Spaces:
Running
Running
File size: 24,255 Bytes
1923cfd 391ae4a f4bb1fe 391ae4a d85386b 888d740 391ae4a 1923cfd d85386b f4bb1fe 1923cfd f4bb1fe 4540c16 f4bb1fe d85386b 1923cfd f4bb1fe 1923cfd d85386b f4bb1fe d85386b 1923cfd d85386b 1923cfd 8220774 d85386b 8220774 1923cfd f4bb1fe 4540c16 f4bb1fe d85386b 888d740 1923cfd 888d740 f4bb1fe 888d740 1923cfd 888d740 1923cfd 888d740 1923cfd 888d740 1923cfd 888d740 1923cfd 888d740 1923cfd 888d740 d85386b f4bb1fe d85386b 888d740 d85386b 1923cfd f4bb1fe 391ae4a 1923cfd f4bb1fe 4540c16 f4bb1fe 1923cfd 4540c16 f4bb1fe 4540c16 f4bb1fe 4540c16 c1e2c49 895ca8a 4540c16 391ae4a 1923cfd f4bb1fe 888d740 f4bb1fe 888d740 4540c16 f4bb1fe 391ae4a 1923cfd f4bb1fe 4540c16 f4bb1fe 1923cfd 4540c16 1923cfd f4bb1fe 4540c16 f4bb1fe 1923cfd 391ae4a f4bb1fe 391ae4a 5970c12 391ae4a 895ca8a 391ae4a 1923cfd 895ca8a 391ae4a f4bb1fe 4540c16 391ae4a f4bb1fe 4540c16 f4bb1fe 4540c16 f4bb1fe 4540c16 c1e2c49 f4bb1fe 391ae4a 1923cfd 391ae4a 895ca8a f4bb1fe 391ae4a 895ca8a f4bb1fe 391ae4a c1e2c49 f4bb1fe 1923cfd f4bb1fe 391ae4a 1923cfd f4bb1fe 391ae4a f4bb1fe 1923cfd f4bb1fe 391ae4a 1923cfd f4bb1fe 1923cfd f4bb1fe 1923cfd f4bb1fe 1923cfd f4bb1fe 1923cfd f4bb1fe 4540c16 f4bb1fe 391ae4a 1923cfd d85386b 45853d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 |
# ------------------ Import Libraries ------------------
import dash
from dash import dcc, html, Input, Output, State, no_update
import plotly.graph_objects as go
import pandas as pd
import numpy as np
import cv2
import base64
from scipy.ndimage import gaussian_filter1d
import requests
import json
import tempfile
import os
from urllib.parse import urljoin
import subprocess
# ------------------ Data Download and Processing ------------------
class RemoteDatasetLoader:
def __init__(self, repo_id: str, timeout: int = 30):
self.repo_id = repo_id
self.timeout = timeout
self.base_url = f"https://huggingface.co/datasets/{repo_id}/resolve/main/"
def _get_dataset_info(self) -> dict:
info_url = urljoin(self.base_url, "meta/info.json")
response = requests.get(info_url, timeout=self.timeout)
response.raise_for_status()
return response.json()
def _get_episode_info(self, episode_id: int) -> dict:
episodes_url = urljoin(self.base_url, "meta/episodes.jsonl")
response = requests.get(episodes_url, timeout=self.timeout)
response.raise_for_status()
episodes = [json.loads(line) for line in response.text.splitlines() if line.strip()]
for episode in episodes:
if episode.get("episode_index") == episode_id:
return episode
raise ValueError(f"Episode {episode_id} not found")
def _is_valid_mp4(self, file_path):
if not os.path.exists(file_path) or os.path.getsize(file_path) < 1024 * 100:
return False
# Use ffprobe to check if it is a valid mp4
try:
result = subprocess.run([
'ffprobe', '-v', 'error', '-select_streams', 'v:0',
'-show_entries', 'stream=codec_name', '-of', 'default=noprint_wrappers=1:nokey=1', file_path
], capture_output=True, text=True, timeout=10)
if result.returncode == 0 and '264' in result.stdout:
return True
except Exception as e:
print(f"ffprobe video check failed: {e}")
return False
def _download_video(self, video_url: str, save_path: str) -> str:
response = requests.get(video_url, timeout=self.timeout, stream=True)
response.raise_for_status()
# Check Content-Type
if 'video' not in response.headers.get('Content-Type', ''):
raise ValueError(f"URL {video_url} does not return video content, Content-Type: {response.headers.get('Content-Type')}")
os.makedirs(os.path.dirname(save_path), exist_ok=True)
with open(save_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return save_path
def load_episode_data(self, episode_id: int,
video_keys=None,
download_dir=None):
dataset_info = self._get_dataset_info()
self._get_episode_info(episode_id) # Check if episode exists
if download_dir is None:
download_dir = tempfile.mkdtemp(prefix="lerobot_videos_")
