File size: 13,900 Bytes
391ae4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# ------------------ 导入库 ------------------
import dash
from dash import dcc, html, Input, Output, State, callback_context, no_update
import plotly.graph_objects as go
import pandas as pd
import numpy as np
import cv2
import base64
from scipy.ndimage import gaussian_filter1d

# ------------------ 加载数据 ------------------
df = pd.read_parquet("./data/clean_data/uni_boxing_object_vfm/data/chunk-000/episode_000000.parquet")
columns = ["shoulder_pan", "shoulder_pitch", "elbow", "wrist_pitch", "wrist_roll", "gripper"]
timestamps = df["timestamp"].values
delta_t = np.diff(timestamps)
time_for_plot = timestamps[1:]
action_df = pd.DataFrame(df["action"].tolist(), columns=columns)

# ------------------ 视频路径 ------------------
video_path_1 = "./data/clean_data/uni_boxing_object_vfm/videos/chunk-000/observation.images.laptop/episode_000000.mp4"
video_path_2 = "./data/clean_data/uni_boxing_object_vfm/videos/chunk-000/observation.images.phone/episode_000000.mp4"

# ------------------ Dash 初始化 ------------------
app = dash.Dash(__name__)
server = app.server

# ------------------ 全局变量存储阴影信息 ------------------
all_shadows = {}  # 存储所有关节的阴影信息

# ------------------ 视频帧提取函数 ------------------
def get_video_frame(video_path, time_in_seconds):
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        print(f"❌ 无法打开视频: {video_path}")
        return None
    fps = cap.get(cv2.CAP_PROP_FPS)
    frame_num = int(time_in_seconds * fps)
    cap.set(cv2.CAP_PROP_POS_FRAMES, frame_num)
    success, frame = cap.read()
    cap.release()
    if success:
        _, buffer = cv2.imencode('.jpg', frame)
        encoded = base64.b64encode(buffer).decode('utf-8')
        return f"data:image/jpeg;base64,{encoded}"
    else:
        return None

def find_intervals(mask):
    intervals = []
    start = None
    for i, val in enumerate(mask):
        if val and start is None:
            start = i
        elif not val and start is not None:
            intervals.append((start, i - 1))
            start = None
    if start is not None:
        intervals.append((start, len(mask) - 1))
    return intervals

def get_shadow_info(joint_name):
    """获取特定关节的所有红色阴影信息"""
    angles = action_df[joint_name].values
    velocity = np.diff(angles) / delta_t
    
    smoothed_velocity = gaussian_filter1d(velocity, sigma=1)
    smoothed_angle = gaussian_filter1d(angles[1:], sigma=1)
    
    # 参数
    vel_threshold = 0.5
    highlight_width = 3
    k = 2
    
    shadows = []
    
    # 低速区间阴影
    low_speed_mask = np.abs(smoothed_velocity) < vel_threshold
    low_speed_intervals = find_intervals(low_speed_mask)
    
    for start, end in low_speed_intervals:
        if end - start + 1 <= k:
            shadows.append({
                'type': 'low_speed',
                'start_time': time_for_plot[start],
                'end_time': time_for_plot[end],
                'start_idx': start,
                'end_idx': end
            })
    
    # 最大值阴影
    max_idx = np.argmax(smoothed_angle)
    s_max = max(0, max_idx - highlight_width)
    e_max = min(len(time_for_plot) - 1, max_idx + highlight_width)
    shadows.append({
        'type': 'max_value',
        'start_time': time_for_plot[s_max],
        'end_time': time_for_plot[e_max],
        'start_idx': s_max,
        'end_idx': e_max
    })
    
    # 最小值阴影
    min_idx = np.argmin(smoothed_angle)
    s_min = max(0, min_idx - highlight_width)
    e_min = min(len(time_for_plot) - 1, min_idx + highlight_width)
    shadows.append({
        'type': 'min_value',
        'start_time': time_for_plot[s_min],
        'end_time': time_for_plot[e_min],
        'start_idx': s_min,
        'end_idx': e_min
    })
    
    return shadows

def is_hover_in_shadow(hover_time, shadows):
    """检查hover时间是否在任何阴影内"""
    for shadow in shadows:
        if shadow['start_time'] <= hover_time <= shadow['end_time']:
            return True
    return False

def find_shadows_in_range(shadows, start_time, end_time):
    """找到指定时间范围内的所有阴影"""
    shadows_in_range = []
    for shadow in shadows:
        # 检查阴影是否与指定范围有重叠
        if not (shadow['end_time'] < start_time or shadow['start_time'] > end_time):
            shadows_in_range.append(shadow)
    return shadows_in_range

