add_scalar("{0}/loss_{1}".format(split, key), value.mean(), step)
if metric is not None:
for key, value in metric.items():
self.tb.add_scalar("{0}/{1}".format(split, key), value, step)
# log the attention average values
if 'attn_geo_avg' in var:
self.tb.add_scalar("{0}/attn_geo_avg".format(split), var.attn_geo_avg, step)
if 'attn_geo_seen' in var:
self.tb.add_scalar("{0}/attn_geo_seen".format(split), var.attn_geo_seen, step)
if 'attn_geo_occl' in var:
self.tb.add_scalar("{0}/attn_geo_occl".format(split), var.attn_geo_occl, step)
if 'attn_geo_bg' in var:
self.tb.add_scalar("{0}/attn_geo_bg".format(split), var.attn_geo_bg, step)
@torch.no_grad()
def visualize(self, opt, var, step=0, split="train"):
if 'pose_input' in var:
pose_input = var.pose_input
elif 'pose_gt' in var:
pose_input = var.pose_gt
else:
pose_input = None
util_vis.tb_image(opt, self.tb, step, split, "image_input_map", var.rgb_input_map, masks=None, from_range=(0, 1), poses=pose_input)
util_vis.tb_image(opt, self.tb, step, split, "image_input_map_est", var.rgb_input_map, masks=None, from_range=(0, 1),
poses=var.pose_pred if 'pose_pred' in var else var.pose)
util_vis.tb_image(opt, self.tb, step, split, "mask_input_map", var.mask_input_map)
if 'depth_pred' in var:
util_vis.tb_image(opt, self.tb, step, split, "depth_est_map", var.depth_pred)
if 'depth_input_map' in var:
util_vis.tb_image(opt, self.tb, step, split, "depth_input_map", var.depth_input_map)
@torch.no_grad()
def dump_results(self, opt, var, ep, write_new=False, train=False):
# create the dir
current_folder = "dump_{}".format(opt.data.dataset_test) if train == False else "vis_{}".format(ep)
os.makedirs("{}/{}/".format(opt.output_path, current_folder), exist_ok=True)
# save the results
if 'pose_input' in var:
pose_input = var.pose_input
elif 'pose_gt' in var:
pose_input = var.pose_gt
else:
pose_input = None
util_vis.dump_images(opt, var.idx, "image_input", var.rgb_input_map, masks=None, from_range=(0, 1), poses=pose_input, folder=current_folder)
util_vis.dump_images(opt, var.idx, "mask_input", var.mask_input_map, folder=current_folder)
util_vis.dump_meshes(opt, var.idx, "mesh", var.mesh_pred, folder=current_folder)
util_vis.dump_meshes_viz(opt, var.idx, "mesh_viz", var.mesh_pred, folder=current_folder) # image frames + gifs
if 'depth_pred' in var:
util_vis.dump_depths(opt, var.idx, "depth_est", var.depth_pred, var.mask_input_map, rescale=True, folder=current_folder)
if 'depth_input_map' in var:
util_vis.dump_depths(opt, var.idx, "depth_input", var.depth_input_map, var.mask_input_map, rescale=True, folder=current_folder)
if 'gt_surf_points' in var and 'seen_points' in var:
util_vis.dump_pointclouds_compare(opt, var.idx, "seen_surface", var.seen_points, var.gt_surf_points, folder=current_folder)
if 'attn_vis' in var:
util_vis.dump_attentions(opt, var.idx, "attn", var.attn_vis, folder=current_folder)
if 'attn_pc' in var:
util_vis.dump_pointclouds(opt, var.idx, "attn_pc", var.attn_pc["points"], var.attn_pc["colors"], folder=current_folder)
if 'dpc' in var:
util_vis.dump_pointclouds_compare(opt, var.idx, "pointclouds_comp", var.dpc_pred, var.dpc.points, folder=current_folder)
def save_checkpoint(self, opt, ep=0, it=0, best_val=np.inf, best_ep=1, latest=False, best=False):
util.save_checkpoint(opt, self, ep=ep, it=it, best_val=best_val, best_ep=best_ep, latest=latest, best=best)
if not latest:
print("checkpoint saved: ({0}) {1}, epoch {2} (iteration {3})".format(opt.group, opt.name, ep, it))
if best:
print("Saving the current model as the best...")