File size: 1,327 Bytes
3d4f13a
b5f7961
3d4f13a
ef9b88b
 
3b68341
ef9b88b
3b68341
ef9b88b
3b68341
 
4f70f9f
b5f7961
 
 
 
 
 
3d4f13a
1335053
 
 
b5f7961
1335053
 
 
b5f7961
4f70f9f
1335053
4f70f9f
 
1335053
4f70f9f
1335053
 
4f70f9f
1335053
 
 
4f70f9f
 
 
1335053
4f70f9f
3b68341
b5f7961
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import gradio as gr
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer

model_name = "dsfsi/nr-en-m2m100-gov"
tokenizer = M2M100Tokenizer.from_pretrained(model_name)
model = M2M100ForConditionalGeneration.from_pretrained(model_name)

tokenizer.src_lang = "nr"

model.config.forced_bos_token_id = tokenizer.get_lang_id("en")

def translate(inp):
    inputs = tokenizer(inp, return_tensors="pt")
    
    translated_tokens = model.generate(**inputs, max_length=512, forced_bos_token_id=tokenizer.get_lang_id("en"))
    
    translated_text = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
    return translated_text

description = """
<p>
<center>
isiNdebele to English Translation
</center>
</p>
"""
article = "<p style='text-align: center'><a href='https://huggingface.co/dsfsi/nr-en-m2m100-gov' target='_blank'>by dsfsi</a></p>"

examples = [
    ["Ngiyabonga kakhulu ngesipho osinike sona."],
    ["Ukuthula kuhlale kuyindlela ephilayo yempilo yethu."]
]

iface = gr.Interface(
    fn=translate,
    title="isiNdebele to English Translation",
    description=description,
    article=article,
    examples=examples,
    inputs=gr.components.Textbox(lines=5, placeholder="Enter isiNdebele text (maximum 5 lines)", label="Input"),
    outputs="text"
)

iface.launch(enable_queue=True)