Spaces:
Running
Running
File size: 13,900 Bytes
391ae4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
# ------------------ 导入库 ------------------
import dash
from dash import dcc, html, Input, Output, State, callback_context, no_update
import plotly.graph_objects as go
import pandas as pd
import numpy as np
import cv2
import base64
from scipy.ndimage import gaussian_filter1d
# ------------------ 加载数据 ------------------
df = pd.read_parquet("./data/clean_data/uni_boxing_object_vfm/data/chunk-000/episode_000000.parquet")
columns = ["shoulder_pan", "shoulder_pitch", "elbow", "wrist_pitch", "wrist_roll", "gripper"]
timestamps = df["timestamp"].values
delta_t = np.diff(timestamps)
time_for_plot = timestamps[1:]
action_df = pd.DataFrame(df["action"].tolist(), columns=columns)
# ------------------ 视频路径 ------------------
video_path_1 = "./data/clean_data/uni_boxing_object_vfm/videos/chunk-000/observation.images.laptop/episode_000000.mp4"
video_path_2 = "./data/clean_data/uni_boxing_object_vfm/videos/chunk-000/observation.images.phone/episode_000000.mp4"
# ------------------ Dash 初始化 ------------------
app = dash.Dash(__name__)
server = app.server
# ------------------ 全局变量存储阴影信息 ------------------
all_shadows = {} # 存储所有关节的阴影信息
# ------------------ 视频帧提取函数 ------------------
def get_video_frame(video_path, time_in_seconds):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f"❌ 无法打开视频: {video_path}")
return None
fps = cap.get(cv2.CAP_PROP_FPS)
frame_num = int(time_in_seconds * fps)
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_num)
success, frame = cap.read()
cap.release()
if success:
_, buffer = cv2.imencode('.jpg', frame)
encoded = base64.b64encode(buffer).decode('utf-8')
return f"data:image/jpeg;base64,{encoded}"
else:
return None
def find_intervals(mask):
intervals = []
start = None
for i, val in enumerate(mask):
if val and start is None:
start = i
elif not val and start is not None:
intervals.append((start, i - 1))
start = None
if start is not None:
intervals.append((start, len(mask) - 1))
return intervals
def get_shadow_info(joint_name):
"""获取特定关节的所有红色阴影信息"""
angles = action_df[joint_name].values
velocity = np.diff(angles) / delta_t
smoothed_velocity = gaussian_filter1d(velocity, sigma=1)
smoothed_angle = gaussian_filter1d(angles[1:], sigma=1)
# 参数
vel_threshold = 0.5
highlight_width = 3
k = 2
shadows = []
# 低速区间阴影
low_speed_mask = np.abs(smoothed_velocity) < vel_threshold
low_speed_intervals = find_intervals(low_speed_mask)
for start, end in low_speed_intervals:
if end - start + 1 <= k:
shadows.append({
'type': 'low_speed',
'start_time': time_for_plot[start],
'end_time': time_for_plot[end],
'start_idx': start,
'end_idx': end
})
# 最大值阴影
max_idx = np.argmax(smoothed_angle)
s_max = max(0, max_idx - highlight_width)
e_max = min(len(time_for_plot) - 1, max_idx + highlight_width)
shadows.append({
'type': 'max_value',
'start_time': time_for_plot[s_max],
'end_time': time_for_plot[e_max],
'start_idx': s_max,
'end_idx': e_max
})
# 最小值阴影
min_idx = np.argmin(smoothed_angle)
s_min = max(0, min_idx - highlight_width)
e_min = min(len(time_for_plot) - 1, min_idx + highlight_width)
shadows.append({
'type': 'min_value',
'start_time': time_for_plot[s_min],
'end_time': time_for_plot[e_min],
'start_idx': s_min,
'end_idx': e_min
})
return shadows
def is_hover_in_shadow(hover_time, shadows):
"""检查hover时间是否在任何阴影内"""
for shadow in shadows:
