model = AutoModelForCausalLM.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v1.5", trust_remote_code=True) processor = AutoProcessor.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v1.5", trust_remote_code=True) prompt = "" url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(text=prompt, images=image, return_tensors="pt").to(device) generated_ids = model.generate(     input_ids=inputs["input_ids"],     pixel_values=inputs["pixel_values"],     max_new_tokens=1024,     do_sample=False,     num_beams=3 ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height)) print(parsed_answer)