File size: 1,200 Bytes
57c5bcb
c3cd834
5b0a6ee
c3cd834
54385f0
 
37ac5ae
5b0a6ee
 
 
74fa8e5
 
485a5d1
74fa8e5
 
0195449
74fa8e5
b118f5f
37ac5ae
74fa8e5
37ac5ae
96e098a
 
76fcda3
96e098a
 
49bb563
96e098a
5b0a6ee
57c5bcb
96e098a
 
 
49bb563
96e098a
 
49bb563
96e098a
 
49bb563
96e098a
 
49bb563
96e098a
5b0a6ee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import streamlit as st
import google.generativeai as genai

# API key
api_key = "AIzaSyC70u1sN87IkoxOoIj4XCAPw97ae2LZwNM"

# Configure the API key
genai.configure(api_key=api_key)

# Create chatbot interface
st.title("Gemini API Chatbot")

# Get chat history from session state
chat_history = st.session_state.get("chat_history", [])

# Get user input from text box
user_input = st.text_input("You")

# Check if user input is not empty
if user_input:
  # Add user message to chat history
  chat_history.append(user_input)

  # Display user message with markdown
  st.markdown(f"**You:** {user_input}")

  # Create model object
  model = genai.GenerativeModel(model_name="gemini-pro")

  # Get model response with generate_content method
  with st.spinner("Thinking..."):
      response = model.generate_content(chat_history)

  # Get response text from response object
  response_text = response.contents[-1].parts[0].text

  # Add response message to chat history
  chat_history.append(response_text)

  # Display response message with markdown
  st.markdown(f"**Gemini Bot:** {response_text}")

  # Update session state with chat history
  st.session_state["chat_history"] = chat_history