if shadow['start_time'] <= hover_time <= shadow['end_time']:
return True
return False
def find_shadows_in_range(shadows, start_time, end_time):
"""找到指定时间范围内的所有阴影"""
shadows_in_range = []
for shadow in shadows:
# 检查阴影是否与指定范围有重叠
if not (shadow['end_time'] < start_time or shadow['start_time'] > end_time):
shadows_in_range.append(shadow)
return shadows_in_range
# 预计算所有关节的阴影信息
for joint in columns:
all_shadows[joint] = get_shadow_info(joint)
# ------------------ 图表生成函数 ------------------
def generate_joint_graph(joint_name, idx, highlighted_shadows=None):
angles = action_df[joint_name].values
velocity = np.diff(angles) / delta_t
smoothed_velocity = gaussian_filter1d(velocity, sigma=1)
smoothed_angle = gaussian_filter1d(angles[1:], sigma=1)
# 参数
vel_threshold = 0.5
highlight_width = 3
k = 2
# 找低速区间
low_speed_mask = np.abs(smoothed_velocity) < vel_threshold
low_speed_intervals = find_intervals(low_speed_mask)
# 找最大最小点
max_idx = np.argmax(smoothed_angle)
min_idx = np.argmin(smoothed_angle)
shapes = []
# 获取当前关节的阴影信息
current_shadows = all_shadows[joint_name]
# 正常的红色阴影
for shadow in current_shadows:
is_highlighted = False
if highlighted_shadows:
for h_shadow in highlighted_shadows:
if (shadow['start_time'] == h_shadow['start_time'] and
shadow['end_time'] == h_shadow['end_time']):
is_highlighted = True
break
color = "blue" if is_highlighted else "red"
opacity = 0.6 if is_highlighted else 0.3
shapes.append({
"type": "rect",
"xref": "x",
"yref": "paper",
"x0": shadow['start_time'],
"x1": shadow['end_time'],
"y0": 0,
"y1": 1,
"fillcolor": color,
"opacity": opacity,
"line": {"width": 0}
})
return dcc.Graph(
id=f"graph-{idx}",
figure={
"data": [
go.Scatter(
x=time_for_plot,
y=smoothed_angle,
name="Angle",
line=dict(color='orange')
)
],
"layout": go.Layout(
title=joint_name,
xaxis={"title": "Time (s)"},
yaxis={"title": "Angle (deg)"},
shapes=shapes,
hovermode="x unified",
height=250,
margin=dict(t=30, b=30, l=50, r=50),
showlegend=False,
)
},
style={"height": "250px"}
)
# ------------------ 布局 ------------------
rows = []
# 关节图 + 双视频帧
for i, joint in enumerate(columns):
rows.append(html.Div([
html.Div(generate_joint_graph(joint, i), style={"width": "60%", "display": "inline-block", "verticalAlign": "top"}),
html.Div([
html.Img(id=f"video1-{i}", style={"width": "49%", "height": "180px", "objectFit": "contain", "display": "inline-block"}),
html.Img(id=f"video2-{i}", style={"width": "49%", "height": "180px", "objectFit": "contain", "display": "inline-block"})
], style={"width": "38%", "display": "inline-block", "paddingLeft": "2%"})
], style={"marginBottom": "15px"}))
# 添加定时器和存储组件
rows.append(dcc.Interval(id="video-playback-interval", interval=300, n_intervals=0))
rows.append(dcc.Store(id="hover-state-store", data={"active": False, "last_update": 0}))
# 设置 layout
app.layout = html.Div(rows)
# ------------------ 回调:监听 hoverData 并更新阴影高亮 ------------------
@app.callback(
[Output(f"graph-{i}", "figure") for i in range(6)],
[Input(f"graph-{i}", "hoverData") for i in range(6)],
[State(f"graph-{i}", "figure") for i in range(6)],
)
def update_shadow_highlighting(*args):
hover_datas = args[:6]
current_figures = args[6:]
ctx = dash.callback_context
# 检查是否有hover触发
if not ctx.triggered:
return [no_update] * 6
trigger_id = ctx.triggered[0]['prop_id']
# 如果不是hover触发,不更新
if 'hoverData' not in trigger_id:
return [no_update] * 6
# 提取触发的图表索引
graph_idx = int(trigger_id.split('-')[1].split('.')[0])
hover_data = hover_datas[graph_idx]