# 预计算所有关节的阴影信息
for joint in columns:
    all_shadows[joint] = get_shadow_info(joint)

# ------------------ 图表生成函数 ------------------
def generate_joint_graph(joint_name, idx, highlighted_shadows=None):
    angles = action_df[joint_name].values
    velocity = np.diff(angles) / delta_t

    smoothed_velocity = gaussian_filter1d(velocity, sigma=1)
    smoothed_angle = gaussian_filter1d(angles[1:], sigma=1)

    # 参数
    vel_threshold = 0.5
    highlight_width = 3
    k = 2

    # 找低速区间
    low_speed_mask = np.abs(smoothed_velocity) < vel_threshold
    low_speed_intervals = find_intervals(low_speed_mask)

    # 找最大最小点
    max_idx = np.argmax(smoothed_angle)
    min_idx = np.argmin(smoothed_angle)

    shapes = []
    
    # 获取当前关节的阴影信息
    current_shadows = all_shadows[joint_name]
    
    # 正常的红色阴影
    for shadow in current_shadows:
        is_highlighted = False
        if highlighted_shadows:
            for h_shadow in highlighted_shadows:
                if (shadow['start_time'] == h_shadow['start_time'] and 
                    shadow['end_time'] == h_shadow['end_time']):
                    is_highlighted = True
                    break
        
        color = "blue" if is_highlighted else "red"
        opacity = 0.6 if is_highlighted else 0.3
        
        shapes.append({
            "type": "rect",
            "xref": "x",
            "yref": "paper",
            "x0": shadow['start_time'],
            "x1": shadow['end_time'],
            "y0": 0,
            "y1": 1,
            "fillcolor": color,
            "opacity": opacity,
            "line": {"width": 0}
        })

    return dcc.Graph(
        id=f"graph-{idx}",
        figure={
            "data": [
                go.Scatter(
                    x=time_for_plot,
                    y=smoothed_angle,
                    name="Angle",
                    line=dict(color='orange')
                )
            ],
            "layout": go.Layout(
                title=joint_name,
                xaxis={"title": "Time (s)"},
                yaxis={"title": "Angle (deg)"},
                shapes=shapes,
                hovermode="x unified",
                height=250,
                margin=dict(t=30, b=30, l=50, r=50),
                showlegend=False,
            )
        },
        style={"height": "250px"}
    )

# ------------------ 布局 ------------------
rows = []

# 关节图 + 双视频帧
for i, joint in enumerate(columns):
    rows.append(html.Div([
        html.Div(generate_joint_graph(joint, i), style={"width": "60%", "display": "inline-block", "verticalAlign": "top"}),
        html.Div([
            html.Img(id=f"video1-{i}", style={"width": "49%", "height": "180px", "objectFit": "contain", "display": "inline-block"}),
            html.Img(id=f"video2-{i}", style={"width": "49%", "height": "180px", "objectFit": "contain", "display": "inline-block"})
        ], style={"width": "38%", "display": "inline-block", "paddingLeft": "2%"})
    ], style={"marginBottom": "15px"}))

# 添加定时器和存储组件
rows.append(dcc.Interval(id="video-playback-interval", interval=300, n_intervals=0))
rows.append(dcc.Store(id="hover-state-store", data={"active": False, "last_update": 0}))

# 设置 layout
app.layout = html.Div(rows)

# ------------------ 回调:监听 hoverData 并更新阴影高亮 ------------------
@app.callback(
    [Output(f"graph-{i}", "figure") for i in range(6)],
    [Input(f"graph-{i}", "hoverData") for i in range(6)],
    [State(f"graph-{i}", "figure") for i in range(6)],
)
def update_shadow_highlighting(*args):
    hover_datas = args[:6]
    current_figures = args[6:]
    
    ctx = dash.callback_context
    
    # 检查是否有hover触发
    if not ctx.triggered:
        return [no_update] * 6
    
    trigger_id = ctx.triggered[0]['prop_id']
    
    # 如果不是hover触发,不更新
    if 'hoverData' not in trigger_id:
        return [no_update] * 6
    
    # 提取触发的图表索引
    graph_idx = int(trigger_id.split('-')[1].split('.')[0])
    hover_data = hover_datas[graph_idx]
    
    # 如果没有hover数据,恢复正常状态
    if not hover_data or "points" not in hover_data or len(hover_data["points"]) == 0:
        updated_figures = []
        for i, joint in enumerate(columns):
            updated_figures.append(generate_joint_graph(joint, i).figure)
        return updated_figures
    
    try:
        hover_time = float(hover_data["points"][0]["x"])
        triggered_joint = columns[graph_idx]
        