if video_keys is None:
video_keys = [key for key, feature in dataset_info["features"].items()
if feature["dtype"] == "video"]
video_keys = video_keys[:2]
video_paths = []
chunks_size = dataset_info.get("chunks_size", 1000)
# Create repo-specific subdirectory
repo_name = self.repo_id.replace('/', '_') # Replace / with _ to avoid path issues
repo_dir = os.path.join(download_dir, repo_name)
os.makedirs(repo_dir, exist_ok=True)
for i, video_key in enumerate(video_keys):
video_url = self.base_url + dataset_info["video_path"].format(
episode_chunk=episode_id // chunks_size,
video_key=video_key,
episode_index=episode_id
)
video_filename = f"episode_{episode_id}_{video_key}.mp4"
local_path = os.path.join(repo_dir, video_filename)
# Prefer loading local valid mp4
if self._is_valid_mp4(local_path):
print(f"Local valid video found: {local_path}")
video_paths.append(local_path)
continue
try:
downloaded_path = self._download_video(video_url, local_path)
video_paths.append(downloaded_path)
except Exception as e:
print(f"Failed to download video {video_key}: {e}")
video_paths.append(video_url)
data_url = self.base_url + dataset_info["data_path"].format(
episode_chunk=episode_id // chunks_size,
episode_index=episode_id
)
try:
df = pd.read_parquet(data_url)
except Exception as e:
print(f"Failed to load data: {e}")
df = pd.DataFrame()
return video_paths, df
def check_ffmpeg_available():
try:
result = subprocess.run(['ffmpeg', '-version'],
capture_output=True, text=True, timeout=5)
return result.returncode == 0
except (subprocess.TimeoutExpired, FileNotFoundError):
return False
def get_video_codec_info(video_path):
try:
result = subprocess.run([
'ffprobe', '-v', 'quiet', '-print_format', 'json',
'-show_streams', video_path
], capture_output=True, text=True, timeout=10)
if result.returncode == 0:
info = json.loads(result.stdout)
for stream in info.get('streams', []):
if stream.get('codec_type') == 'video':
return stream.get('codec_name', 'unknown')
except Exception as e:
print(f"Failed to get video codec info: {e}")
return 'unknown'
def reencode_video_to_h264(input_path, output_path=None, quality='medium'):
if output_path is None:
base_name = os.path.splitext(input_path)[0]
output_path = f"{base_name}_h264.mp4"
quality_params = {
'fast': ['-preset', 'ultrafast', '-crf', '28'],
'medium': ['-preset', 'medium', '-crf', '23'],
'high': ['-preset', 'slow', '-crf', '18']
}
params = quality_params.get(quality, quality_params['medium'])
try:
cmd = [
'ffmpeg', '-i', input_path,
'-c:v', 'libx264',
'-c:a', 'aac',
'-movflags', '+faststart',
'-y',
] + params + [output_path]
result = subprocess.run(cmd, capture_output=True, text=True, timeout=300)
if result.returncode == 0:
return output_path
else:
print(f"Re-encoding failed: {result.stderr}")
return input_path
except subprocess.TimeoutExpired:
print("Re-encoding timeout")
return input_path
except Exception as e:
print(f"Re-encoding exception: {e}")
return input_path
def process_video_for_compatibility(video_path):
if not os.path.exists(video_path):
print(f"Video file does not exist: {video_path}")
return video_path
if not check_ffmpeg_available():
print("ffmpeg not available, skipping re-encoding")
return video_path
codec = get_video_codec_info(video_path)
if codec in ['av01', 'av1', 'vp9', 'vp8'] or codec == 'unknown':
reencoded_path = reencode_video_to_h264(video_path, quality='fast')
if os.path.exists(reencoded_path) and os.path.getsize(reencoded_path) > 1024:
return reencoded_path
else:
print("Re-encoding failed, using original file")
return video_path
else:
return video_path
def load_remote_dataset(repo_id: str,
episode_id: int = 0,
video_keys=None,
download_dir=None):
loader = RemoteDatasetLoader(repo_id)
video_paths, df = loader.load_episode_data(episode_id, video_keys, download_dir)
processed_video_paths = []
for video_path in video_paths:
