Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,17 +7,34 @@
|
|
7 |
# demo.launch()
|
8 |
import requests
|
9 |
from PIL import Image
|
10 |
-
from transformers import AutoModelForCausalLM, AutoProcessor
|
11 |
import torch
|
12 |
import gradio as gr
|
13 |
|
14 |
# 设置设备
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
|
17 |
-
#
|
18 |
model = AutoModelForCausalLM.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v1.5", trust_remote_code=True).to(device)
|
19 |
processor = AutoProcessor.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v1.5", trust_remote_code=True)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def generate_caption(image_url):
|
22 |
try:
|
23 |
# 下载并打开图像
|
@@ -40,7 +57,10 @@ def generate_caption(image_url):
|
|
40 |
# 解析生成的文本
|
41 |
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
|
42 |
|
43 |
-
|
|
|
|
|
|
|
44 |
except Exception as e:
|
45 |
return f"Error: {str(e)}"
|
46 |
|
@@ -53,9 +73,9 @@ def gradio_interface(image_url):
|
|
53 |
iface = gr.Interface(
|
54 |
fn=gradio_interface, # 处理函数
|
55 |
inputs=gr.Textbox(label="Image URL", placeholder="Enter the URL of the image..."), # 输入组件
|
56 |
-
outputs=gr.Textbox(label="Generated Caption"), # 输出组件
|
57 |
title="Florence-2 Prompt Generation", # 标题
|
58 |
-
description="Generate detailed captions for images using Florence-2 model.", # 描述
|
59 |
examples=[
|
60 |
["https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"]
|
61 |
] # 示例
|
|
|
7 |
# demo.launch()
|
8 |
import requests
|
9 |
from PIL import Image
|
10 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, MarianMTModel, MarianTokenizer
|
11 |
import torch
|
12 |
import gradio as gr
|
13 |
|
14 |
# 设置设备
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
|
17 |
+
# 加载 Florence-2 模型和处理器
|
18 |
model = AutoModelForCausalLM.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v1.5", trust_remote_code=True).to(device)
|
19 |
processor = AutoProcessor.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v1.5", trust_remote_code=True)
|
20 |
|
21 |
+
# 加载 Helsinki-NLP 的翻译模型(英文到中文)
|
22 |
+
translation_model_name = "Helsinki-NLP/opus-mt-en-zh"
|
23 |
+
translation_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
|
24 |
+
translation_model = MarianMTModel.from_pretrained(translation_model_name).to(device)
|
25 |
+
|
26 |
+
# 翻译函数
|
27 |
+
def translate_to_chinese(text):
|
28 |
+
try:
|
29 |
+
# 分词和翻译
|
30 |
+
tokenized_text = translation_tokenizer(text, return_tensors="pt", max_length=512, truncation=True).to(device)
|
31 |
+
translated_tokens = translation_model.generate(**tokenized_text)
|
32 |
+
translated_text = translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
33 |
+
return translated_text
|
34 |
+
except Exception as e:
|
35 |
+
return f"Translation error: {str(e)}"
|
36 |
+
|
37 |
+
# 生成描述并翻译
|
38 |
def generate_caption(image_url):
|
39 |
try:
|
40 |
# 下载并打开图像
|
|
|
57 |
# 解析生成的文本
|
58 |
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
|
59 |
|
60 |
+
# 翻译成中文
|
61 |
+
translated_answer = translate_to_chinese(parsed_answer)
|
62 |
+
|
63 |
+
return translated_answer
|
64 |
except Exception as e:
|
65 |
return f"Error: {str(e)}"
|
66 |
|
|
|
73 |
iface = gr.Interface(
|
74 |
fn=gradio_interface, # 处理函数
|
75 |
inputs=gr.Textbox(label="Image URL", placeholder="Enter the URL of the image..."), # 输入组件
|
76 |
+
outputs=gr.Textbox(label="Generated Caption (Translated to Chinese)"), # 输出组件
|
77 |
title="Florence-2 Prompt Generation", # 标题
|
78 |
+
description="Generate detailed captions for images using Florence-2 model and translate them to Chinese.", # 描述
|
79 |
examples=[
|
80 |
["https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"]
|
81 |
] # 示例
|