Spaces:
Runtime error
Runtime error
SayaSS
commited on
Commit
·
247e955
1
Parent(s):
17b78ec
add TTS
Browse files- app-slice.py +35 -11
- app.py +54 -11
- requirements.txt +1 -0
app-slice.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
-
import
|
| 4 |
-
import numpy as np
|
| 5 |
from pathlib import Path
|
| 6 |
import inference.infer_tool as infer_tool
|
| 7 |
import utils
|
|
@@ -9,6 +8,8 @@ from inference.infer_tool import Svc
|
|
| 9 |
import logging
|
| 10 |
import webbrowser
|
| 11 |
import argparse
|
|
|
|
|
|
|
| 12 |
import soundfile
|
| 13 |
import gradio.processing_utils as gr_processing_utils
|
| 14 |
logging.getLogger('numba').setLevel(logging.WARNING)
|
|
@@ -29,14 +30,24 @@ def audio_postprocess(self, y):
|
|
| 29 |
|
| 30 |
gr.Audio.postprocess = audio_postprocess
|
| 31 |
def create_vc_fn(model, sid):
|
| 32 |
-
def vc_fn(input_audio, vc_transform, auto_f0, slice_db, noise_scale, pad_seconds):
|
| 33 |
-
if
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
_audio = model.slice_inference(
|
| 41 |
wav_path, sid, vc_transform, slice_db,
|
| 42 |
cluster_infer_ratio=0,
|
|
@@ -50,6 +61,11 @@ def create_vc_fn(model, sid):
|
|
| 50 |
def refresh_raw_wav():
|
| 51 |
return gr.Dropdown.update(choices=os.listdir("raw"))
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
if __name__ == '__main__':
|
| 55 |
parser = argparse.ArgumentParser()
|
|
@@ -60,6 +76,10 @@ if __name__ == '__main__':
|
|
| 60 |
args = parser.parse_args()
|
| 61 |
hubert_model = utils.get_hubert_model().to(args.device)
|
| 62 |
models = []
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
raw = os.listdir("raw")
|
| 64 |
for f in os.listdir("models"):
|
| 65 |
name = f
|
|
@@ -100,12 +120,16 @@ if __name__ == '__main__':
|
|
| 100 |
noise_scale = gr.Number(label="noise_scale", value=0.4)
|
| 101 |
pad_seconds = gr.Number(label="pad_seconds", value=0.5)
|
| 102 |
auto_f0 = gr.Checkbox(label="auto_f0", value=False)
|
|
|
|
|
|
|
|
|
|
| 103 |
vc_submit = gr.Button("Generate", variant="primary")
|
| 104 |
with gr.Column():
|
| 105 |
vc_output1 = gr.Textbox(label="Output Message")
|
| 106 |
vc_output2 = gr.Audio(label="Output Audio")
|
| 107 |
-
vc_submit.click(vc_fn, [vc_input, vc_transform, auto_f0, slice_db, noise_scale, pad_seconds], [vc_output1, vc_output2])
|
| 108 |
vc_refresh.click(refresh_raw_wav, [], [vc_input])
|
|
|
|
| 109 |
if args.colab:
|
| 110 |
webbrowser.open("http://127.0.0.1:7860")
|
| 111 |
app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share)
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
+
import edge_tts
|
|
|
|
| 4 |
from pathlib import Path
|
| 5 |
import inference.infer_tool as infer_tool
|
| 6 |
import utils
|
|
|
|
| 8 |
import logging
|
| 9 |
import webbrowser
|
| 10 |
import argparse
|
| 11 |
+
import asyncio
|
| 12 |
+
import librosa
|
| 13 |
import soundfile
|
| 14 |
import gradio.processing_utils as gr_processing_utils
|
| 15 |
logging.getLogger('numba').setLevel(logging.WARNING)
|
|
|
|
| 30 |
|
| 31 |
gr.Audio.postprocess = audio_postprocess
|
| 32 |
def create_vc_fn(model, sid):
|
| 33 |
+
def vc_fn(input_audio, vc_transform, auto_f0, slice_db, noise_scale, pad_seconds, tts_text, tts_voice, tts_mode):
|
| 34 |
+
if tts_mode:
|
| 35 |
+
if len(tts_text) > 100 and limitation:
|
| 36 |
+
return "Text is too long", None
|
| 37 |
+
if tts_text is None or tts_voice is None:
|
| 38 |
+
return "You need to enter text and select a voice", None
|
| 39 |
+
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