        # 检查hover是否在红色阴影内
        if not is_hover_in_shadow(hover_time, all_shadows[triggered_joint]):
            # 如果不在阴影内,恢复正常状态
            updated_figures = []
            for i, joint in enumerate(columns):
                updated_figures.append(generate_joint_graph(joint, i).figure)
            return updated_figures
        
        # 找到hover时间对应的时间戳索引
        hover_idx = np.searchsorted(time_for_plot, hover_time)
        
        # 计算前后10个时间戳的范围
        start_idx = max(0, hover_idx - 20)
        end_idx = min(len(time_for_plot) - 1, hover_idx + 20)
        start_time = time_for_plot[start_idx]
        end_time = time_for_plot[end_idx]
        
        # 为每个关节生成更新的图表
        updated_figures = []
        for i, joint in enumerate(columns):
            # 找到该关节在指定时间范围内的阴影
            shadows_in_range = find_shadows_in_range(all_shadows[joint], start_time, end_time)
            
            # 生成带有高亮的图表
            updated_figure = generate_joint_graph(joint, i, shadows_in_range)
            updated_figures.append(updated_figure.figure)
        
        return updated_figures
        
    except Exception as e:
        print(f"处理阴影高亮异常: {e}")
        return [no_update] * 6

# ------------------ 回调:监听 hoverData 更新视频帧 ------------------
video_duration = timestamps[-1] - timestamps[0]

@app.callback(
    [Output(f"video1-{i}", "src") for i in range(6)] + 
    [Output(f"video2-{i}", "src") for i in range(6)] + 
    [Output("hover-state-store", "data")],
    [Input(f"graph-{i}", "hoverData") for i in range(6)] + 
    [Input("video-playback-interval", "n_intervals")],
    [State("hover-state-store", "data")]
)
def update_video_frames(*args):
    hover_datas = args[:-2]
    interval_count = args[-2]
    hover_state = args[-1]
    
    # 获取触发回调的上下文
    ctx = dash.callback_context
    
    try:
        # 检查是否有hover触发了回调
        if ctx.triggered:
            trigger_id = ctx.triggered[0]['prop_id']
            
            # 如果是图表hover触发的
            if 'hoverData' in trigger_id:
                # 从trigger_id中提取图表索引
                graph_idx = int(trigger_id.split('-')[1].split('.')[0])
                hover_data = hover_datas[graph_idx]
                
                if hover_data and "points" in hover_data and len(hover_data["points"]) > 0:
                    try:
                        hover_time = float(hover_data["points"][0]["x"])
                        frame1 = get_video_frame(video_path_1, hover_time)
                        frame2 = get_video_frame(video_path_2, hover_time)
                        
                        # 更新hover状态为活跃
                        new_hover_state = {"active": True, "last_update": interval_count}
                        
                        # 如果成功获取帧,返回所有视频的帧
                        if frame1 and frame2:
                            return [frame1]*6 + [frame2]*6 + [new_hover_state]
                    except Exception as e:
                        print(f"处理hover数据异常: {e}")
            
            # 如果是interval触发的
            if 'video-playback-interval' in trigger_id:
                # 检查hover状态是否过期(超过3个interval周期没有更新)
                hover_expired = (interval_count - hover_state.get("last_update", 0)) > 3
                
                if not hover_state.get("active", False) or hover_expired:
                    # 没有hover或hover已过期时才自动播放
                    t = timestamps[0] + (interval_count * 0.3) % video_duration
                    frame1 = get_video_frame(video_path_1, t)
                    frame2 = get_video_frame(video_path_2, t)
                    
                    # 更新hover状态为非活跃
                    new_hover_state = {"active": False, "last_update": interval_count}
                    
                    if frame1 and frame2:
                        return [frame1]*6 + [frame2]*6 + [new_hover_state]
                    else:
                        return [no_update]*12 + [new_hover_state]
                else:
                    # hover仍然活跃时,暂停自动播放
                    return [no_update]*12 + [hover_state]

        return [no_update]*12 + [hover_state]

    except Exception as e:
        print(f"update_video_frames回调函数异常: {e}")
        return [no_update]*12 + [hover_state]

# ------------------ 启动应用 ------------------
if __name__ == '__main__':
    app.run_server(host="0.0.0.0", port=7860, debug=False)