processed_path = process_video_for_compatibility(video_path)
processed_video_paths.append(processed_path)
return processed_video_paths, df
# ------------------ Dash Initialization ------------------
app = dash.Dash(__name__, suppress_callback_exceptions=True)
server = app.server
# ------------------ Page Layout ------------------
app.layout = html.Div([
# Header with gradient background
html.Div([
html.H1("Keyframe Identification",
style={
"textAlign": "center",
"marginBottom": "10px",
"color": "white",
"fontSize": "2.5rem",
"fontWeight": "300",
"textShadow": "2px 2px 4px rgba(0,0,0,0.3)"
}),
html.P("Interactive Joint Analysis with Video Synchronization",
style={
"textAlign": "center",
"color": "rgba(255,255,255,0.9)",
"fontSize": "1.1rem",
"marginBottom": "0"
})
], style={
"background": "linear-gradient(135deg, #667eea 0%, #764ba2 100%)",
"padding": "30px 20px",
"marginBottom": "30px",
"borderRadius": "0 0 15px 15px",
"boxShadow": "0 4px 20px rgba(0,0,0,0.1)"
}),
# Control Panel
html.Div([
html.Div([
html.Label("Repository ID:",
style={
"fontWeight": "600",
"color": "#333",
"marginRight": "10px",
"fontSize": "1rem"
}),
dcc.Input(
id="input-repo-id",
type="text",
value="zijian2022/sortingtest",
style={
"width": "350px",
"padding": "12px 15px",
"border": "2px solid #e1e5e9",
"borderRadius": "8px",
"fontSize": "14px",
"transition": "border-color 0.3s ease",
"outline": "none"
},
placeholder="Enter HuggingFace dataset repository ID"
),
], style={"marginBottom": "15px"}),
html.Div([
html.Label("Episode ID:",
style={
"fontWeight": "600",
"color": "#333",
"marginRight": "10px",
"fontSize": "1rem"
}),
dcc.Input(
id="input-episode-id",
type="number",
value=0,
min=0,
style={
"width": "120px",
"padding": "12px 15px",
"border": "2px solid #e1e5e9",
"borderRadius": "8px",
"fontSize": "14px",
"transition": "border-color 0.3s ease",
"outline": "none"
}
),
html.Button(
"Load Data",
id="btn-load",
n_clicks=0,
style={
"marginLeft": "20px",
"padding": "12px 25px",
"backgroundColor": "#667eea",
"color": "white",
"border": "none",
"borderRadius": "8px",
"fontSize": "14px",
"fontWeight": "600",
"cursor": "pointer",
"transition": "all 0.3s ease",
"boxShadow": "0 2px 10px rgba(102, 126, 234, 0.3)"
}
),
]),
], style={
"textAlign": "center",
"marginBottom": "40px",
"padding": "25px",
"backgroundColor": "white",
"borderRadius": "12px",
"boxShadow": "0 4px 20px rgba(0,0,0,0.08)",
"border": "1px solid #f0f0f0"
}),
# Loading and Data Store
dcc.Loading(
id="loading",
type="circle",
style={"margin": "20px auto"},
children=dcc.Store(id="store-data")
),
# Main Content Area
html.Div(
id="main-content",
style={
"backgroundColor": "#f8f9fa",
"minHeight": "400px",
"borderRadius": "12px",
"padding": "20px"
}
),
], style={
"fontFamily": "'Segoe UI', Tahoma, Geneva, Verdana, sans-serif",
"backgroundColor": "#f5f7fa",
"minHeight": "100vh",
"padding": "0"
})
# ------------------ Data Loading Callback ------------------
@app.callback(
Output("store-data", "data"),
Input("btn-load", "n_clicks"),
State("input-repo-id", "value"),
State("input-episode-id", "value"),
prevent_initial_call=True
)
def load_data_callback(n_clicks, repo_id, episode_id):
try:
video_paths, data_df = load_remote_dataset(
repo_id=repo_id,
episode_id=int(episode_id),
download_dir="./downloaded_videos"
)
if data_df is None or data_df.empty:
return {}
return {
"video_paths": video_paths,
"data_df": data_df.to_dict("records"),
"columns": ["shoulder_pan", "shoulder_pitch", "elbow", "wrist_pitch", "wrist_roll", "gripper"],
"timestamps": data_df["timestamp"].tolist()
}
except Exception as e:
print(f"Data loading error: {e}")
return {}
# ------------------ Main Content Rendering Callback ------------------
@app.callback(
Output("main-content", "children"),
Input("store-data", "data")
)
def update_main_content(data):
if not data or "data_df" not in data or len(data["data_df"]) == 0:
