File size: 25,762 Bytes
391ae4a
 
f4bb1fe
391ae4a
 
 
 
 
 
d85386b
 
 
 
 
888d740
391ae4a
f4bb1fe
d85386b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4bb1fe
 
 
 
 
 
 
 
 
 
 
 
4540c16
f4bb1fe
 
d85386b
 
 
f4bb1fe
 
 
d85386b
 
 
 
 
 
 
f4bb1fe
 
d85386b
f4bb1fe
d85386b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4bb1fe
 
4540c16
f4bb1fe
 
d85386b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
888d740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4bb1fe
 
 
 
888d740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d85386b
 
f4bb1fe
 
d85386b
888d740
 
 
 
 
 
d85386b
391ae4a
f4bb1fe
391ae4a
 
f4bb1fe
 
4540c16
f4bb1fe
4540c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4bb1fe
 
4540c16
 
f4bb1fe
 
4540c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
391ae4a
f4bb1fe
 
 
 
 
 
 
 
 
888d740
f4bb1fe
 
 
 
 
 
 
 
 
 
 
 
 
888d740
4540c16
f4bb1fe
391ae4a
f4bb1fe
 
 
 
 
 
 
4540c16
 
 
 
 
 
 
 
 
 
 
f4bb1fe
 
 
 
4540c16
 
 
 
 
 
 
 
 
 
 
 
 
f4bb1fe
4540c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4bb1fe
 
 
391ae4a
 
 
 
 
 
 
 
 
 
 
 
 
f4bb1fe
391ae4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4bb1fe
391ae4a
 
 
 
 
 
 
 
 
 
 
 
 
 
4540c16
 
391ae4a
 
 
 
 
 
 
 
 
 
 
 
f4bb1fe
 
 
 
 
4540c16
 
 
391ae4a
f4bb1fe
 
4540c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4bb1fe
 
4540c16
 
f4bb1fe
4540c16
 
 
f4bb1fe
 
391ae4a
f4bb1fe
391ae4a
 
f4bb1fe
 
391ae4a
f4bb1fe
 
391ae4a
f4bb1fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
391ae4a
f4bb1fe
 
391ae4a
f4bb1fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
391ae4a
f4bb1fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4540c16
f4bb1fe
391ae4a
 
d85386b
45853d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
# ------------------ 导入库 ------------------
import dash
from dash import dcc, html, Input, Output, State, no_update
import plotly.graph_objects as go
import pandas as pd
import numpy as np
import cv2
import base64
from scipy.ndimage import gaussian_filter1d
import requests
import json
import tempfile
import os
from urllib.parse import urljoin
import subprocess

# ------------------ 数据下载与处理 ------------------
class RemoteDatasetLoader:
    def __init__(self, repo_id: str, timeout: int = 30):
        self.repo_id = repo_id
        self.timeout = timeout
        self.base_url = f"https://huggingface.co/datasets/{repo_id}/resolve/main/"

    def _get_dataset_info(self) -> dict:
        info_url = urljoin(self.base_url, "meta/info.json")
        response = requests.get(info_url, timeout=self.timeout)
        response.raise_for_status()
        return response.json()

    def _get_episode_info(self, episode_id: int) -> dict:
        episodes_url = urljoin(self.base_url, "meta/episodes.jsonl")
        response = requests.get(episodes_url, timeout=self.timeout)
        response.raise_for_status()
        episodes = [json.loads(line) for line in response.text.splitlines() if line.strip()]
        for episode in episodes:
            if episode.get("episode_index") == episode_id:
                return episode
        raise ValueError(f"Episode {episode_id} not found")

    def _is_valid_mp4(self, file_path):
        if not os.path.exists(file_path) or os.path.getsize(file_path) < 1024 * 100:
            return False
        # 用ffprobe检查是否为有效mp4
        try:
            result = subprocess.run([
                'ffprobe', '-v', 'error', '-select_streams', 'v:0',
                '-show_entries', 'stream=codec_name', '-of', 'default=noprint_wrappers=1:nokey=1', file_path
            ], capture_output=True, text=True, timeout=10)
            if result.returncode == 0 and '264' in result.stdout:
                return True
        except Exception as e:
            print(f"ffprobe video check failed: {e}")
        return False