# 如果没有hover数据,恢复正常状态
if not hover_data or "points" not in hover_data or len(hover_data["points"]) == 0:
updated_figures = []
for i, joint in enumerate(columns):
updated_figures.append(generate_joint_graph(joint, i).figure)
return updated_figures
try:
hover_time = float(hover_data["points"][0]["x"])
triggered_joint = columns[graph_idx]
# 检查hover是否在红色阴影内
if not is_hover_in_shadow(hover_time, all_shadows[triggered_joint]):
# 如果不在阴影内,恢复正常状态
updated_figures = []
for i, joint in enumerate(columns):
updated_figures.append(generate_joint_graph(joint, i).figure)
return updated_figures
# 找到hover时间对应的时间戳索引
hover_idx = np.searchsorted(time_for_plot, hover_time)
# 计算前后10个时间戳的范围
start_idx = max(0, hover_idx - 20)
end_idx = min(len(time_for_plot) - 1, hover_idx + 20)
start_time = time_for_plot[start_idx]
end_time = time_for_plot[end_idx]
# 为每个关节生成更新的图表
updated_figures = []
for i, joint in enumerate(columns):
# 找到该关节在指定时间范围内的阴影
shadows_in_range = find_shadows_in_range(all_shadows[joint], start_time, end_time)
# 生成带有高亮的图表
updated_figure = generate_joint_graph(joint, i, shadows_in_range)
updated_figures.append(updated_figure.figure)
return updated_figures
except Exception as e:
print(f"处理阴影高亮异常: {e}")
return [no_update] * 6
# ------------------ 回调:监听 hoverData 更新视频帧 ------------------
video_duration = timestamps[-1] - timestamps[0]
@app.callback(
[Output(f"video1-{i}", "src") for i in range(6)] +
[Output(f"video2-{i}", "src") for i in range(6)] +
[Output("hover-state-store", "data")],
[Input(f"graph-{i}", "hoverData") for i in range(6)] +
[Input("video-playback-interval", "n_intervals")],
[State("hover-state-store", "data")]
)
def update_video_frames(*args):
hover_datas = args[:-2]
interval_count = args[-2]
hover_state = args[-1]
# 获取触发回调的上下文
ctx = dash.callback_context
try:
# 检查是否有hover触发了回调
if ctx.triggered:
trigger_id = ctx.triggered[0]['prop_id']
# 如果是图表hover触发的
if 'hoverData' in trigger_id:
# 从trigger_id中提取图表索引
graph_idx = int(trigger_id.split('-')[1].split('.')[0])
hover_data = hover_datas[graph_idx]
if hover_data and "points" in hover_data and len(hover_data["points"]) > 0:
try:
hover_time = float(hover_data["points"][0]["x"])
frame1 = get_video_frame(video_path_1, hover_time)
frame2 = get_video_frame(video_path_2, hover_time)
# 更新hover状态为活跃
new_hover_state = {"active": True, "last_update": interval_count}
# 如果成功获取帧,返回所有视频的帧
if frame1 and frame2:
return [frame1]*6 + [frame2]*6 + [new_hover_state]
except Exception as e:
print(f"处理hover数据异常: {e}")
# 如果是interval触发的
if 'video-playback-interval' in trigger_id:
# 检查hover状态是否过期(超过3个interval周期没有更新)
hover_expired = (interval_count - hover_state.get("last_update", 0)) > 3
if not hover_state.get("active", False) or hover_expired:
# 没有hover或hover已过期时才自动播放
t = timestamps[0] + (interval_count * 0.3) % video_duration
frame1 = get_video_frame(video_path_1, t)
frame2 = get_video_frame(video_path_2, t)
# 更新hover状态为非活跃
new_hover_state = {"active": False, "last_update": interval_count}
if frame1 and frame2:
return [frame1]*6 + [frame2]*6 + [new_hover_state]
else:
return [no_update]*12 + [new_hover_state]
else:
# hover仍然活跃时,暂停自动播放
return [no_update]*12 + [hover_state]
return [no_update]*12 + [hover_state]
except Exception as e:
print(f"update_video_frames回调函数异常: {e}")
return [no_update]*12 + [hover_state]
# ------------------ 启动应用 ------------------
if __name__ == '__main__':
app.run_server(host="0.0.0.0", port=7860, debug=False) |