Spaces:
Running
Running
File size: 6,736 Bytes
e247edf ed7625a e247edf ed7625a e247edf ed7625a e247edf ed7625a e247edf ed7625a e247edf ed7625a e247edf ed7625a e247edf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import openai
import streamlit as st
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain.prompts.prompt import PromptTemplate
from langchain.vectorstores import FAISS
import re
import time
# import e5-large-v2 embedding model
model_name = "intfloat/e5-large-v2"
model_kwargs = {'device': 'cuda'}
encode_kwargs = {'normalize_embeddings': False}
embeddings = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
# load IPCC database
db = FAISS.load_local("IPCC_index_e5_1000_pdf", embeddings)
def generate_response(input_text):
docs = db.similarity_search(input_text,k=5)
json1 = docs[0].metadata
json2 = docs[1].metadata
json3 = docs[2].metadata
json4 = docs[3].metadata
json5 = docs[4].metadata
#st.write({"source1":json1["source"], "source2":json2["source"],"source3":json3["source"]})
climate_TEMPLATE = """ You are ChatClimate, take a deep breath and provide an answer to educated general audience based on the context, and Format your answer in Markdown. :"
Context: {context}
Question: {question}
Answer:
check if you use the info below, if you used please add used source for in-text reference, if not used, do not add them .
[{source1} page {page1}]
[{source2} page {page2}]
[{source3} page {page3}]
[{source4} page {page4}]
[{source5} page {page5}]
Check if you use the source in your ansewer, make sure list used sources you refer to and their hyperlinks as below in a section named "sources":
[{source1} page {page1}](https://www.ipcc.ch/report/ar6/wg3/downloads/report/{source1}.pdf#page={page1})
[{source2} page {page2}](https://www.ipcc.ch/report/ar6/wg3/downloads/report/{source2}.pdf#page={page2})
[{source3} page {page3}](https://www.ipcc.ch/report/ar6/wg3/downloads/report/{source3}.pdf#page={page3})
[{source4} page {page4}](https://www.ipcc.ch/report/ar6/wg3/downloads/report/{source4}.pdf#page={page4})
[{source5} page {page5}](https://www.ipcc.ch/report/ar6/wg3/downloads/report/{source5}.pdf#page={page5})
at the end of your answer, make sure to add a short highlight of your answer in humor and make sure no more than 5 words.
Highlight:
"""
climate_PROMPT = PromptTemplate(input_variables=["question", "context"],
partial_variables={"source1":json1["source"], "source2":json2["source"],
"source3":json3["source"],"source4":json4["source"],"source5":json5["source"],"page1":json1["page"],
"page2":json2["page"],"page3":json3["page"],"page4":json4["page"],"page5":json5["page"]},
template=climate_TEMPLATE, )
#climate_PROMPT.partial(source = docs[0].metadata)
llm = ChatOpenAI(
model_name="gpt-3.5-turbo",
temperature=0.1,
max_tokens=2000,
openai_api_key=openai_api_key
)
# Define retriever
retriever = db.as_retriever(search_kwargs={"k": 5})
qa_chain = RetrievalQA.from_chain_type(llm,
retriever=retriever,
chain_type="stuff", #"stuff", "map_reduce","refine", "map_rerank"
return_source_documents=True,
verbose=True,
chain_type_kwargs={"prompt": climate_PROMPT}
)
return qa_chain({'query': input_text})
with st.sidebar:
openai_api_key = st.text_input("OpenAI API Key", key="chatbot_api_key", type="password")
"[Get an OpenAI API key](https://platform.openai.com/account/api-keys)"
st.markdown("## 🌍 Welcome to ClimateChat! 🌍")
st.markdown("ClimateChat Harnesses the latest [IPCC reports](https://www.ipcc.ch/report/ar6/wg3/) and the power of Large Language Models to answer your questions about climate change. When you interact with ClimateChat not only will you receive clear, concise, and accurate answers, but each response is coupled with sources and hyperlinks for further exploration and verification.\
Our objective is to make climate change information accessible, understandable, and actionable for everyone, everywhere.")
st.title("💬🌍🌡️ClimateChat")
st.caption("💬 A Climate Change chatbot powered by OpenAI LLM and IPCC documents")
#col1, col2, = st.columns(2)
if "messages" not in st.session_state:
st.session_state["messages"] = [{"role": "assistant", "content": "Any question about the climate change?"}]
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
if prompt := st.chat_input():
if not openai_api_key:
st.info("Please add your OpenAI API key to continue.")
st.stop()
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
result = generate_response(prompt)
result_r = result["result"]
index = result_r.find("Highlight:")
# Extract everything after "Highlight:"
match = re.search(r"Highlight: (.+)", result_r)
if match:
highlighted_text = match.group(1)
else:
highlighted_text="hello world"
# Display assistant response in chat message container
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
assistant_response = result_r
# Simulate stream of response with milliseconds delay
for chunk in assistant_response.split():
full_response += chunk + " "
time.sleep(0.05)
# Add a blinking cursor to simulate typing
message_placeholder.write(full_response + "▌")
message_placeholder.write(result_r)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": result_r})
#st.session_state.messages.append({"role": "assistant", "content": result["result"]})
#st.chat_message("assistant").write(result_r)
#display_typing_effect(st.chat_message("assistant"), result_r)
#st.markdown(result['source_documents'][0])
#st.markdown(result['source_documents'][1])
#st.markdown(result['source_documents'][2])
#st.markdown(result['source_documents'][3])
#st.markdown(result['source_documents'][4])
#st.image("https://cataas.com/cat/says/"+highlighted_text) |