    def _download_video(self, video_url: str, save_path: str) -> str:
        response = requests.get(video_url, timeout=self.timeout, stream=True)
        response.raise_for_status()
        # 检查Content-Type
        if 'video' not in response.headers.get('Content-Type', ''):
            raise ValueError(f"URL {video_url} 返回的不是视频内容,Content-Type: {response.headers.get('Content-Type')}")
        os.makedirs(os.path.dirname(save_path), exist_ok=True)
        with open(save_path, 'wb') as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
        return save_path

    def load_episode_data(self, episode_id: int,
                          video_keys=None,
                          download_dir=None):
        dataset_info = self._get_dataset_info()
        self._get_episode_info(episode_id)  # 检查episode是否存在

        if download_dir is None:
            download_dir = tempfile.mkdtemp(prefix="lerobot_videos_")

        if video_keys is None:
            video_keys = [key for key, feature in dataset_info["features"].items()
                          if feature["dtype"] == "video"]

        video_keys = video_keys[:2]
        video_paths = []
        chunks_size = dataset_info.get("chunks_size", 1000)

        for i, video_key in enumerate(video_keys):
            video_url = self.base_url + dataset_info["video_path"].format(
                episode_chunk=episode_id // chunks_size,
                video_key=video_key,
                episode_index=episode_id
            )
            video_filename = f"episode_{episode_id}_{video_key}.mp4"
            local_path = os.path.join(download_dir, video_filename)
            # 优先加载本地有效mp4
            if self._is_valid_mp4(local_path):
                print(f"Local valid video found: {local_path}")
                video_paths.append(local_path)
                continue
            try:
                downloaded_path = self._download_video(video_url, local_path)
                video_paths.append(downloaded_path)
            except Exception as e:
                print(f"Failed to download video {video_key}: {e}")
                video_paths.append(video_url)

        data_url = self.base_url + dataset_info["data_path"].format(
            episode_chunk=episode_id // chunks_size,
            episode_index=episode_id
        )
        try:
            df = pd.read_parquet(data_url)
        except Exception as e:
            print(f"Failed to load data: {e}")
            df = pd.DataFrame()

        return video_paths, df

def check_ffmpeg_available():
    try:
        result = subprocess.run(['ffmpeg', '-version'], 
                              capture_output=True, text=True, timeout=5)
        return result.returncode == 0
    except (subprocess.TimeoutExpired, FileNotFoundError):
        return False

def get_video_codec_info(video_path):
    try:
        result = subprocess.run([
            'ffprobe', '-v', 'quiet', '-print_format', 'json', 
            '-show_streams', video_path
        ], capture_output=True, text=True, timeout=10)
        if result.returncode == 0:
            info = json.loads(result.stdout)
            for stream in info.get('streams', []):
                if stream.get('codec_type') == 'video':
                    return stream.get('codec_name', 'unknown')
    except Exception as e:
        print(f"获取视频编码信息失败: {e}")
    return 'unknown'

def reencode_video_to_h264(input_path, output_path=None, quality='medium'):
    if output_path is None:
        base_name = os.path.splitext(input_path)[0]
        output_path = f"{base_name}_h264.mp4"
    quality_params = {
        'fast': ['-preset', 'ultrafast', '-crf', '28'],
        'medium': ['-preset', 'medium', '-crf', '23'],
        'high': ['-preset', 'slow', '-crf', '18']
    }
    params = quality_params.get(quality, quality_params['medium'])
    try:
        cmd = [
            'ffmpeg', '-i', input_path,
            '-c:v', 'libx264',
            '-c:a', 'aac',
            '-movflags', '+faststart',
            '-y',
        ] + params + [output_path]
        result = subprocess.run(cmd, capture_output=True, text=True, timeout=300)
        if result.returncode == 0:
            return output_path
        else:
            print(f"重编码失败: {result.stderr}")
            return input_path
    except subprocess.TimeoutExpired:
        print("重编码超时")
        return input_path
    except Exception as e:
        print(f"重编码异常: {e}")
        return input_path