return html.Div([
html.Div("📊", style={"fontSize": "3rem", "marginBottom": "20px"}),
html.H3("No Data Available", style={"color": "#666", "marginBottom": "10px"}),
html.P("Please click the 'Load Data' button above to get data.",
style={"color": "#888", "fontSize": "1rem"})
], style={
"textAlign": "center",
"padding": "60px 20px",
"color": "#666"
})
columns = data["columns"]
rows = []
for i, joint in enumerate(columns):
rows.append(html.Div([
# Joint Graph - Left 50%
html.Div([
dcc.Graph(id=f"graph-{i}")
], style={
"flex": "0 0 50%",
"backgroundColor": "white",
"borderRadius": "8px",
"padding": "8px",
"boxShadow": "0 2px 10px rgba(0,0,0,0.05)",
"border": "1px solid #e9ecef",
"marginRight": "2%"
}),
# Video Area - Right 48%
html.Div([
html.Img(id=f"video1-{i}", style={
"width": "49%",
"height": "180px",
"objectFit": "contain",
"display": "inline-block",
"borderRadius": "6px",
"border": "2px solid #e9ecef"
}),
html.Img(id=f"video2-{i}", style={
"width": "49%",
"height": "180px",
"objectFit": "contain",
"display": "inline-block",
"borderRadius": "6px",
"border": "2px solid #e9ecef"
})
], style={
"flex": "0 0 48%"
})
], style={
"marginBottom": "25px",
"backgroundColor": "white",
"borderRadius": "12px",
"padding": "12px",
"boxShadow": "0 4px 15px rgba(0,0,0,0.08)",
"border": "1px solid #f0f0f0",
"display": "flex",
"alignItems": "flex-start",
"minHeight": "250px"
}))
return html.Div(rows)
# ------------------ Shadow and Highlight Utility Functions ------------------
def find_intervals(mask):
intervals = []
start = None
for i, val in enumerate(mask):
if val and start is None:
start = i
elif not val and start is not None:
intervals.append((start, i - 1))
start = None
if start is not None:
intervals.append((start, len(mask) - 1))
return intervals
def get_shadow_info(joint_name, action_df, delta_t, time_for_plot):
angles = action_df[joint_name].values
velocity = np.diff(angles) / delta_t
smoothed_velocity = gaussian_filter1d(velocity, sigma=1)
smoothed_angle = gaussian_filter1d(angles[1:], sigma=1)
vel_threshold = 0.5
highlight_width = 1
k = 2
shadows = []
low_speed_mask = np.abs(smoothed_velocity) < vel_threshold
low_speed_intervals = find_intervals(low_speed_mask)
for start, end in low_speed_intervals:
if end - start + 1 <= k:
shadows.append({
'type': 'low_speed',
'start_time': time_for_plot[start],
'end_time': time_for_plot[end],
'start_idx': start,
'end_idx': end
})
max_idx = np.argmax(smoothed_angle)
s_max = max(0, max_idx - highlight_width)
e_max = min(len(time_for_plot) - 1, max_idx + highlight_width)
shadows.append({
'type': 'max_value',
'start_time': time_for_plot[s_max],
'end_time': time_for_plot[e_max],
'start_idx': s_max,
'end_idx': e_max
})
min_idx = np.argmin(smoothed_angle)
s_min = max(0, min_idx - highlight_width)
e_min = min(len(time_for_plot) - 1, min_idx + highlight_width)
shadows.append({
'type': 'min_value',
'start_time': time_for_plot[s_min],
'end_time': time_for_plot[e_min],
'start_idx': s_min,
'end_idx': e_min
})
return shadows
def generate_joint_graph(joint_name, idx, action_df, delta_t, time_for_plot, all_shadows):
angles = action_df[joint_name].values
velocity = np.diff(angles) / delta_t
smoothed_velocity = gaussian_filter1d(velocity, sigma=1)
smoothed_angle = gaussian_filter1d(angles[1:], sigma=1)
shapes = []
current_shadows = all_shadows[joint_name]
for shadow in current_shadows:
shapes.append({
"type": "rect",
"xref": "x",
"yref": "paper",
"x0": shadow['start_time'],
"x1": shadow['end_time'],
"y0": 0,
"y1": 1,
"fillcolor": "#ef4444", # Fixed red
"opacity": 0.4,
"line": {"width": 0}
})
return {
"data": [
go.Scatter(
x=time_for_plot,
y=smoothed_angle,
name="Joint Angle",
line=dict(color='#f59e0b', width=2),
hovertemplate='<b>Time:</b> %{x:.2f}s<br><b>Angle:</b> %{y:.2f}°<extra></extra>'
)
],
"layout": go.Layout(
title={