|
| 40 |
+
audio, sr = librosa.load("tts.mp3")
|
| 41 |
+
soundfile.write("tts.wav", audio, 24000, format="wav")
|
| 42 |
+
wav_path = "tts.wav"
|
| 43 |
+
else:
|
| 44 |
+
if input_audio is None:
|
| 45 |
+
return "You need to select an audio", None
|
| 46 |
+
raw_audio_path = f"raw/{input_audio}"
|
| 47 |
+
if "." not in raw_audio_path:
|
| 48 |
+
raw_audio_path += ".wav"
|
| 49 |
+
infer_tool.format_wav(raw_audio_path)
|
| 50 |
+
wav_path = Path(raw_audio_path).with_suffix('.wav')
|
| 51 |
_audio = model.slice_inference(
|
| 52 |
wav_path, sid, vc_transform, slice_db,
|
| 53 |
cluster_infer_ratio=0,
|
|
|
|
| 61 |
def refresh_raw_wav():
|
| 62 |
return gr.Dropdown.update(choices=os.listdir("raw"))
|
| 63 |
|
| 64 |
+
def change_to_tts_mode(tts_mode):
|
| 65 |
+
if tts_mode:
|
| 66 |
+
return gr.Audio.update(visible=False), gr.Button.update(visible=False), gr.Textbox.update(visible=True), gr.Dropdown.update(visible=True)
|
| 67 |
+
else:
|
| 68 |
+
return gr.Audio.update(visible=True), gr.Button.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False)
|
| 69 |
|
| 70 |
if __name__ == '__main__':
|
| 71 |
parser = argparse.ArgumentParser()
|
|
|
|
| 76 |
args = parser.parse_args()
|
| 77 |
hubert_model = utils.get_hubert_model().to(args.device)
|
| 78 |
models = []
|
| 79 |
+
voices = []
|
| 80 |
+
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
|
| 81 |
+
for r in tts_voice_list:
|
| 82 |
+
voices.append(f"{r['ShortName']}-{r['Gender']}")
|
| 83 |
raw = os.listdir("raw")
|
| 84 |
for f in os.listdir("models"):
|
| 85 |
name = f
|
|
|
|
| 120 |
noise_scale = gr.Number(label="noise_scale", value=0.4)
|
| 121 |
pad_seconds = gr.Number(label="pad_seconds", value=0.5)
|
| 122 |
auto_f0 = gr.Checkbox(label="auto_f0", value=False)
|
| 123 |
+
tts_mode = gr.Checkbox(label="tts (use edge-tts as input)", value=False)
|
| 124 |
+
tts_text = gr.Textbox(visible=False,label="TTS text (100 words limitation)" if limitation else "TTS text")
|
| 125 |
+
tts_voice = gr.Dropdown(choices=voices, visible=False)
|
| 126 |
vc_submit = gr.Button("Generate", variant="primary")
|
| 127 |
with gr.Column():
|
| 128 |
vc_output1 = gr.Textbox(label="Output Message")
|
| 129 |
vc_output2 = gr.Audio(label="Output Audio")
|
| 130 |
+
vc_submit.click(vc_fn, [vc_input, vc_transform, auto_f0, slice_db, noise_scale, pad_seconds, tts_text, tts_voice, tts_mode], [vc_output1, vc_output2])
|
| 131 |
vc_refresh.click(refresh_raw_wav, [], [vc_input])
|
| 132 |
+
tts_mode.change(change_to_tts_mode, [tts_mode], [vc_input, vc_refresh, tts_text, tts_voice])
|
| 133 |
if args.colab:
|
| 134 |
webbrowser.open("http://127.0.0.1:7860")
|
| 135 |
app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share)
|
app.py
CHANGED
|
@@ -7,7 +7,9 @@ import utils
|
|
| 7 |
from inference.infer_tool import Svc
|
| 8 |
import logging
|
| 9 |
import soundfile
|
|
|
|
| 10 |
import argparse
|
|
|
|
| 11 |
import gradio.processing_utils as gr_processing_utils
|
| 12 |
logging.getLogger('numba').setLevel(logging.WARNING)
|
| 13 |
logging.getLogger('markdown_it').setLevel(logging.WARNING)
|
|
@@ -27,7 +29,21 @@ def audio_postprocess(self, y):
|
|
| 27 |
|
| 28 |
gr.Audio.postprocess = audio_postprocess
|
| 29 |
def create_vc_fn(model, sid):
|
| 30 |
-
def vc_fn(input_audio, vc_transform, auto_f0):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
if input_audio is None:
|
| 32 |
return "You need to upload an audio", None
|
| 33 |