def process_video_for_compatibility(video_path):
    if not os.path.exists(video_path):
        print(f"视频文件不存在: {video_path}")
        return video_path
    if not check_ffmpeg_available():
        print("ffmpeg不可用,跳过重编码")
        return video_path
    codec = get_video_codec_info(video_path)
    if codec in ['av01', 'av1', 'vp9', 'vp8'] or codec == 'unknown':
        reencoded_path = reencode_video_to_h264(video_path, quality='fast')
        if os.path.exists(reencoded_path) and os.path.getsize(reencoded_path) > 1024:
            return reencoded_path
        else:
            print("重编码失败,使用原始文件")
            return video_path
    else:
        return video_path

def load_remote_dataset(repo_id: str,
                        episode_id: int = 0,
                        video_keys=None,
                        download_dir=None):
    loader = RemoteDatasetLoader(repo_id)
    video_paths, df = loader.load_episode_data(episode_id, video_keys, download_dir)
    processed_video_paths = []
    for video_path in video_paths:
        processed_path = process_video_for_compatibility(video_path)
        processed_video_paths.append(processed_path)
    return processed_video_paths, df

# ------------------ Dash 初始化 ------------------
app = dash.Dash(__name__, suppress_callback_exceptions=True)
server = app.server

# ------------------ 页面布局 ------------------
app.layout = html.Div([
    # Header with gradient background
    html.Div([
        html.H1("Robot Data Visualization", 
                style={
                    "textAlign": "center", 
                    "marginBottom": "10px",
                    "color": "white",
                    "fontSize": "2.5rem",
                    "fontWeight": "300",
                    "textShadow": "2px 2px 4px rgba(0,0,0,0.3)"
                }),
        html.P("Interactive Joint Analysis with Video Synchronization", 
               style={
                   "textAlign": "center", 
                   "color": "rgba(255,255,255,0.9)",
                   "fontSize": "1.1rem",
                   "marginBottom": "0"
               })
    ], style={
        "background": "linear-gradient(135deg, #667eea 0%, #764ba2 100%)",
        "padding": "30px 20px",
        "marginBottom": "30px",
        "borderRadius": "0 0 15px 15px",
        "boxShadow": "0 4px 20px rgba(0,0,0,0.1)"
    }),
    
    # Control Panel
    html.Div([
        html.Div([
            html.Label("Repository ID:", 
                      style={
                          "fontWeight": "600",
                          "color": "#333",
                          "marginRight": "10px",
                          "fontSize": "1rem"
                      }),
            dcc.Input(
                id="input-repo-id", 
                type="text", 
                value="zijian2022/sortingtest", 
                style={
                    "width": "350px",
                    "padding": "12px 15px",
                    "border": "2px solid #e1e5e9",
                    "borderRadius": "8px",
                    "fontSize": "14px",
                    "transition": "border-color 0.3s ease",
                    "outline": "none"
                },
                placeholder="Enter HuggingFace dataset repository ID"
            ),
        ], style={"marginBottom": "15px"}),
        
        html.Div([
            html.Label("Episode ID:", 
                      style={
                          "fontWeight": "600",
                          "color": "#333",
                          "marginRight": "10px",
                          "fontSize": "1rem"
                      }),
            dcc.Input(
                id="input-episode-id", 
                type="number", 
                value=0, 
                min=0, 
                style={
                    "width": "120px",
                    "padding": "12px 15px",
                    "border": "2px solid #e1e5e9",
                    "borderRadius": "8px",
                    "fontSize": "14px",
                    "transition": "border-color 0.3s ease",
                    "outline": "none"
                }
            ),
            html.Button(
                "Load Data", 
                id="btn-load", 
                n_clicks=0, 
                style={
                    "marginLeft": "20px",
                    "padding": "12px 25px",
                    "backgroundColor": "#667eea",
                    "color": "white",
                    "border": "none",
                    "borderRadius": "8px",
                    "fontSize": "14px",
                    "fontWeight": "600",
                    "cursor": "pointer",
                    "transition": "all 0.3s ease",
                    "boxShadow": "0 2px 10px rgba(102, 126, 234, 0.3)"
                }
            ),
        ]),
    ], style={
        "textAlign": "center",
        "marginBottom": "40px",
        "padding": "25px",
        "backgroundColor": "white",
        "borderRadius": "12px",
        "boxShadow": "0 4px 20px rgba(0,0,0,0.08)",
        "border": "1px solid #f0f0f0"
    }),
    
