Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,27 +7,76 @@
|
|
7 |
# demo.launch()
|
8 |
import requests
|
9 |
from PIL import Image
|
10 |
-
from transformers import AutoModelForCausalLM, AutoProcessor
|
11 |
import torch
|
12 |
import gradio as gr
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# 设置设备
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
16 |
|
17 |
-
#
|
|
|
18 |
model = AutoModelForCausalLM.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v1.5", trust_remote_code=True).to(device)
|
19 |
processor = AutoProcessor.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v1.5", trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
22 |
try:
|
23 |
-
#
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# 准备输入
|
27 |
prompt = "<MORE_DETAILED_CAPTION>"
|
28 |
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
|
29 |
|
30 |
# 生成文本
|
|
|
31 |
generated_ids = model.generate(
|
32 |
input_ids=inputs["input_ids"],
|
33 |
pixel_values=inputs["pixel_values"],
|
@@ -36,30 +85,41 @@ def generate_caption(image_url):
|
|
36 |
num_beams=3
|
37 |
)
|
38 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
|
|
|
|
39 |
|
40 |
# 解析生成的文本
|
41 |
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
return
|
44 |
except Exception as e:
|
|
|
45 |
return f"Error: {str(e)}"
|
46 |
|
47 |
# Gradio 界面
|
48 |
-
def gradio_interface(
|
49 |
-
result = generate_caption(
|
50 |
return result
|
51 |
|
52 |
# 创建 Gradio 应用
|
53 |
iface = gr.Interface(
|
54 |
fn=gradio_interface, # 处理函数
|
55 |
-
inputs=gr.
|
56 |
-
outputs=gr.Textbox(label="Generated Caption"), # 输出组件
|
57 |
title="Florence-2 Prompt Generation", # 标题
|
58 |
-
description="Generate detailed captions for images using Florence-2 model.", # 描述
|
59 |
examples=[
|
60 |
["https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"]
|
61 |
] # 示例
|
62 |
)
|
63 |
|
64 |
# 启动 Gradio 应用
|
|
|
65 |
iface.launch()
|
|
|
7 |
# demo.launch()
|
8 |
import requests
|
9 |
from PIL import Image
|
10 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, MarianMTModel, MarianTokenizer
|
11 |
import torch
|
12 |
import gradio as gr
|
13 |
|
14 |
+
# 验证 SentencePiece 是否安装
|
15 |
+
try:
|
16 |
+
import sentencepiece
|
17 |
+
print("SentencePiece is installed successfully!")
|
18 |
+
except ImportError:
|
19 |
+
print("SentencePiece is NOT installed!")
|
20 |
+
|
21 |
# 设置设备
|
22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
+
print(f"Using device: {device}")
|
24 |
|
25 |
+
# 加载 Florence-2 模型和处理器
|
26 |
+
print("Loading Florence-2 model...")
|
27 |
model = AutoModelForCausalLM.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v1.5", trust_remote_code=True).to(device)
|
28 |
processor = AutoProcessor.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v1.5", trust_remote_code=True)
|
29 |
+
print("Florence-2 model loaded successfully.")
|
30 |
+
|
31 |
+
# 加载 Helsinki-NLP 的翻译模型(英文到中文)
|
32 |
+
print("Loading translation model...")
|
33 |
+
translation_model_name = "Helsinki-NLP/opus-mt-en-zh"
|
34 |
+
translation_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
|
35 |
+
translation_model = MarianMTModel.from_pretrained(translation_model_name).to(device)
|
36 |
+
print("Translation model loaded successfully.")
|
37 |
|
38 |
+
# 翻译函数
|
39 |
+
def translate_to_chinese(text):
|
40 |
try:
|
41 |
+
# 确保输入是字符串
|
42 |
+
if not isinstance(text, str):
|
43 |
+
print(f"Input is not a string: {text} (type: {type(text)})")
|
44 |
+
text = str(text) # 强制转换为字符串
|
45 |
+
|
46 |
+
print("Input text for translation:", text)
|
47 |
+
tokenized_text = translation_tokenizer(text, return_tensors="pt", max_length=512, truncation=True).to(device)
|
48 |
+
translated_tokens = translation_model.generate(**tokenized_text)
|
49 |
+
translated_text = translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
50 |
+
print("Translated text:", translated_text)
|
51 |
+
return translated_text
|
52 |
+
except Exception as e:
|
53 |
+
print("Translation error:", str(e))
|
54 |
+
return f"Translation error: {str(e)}"
|
55 |
+
|
56 |
+
# 生成描述并翻译
|
57 |
+
def generate_caption(image):
|
58 |
+
try:
|
59 |
+
# 如果输入是 URL,下载图片
|
60 |
+
if isinstance(image, str):
|
61 |
+
print("Downloading image from URL...")
|
62 |
+
try:
|
63 |
+
response = requests.get(image, stream=True, timeout=10)
|
64 |
+
response.raise_for_status() # 检查请求是否成功
|
65 |
+
image = Image.open(response.raw)
|
66 |
+
print("Image downloaded successfully.")
|
67 |
+
except requests.exceptions.RequestException as e:
|
68 |
+
return f"Failed to download image: {str(e)}"
|
69 |
+
# 如果输入是文件路径,直接打开图片
|
70 |
+
else:
|
71 |
+
print("Loading image from file...")
|
72 |
+
image = Image.open(image)
|
73 |
|
74 |
# 准备输入
|
75 |
prompt = "<MORE_DETAILED_CAPTION>"
|
76 |
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
|
77 |
|
78 |
# 生成文本
|
79 |
+
print("Generating caption...")
|
80 |
generated_ids = model.generate(
|
81 |
input_ids=inputs["input_ids"],
|
82 |
pixel_values=inputs["pixel_values"],
|
|
|
85 |
num_beams=3
|
86 |
)
|
87 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
88 |
+
print("Generated text:", generated_text)
|
89 |
+
print("Type of generated text:", type(generated_text))
|
90 |
|
91 |
# 解析生成的文本
|
92 |
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
|
93 |
+
print("Parsed answer:", parsed_answer)
|
94 |
+
print("Type of parsed answer:", type(parsed_answer))
|
95 |
+
|
96 |
+
# 翻译成中文
|
97 |
+
print("Translating to Chinese...")
|
98 |
+
translated_answer = translate_to_chinese(parsed_answer)
|
99 |
+
print("Translation completed.")
|
100 |
|
101 |
+
return translated_answer
|
102 |
except Exception as e:
|
103 |
+
print("Error:", str(e))
|
104 |
return f"Error: {str(e)}"
|
105 |
|
106 |
# Gradio 界面
|
107 |
+
def gradio_interface(image):
|
108 |
+
result = generate_caption(image)
|
109 |
return result
|
110 |
|
111 |
# 创建 Gradio 应用
|
112 |
iface = gr.Interface(
|
113 |
fn=gradio_interface, # 处理函数
|
114 |
+
inputs=gr.Image(label="Upload Image or Enter Image URL", type="filepath"), # 输入组件
|
115 |
+
outputs=gr.Textbox(label="Generated Caption (Translated to Chinese)"), # 输出组件
|
116 |
title="Florence-2 Prompt Generation", # 标题
|
117 |
+
description="Generate detailed captions for images using Florence-2 model and translate them to Chinese. You can upload an image or provide an image URL.", # 描述
|
118 |
examples=[
|
119 |
["https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"]
|
120 |
] # 示例
|
121 |
)
|
122 |
|
123 |
# 启动 Gradio 应用
|
124 |
+
print("Launching Gradio app...")
|
125 |
iface.launch()
|