sampling_rate, audio = input_audio
|
|
@@ -48,6 +64,12 @@ def create_vc_fn(model, sid):
|
|
| 48 |
return "Success", (44100, out_audio.cpu().numpy())
|
| 49 |
return vc_fn
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
if __name__ == '__main__':
|
| 52 |
parser = argparse.ArgumentParser()
|
| 53 |
parser.add_argument('--device', type=str, default='cpu')
|
|
@@ -56,6 +78,16 @@ if __name__ == '__main__':
|
|
| 56 |
args = parser.parse_args()
|
| 57 |
hubert_model = utils.get_hubert_model().to(args.device)
|
| 58 |
models = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
for f in os.listdir("models"):
|
| 60 |
name = f
|
| 61 |
model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json", device=args.device, hubert_model=hubert_model)
|
|
@@ -66,14 +98,9 @@ if __name__ == '__main__':
|
|
| 66 |
"# <center> Sovits Models\n"
|
| 67 |
"## <center> The input audio should be clean and pure voice without background music.\n"
|
| 68 |
"\n\n"
|
| 69 |
-
"[
|
| 70 |
-
"
|
| 71 |
-
"[Original Repo](https://github.com/svc-develop-team/so-vits-svc)
|
| 72 |
-
"Other models:\n"
|
| 73 |
-
"[rudolf](https://huggingface.co/spaces/sayashi/sovits-rudolf)\n"
|
| 74 |
-
"[teio](https://huggingface.co/spaces/sayashi/sovits-teio)\n"
|
| 75 |
-
"[goldship](https://huggingface.co/spaces/sayashi/sovits-goldship)\n"
|
| 76 |
-
"[tannhauser](https://huggingface.co/spaces/sayashi/sovits-tannhauser)\n"
|
| 77 |
|
| 78 |
)
|
| 79 |
with gr.Tabs():
|
|
@@ -90,9 +117,25 @@ if __name__ == '__main__':
|
|
| 90 |
vc_input = gr.Audio(label="Input audio"+' (less than 20 seconds)' if limitation else '')
|
| 91 |
vc_transform = gr.Number(label="vc_transform", value=0)
|
| 92 |
auto_f0 = gr.Checkbox(label="auto_f0", value=False)
|
|
|
|
|
|
|
|
|
|
| 93 |
vc_submit = gr.Button("Generate", variant="primary")
|
| 94 |
with gr.Column():
|
| 95 |
vc_output1 = gr.Textbox(label="Output Message")
|
| 96 |
vc_output2 = gr.Audio(label="Output Audio")
|
| 97 |
-
vc_submit.click(vc_fn, [vc_input, vc_transform, auto_f0], [vc_output1, vc_output2])
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
from inference.infer_tool import Svc
|
| 8 |
import logging
|
| 9 |
import soundfile
|
| 10 |
+
import asyncio
|
| 11 |
import argparse
|
| 12 |
+
import edge_tts
|
| 13 |
import gradio.processing_utils as gr_processing_utils
|
| 14 |
logging.getLogger('numba').setLevel(logging.WARNING)
|
| 15 |
logging.getLogger('markdown_it').setLevel(logging.WARNING)
|
|
|
|
| 29 |
|
| 30 |
gr.Audio.postprocess = audio_postprocess
|
| 31 |
def create_vc_fn(model, sid):
|
| 32 |
+
def vc_fn(input_audio, vc_transform, auto_f0, tts_text, tts_voice, tts_mode):
|
| 33 |
+
if tts_mode:
|
| 34 |
+
if len(tts_text) > 100 and limitation:
|
| 35 |
+
return "Text is too long", None
|
| 36 |
+
if tts_text is None or tts_voice is None:
|
| 37 |
+
return "You need to enter text and select a voice", None
|
| 38 |
+
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
|
| 39 |
+
audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
|
| 40 |
+
raw_path = io.BytesIO()
|
| 41 |
+
soundfile.write(raw_path, audio, 16000, format="wav")
|
| 42 |
+
raw_path.seek(0)
|
| 43 |
+
out_audio, out_sr = model.infer(sid, vc_transform, raw_path,
|
| 44 |
+
auto_predict_f0=auto_f0,
|
| 45 |
+
)
|
| 46 |
+
return "Success", (44100, out_audio.cpu().numpy())
|
| 47 |
if input_audio is None:
|
| 48 |
return "You need to upload an audio", None
|
| 49 |
sampling_rate, audio = input_audio
|
|
|
|
| 64 |