'text': joint_name.replace('_', ' ').title(),
'font': {'size': 16, 'color': '#374151'}
},
xaxis={
"title": "Time (seconds)",
"titlefont": {"color": "#6b7280"},
"tickfont": {"color": "#6b7280"},
"gridcolor": "#f3f4f6",
"zerolinecolor": "#e5e7eb"
},
yaxis={
"title": "Angle (degrees)",
"titlefont": {"color": "#6b7280"},
"tickfont": {"color": "#6b7280"},
"gridcolor": "#f3f4f6",
"zerolinecolor": "#e5e7eb"
},
shapes=shapes,
hovermode="x unified",
height=220,
margin=dict(t=30, b=30, l=50, r=30),
showlegend=False,
plot_bgcolor='white',
paper_bgcolor='white',
font={'family': "'Segoe UI', Tahoma, Geneva, Verdana, sans-serif"},
hoverlabel=dict(
bgcolor="white",
font_size=12,
font_family="'Segoe UI', Tahoma, Geneva, Verdana, sans-serif"
)
)
}
# ------------------ Chart Update Callback ------------------
@app.callback(
[Output(f"graph-{i}", "figure") for i in range(6)],
[Input("store-data", "data")],
prevent_initial_call=True
)
def update_all_graphs(data):
if not data or "data_df" not in data or len(data["data_df"]) == 0:
return [no_update] * 6
columns = data["columns"]
df = pd.DataFrame.from_records(data["data_df"])
action_df = pd.DataFrame(df["action"].tolist(), columns=columns)
timestamps = df["timestamp"].values
delta_t = np.diff(timestamps)
time_for_plot = timestamps[1:]
all_shadows = {}
for joint in columns:
all_shadows[joint] = get_shadow_info(joint, action_df, delta_t, time_for_plot)
# Generate all charts, no highlight logic
return [
generate_joint_graph(joint, i, action_df, delta_t, time_for_plot, all_shadows)
for i, joint in enumerate(columns)
]
# ------------------ Video Frame Extraction Function ------------------
def get_video_frame(video_path, time_in_seconds):
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f"❌ Cannot open video: {video_path}")
return None
fps = cap.get(cv2.CAP_PROP_FPS)
if fps <= 0:
cap.release()
return None
frame_num = int(time_in_seconds * fps)
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_num)
success, frame = cap.read()
cap.release()
if success and frame is not None:
height, width = frame.shape[:2]
if width > 640:
new_width = 640
new_height = int(height * (new_width / width))
frame = cv2.resize(frame, (new_width, new_height))
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), 85]
_, buffer = cv2.imencode('.jpg', frame, encode_param)
encoded = base64.b64encode(buffer).decode('utf-8')
return f"data:image/jpeg;base64,{encoded}"
else:
return None
except Exception as e:
print(f"❌ Exception extracting video frame: {e}")
return None
# ------------------ Video Frame Callback ------------------
for i in range(6):
@app.callback(
Output(f"video1-{i}", "src"),
Output(f"video2-{i}", "src"),
Input("store-data", "data"),
Input(f"graph-{i}", "hoverData"),
prevent_initial_call=True
)
def update_video_frames(data, hover_data, idx=i):
if not data or "data_df" not in data or len(data["data_df"]) == 0:
return no_update, no_update
columns = data["columns"]
df = pd.DataFrame.from_records(data["data_df"])
timestamps = df["timestamp"].values
time_for_plot = timestamps[1:]
video_paths = data["video_paths"]
# Determine the time point to display
display_time = 0.0 # Default to start time
if hover_data and "points" in hover_data and len(hover_data["points"]) > 0:
# If there is hover data, use hover time
display_time = float(hover_data["points"][0]["x"])
elif len(time_for_plot) > 0:
# If no hover data, use the start time of the timeline
display_time = time_for_plot[0]
try:
frame1 = get_video_frame(video_paths[0], display_time)
frame2 = get_video_frame(video_paths[1], display_time)
if frame1 and frame2:
return frame1, frame2
else:
return no_update, no_update
except Exception as e:
print(f"update_video_frames callback error: {e}")
return no_update, no_update
# ------------------ Start Application ------------------
if __name__ == "__main__":
app.run(debug=True, host='0.0.0.0', port=7860) |