return "Success", (44100, out_audio.cpu().numpy())
|
| 65 |
return vc_fn
|
| 66 |
|
| 67 |
+
def change_to_tts_mode(tts_mode):
|
| 68 |
+
if tts_mode:
|
| 69 |
+
return gr.Audio.update(visible=False), gr.Textbox.update(visible=True), gr.Dropdown.update(visible=True), gr.Checkbox.update(value=True)
|
| 70 |
+
else:
|
| 71 |
+
return gr.Audio.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False), gr.Checkbox.update(value=False)
|
| 72 |
+
|
| 73 |
if __name__ == '__main__':
|
| 74 |
parser = argparse.ArgumentParser()
|
| 75 |
parser.add_argument('--device', type=str, default='cpu')
|
|
|
|
| 78 |
args = parser.parse_args()
|
| 79 |
hubert_model = utils.get_hubert_model().to(args.device)
|
| 80 |
models = []
|
| 81 |
+
others = {
|
| 82 |
+
"rudolf": "https://huggingface.co/spaces/sayashi/sovits-rudolf",
|
| 83 |
+
"teio": "https://huggingface.co/spaces/sayashi/sovits-teio",
|
| 84 |
+
"goldship": "https://huggingface.co/spaces/sayashi/sovits-goldship",
|
| 85 |
+
"tannhauser": "https://huggingface.co/spaces/sayashi/sovits-tannhauser"
|
| 86 |
+
}
|
| 87 |
+
voices = []
|
| 88 |
+
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
|
| 89 |
+
for r in tts_voice_list:
|
| 90 |
+
voices.append(f"{r['ShortName']}-{r['Gender']}")
|
| 91 |
for f in os.listdir("models"):
|
| 92 |
name = f
|
| 93 |
model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json", device=args.device, hubert_model=hubert_model)
|
|
|
|
| 98 |
"# <center> Sovits Models\n"
|
| 99 |
"## <center> The input audio should be clean and pure voice without background music.\n"
|
| 100 |
"\n\n"
|
| 101 |
+
"[](https://colab.research.google.com/drive/1wfsBbMzmtLflOJeqc5ZnJiLY7L239hJW?usp=share_link)\n\n"
|
| 102 |
+
"[](https://huggingface.co/spaces/sayashi/sovits-models?duplicate=true)\n\n"
|
| 103 |
+
"[](https://github.com/svc-develop-team/so-vits-svc)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
)
|
| 106 |
with gr.Tabs():
|
|
|
|
| 117 |
vc_input = gr.Audio(label="Input audio"+' (less than 20 seconds)' if limitation else '')
|
| 118 |
vc_transform = gr.Number(label="vc_transform", value=0)
|
| 119 |
auto_f0 = gr.Checkbox(label="auto_f0", value=False)
|
| 120 |
+
tts_mode = gr.Checkbox(label="tts (use edge-tts as input)", value=False)
|
| 121 |
+
tts_text = gr.Textbox(visible=False, label="TTS text (100 words limitation)" if limitation else "TTS text")
|
| 122 |
+
tts_voice = gr.Dropdown(choices=voices, visible=False)
|
| 123 |
vc_submit = gr.Button("Generate", variant="primary")
|
| 124 |
with gr.Column():
|
| 125 |
vc_output1 = gr.Textbox(label="Output Message")
|
| 126 |
vc_output2 = gr.Audio(label="Output Audio")
|
| 127 |
+
vc_submit.click(vc_fn, [vc_input, vc_transform, auto_f0, tts_text, tts_voice, tts_mode], [vc_output1, vc_output2])
|
| 128 |
+
tts_mode.change(change_to_tts_mode, [tts_mode], [vc_input, tts_text, tts_voice, auto_f0])
|
| 129 |
+
for category, link in others.items():
|
| 130 |
+
with gr.TabItem(category):
|
| 131 |
+
gr.Markdown(
|
| 132 |
+
f'''
|
| 133 |
+
<center>
|
| 134 |
+
<h2>Click to Go</h2>
|
| 135 |
+
<a href="{link}">
|
| 136 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-xl-dark.svg"
|
| 137 |
+
</a>
|
| 138 |
+
</center>
|
| 139 |
+
'''
|
| 140 |
+
)
|
| 141 |
+
app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share)
|
requirements.txt
CHANGED
|
@@ -19,3 +19,4 @@ onnxsim
|
|
| 19 |
onnxoptimizer
|
| 20 |
fairseq
|
| 21 |
librosa
|
|
|
|
|
|
| 19 |
onnxoptimizer
|
| 20 |
fairseq
|
| 21 |
librosa
|
| 22 |
+
edge-tts
|