    # Loading and Data Store
    dcc.Loading(
        id="loading",
        type="circle",
        style={"margin": "20px auto"},
        children=dcc.Store(id="store-data")
    ),
    
    # Main Content Area
    html.Div(
        id="main-content",
        style={
            "backgroundColor": "#f8f9fa",
            "minHeight": "400px",
            "borderRadius": "12px",
            "padding": "20px"
        }
    )
], style={
    "fontFamily": "'Segoe UI', Tahoma, Geneva, Verdana, sans-serif",
    "backgroundColor": "#f5f7fa",
    "minHeight": "100vh",
    "padding": "0"
})

# ------------------ 数据加载回调 ------------------
@app.callback(
    Output("store-data", "data"),
    Input("btn-load", "n_clicks"),
    State("input-repo-id", "value"),
    State("input-episode-id", "value"),
    prevent_initial_call=True
)
def load_data_callback(n_clicks, repo_id, episode_id):
    try:
        video_paths, data_df = load_remote_dataset(
            repo_id=repo_id,
            episode_id=int(episode_id),
            download_dir="./downloaded_videos"
        )
        if data_df is None or data_df.empty:
            return {}
        return {
            "video_paths": video_paths,
            "data_df": data_df.to_dict("records"),
            "columns": ["shoulder_pan", "shoulder_pitch", "elbow", "wrist_pitch", "wrist_roll", "gripper"],
            "timestamps": data_df["timestamp"].tolist()
        }
    except Exception as e:
        print(f"Data loading error: {e}")
        return {}

# ------------------ 主内容渲染回调 ------------------
@app.callback(
    Output("main-content", "children"),
    Input("store-data", "data")
)
def update_main_content(data):
    if not data or "data_df" not in data or len(data["data_df"]) == 0:
        return html.Div([
            html.Div("📊", style={"fontSize": "3rem", "marginBottom": "20px"}),
            html.H3("No Data Available", style={"color": "#666", "marginBottom": "10px"}),
            html.P("Please click the 'Load Data' button above to get data.", 
                   style={"color": "#888", "fontSize": "1rem"})
        ], style={
            "textAlign": "center", 
            "padding": "60px 20px",
            "color": "#666"
        })
    
    columns = data["columns"]
    rows = []
    for i, joint in enumerate(columns):
        rows.append(html.Div([
            # 关节图 - 左侧50%
            html.Div([
                dcc.Graph(id=f"graph-{i}")
            ], style={
                "flex": "0 0 50%", 
                "backgroundColor": "white",
                "borderRadius": "8px",
                "padding": "8px",
                "boxShadow": "0 2px 10px rgba(0,0,0,0.05)",
                "border": "1px solid #e9ecef",
                "marginRight": "2%"
            }),
            # 视频区域 - 右侧48%
            html.Div([
                html.Img(id=f"video1-{i}", style={
                    "width": "49%", 
                    "height": "180px", 
                    "objectFit": "contain", 
                    "display": "inline-block",
                    "borderRadius": "6px",
                    "border": "2px solid #e9ecef"
                }),
                html.Img(id=f"video2-{i}", style={
                    "width": "49%", 
                    "height": "180px", 
                    "objectFit": "contain", 
                    "display": "inline-block",
                    "borderRadius": "6px",
                    "border": "2px solid #e9ecef"
                })
            ], style={
                "flex": "0 0 48%"
            })
        ], style={
            "marginBottom": "25px",
            "backgroundColor": "white",
            "borderRadius": "12px",
            "padding": "12px",
            "boxShadow": "0 4px 15px rgba(0,0,0,0.08)",
            "border": "1px solid #f0f0f0",
            "display": "flex",
            "alignItems": "flex-start",
            "minHeight": "250px"
        }))
    return html.Div(rows)

# ------------------ 阴影与高亮工具函数 ------------------
def find_intervals(mask):
    intervals = []
    start = None
    for i, val in enumerate(mask):
        if val and start is None:
            start = i
        elif not val and start is not None:
            intervals.append((start, i - 1))
            start = None
    if start is not None:
        intervals.append((start, len(mask) - 1))
    return intervals

def get_shadow_info(joint_name, action_df, delta_t, time_for_plot):
    angles = action_df[joint_name].values
    velocity = np.diff(angles) / delta_t
    smoothed_velocity = gaussian_filter1d(velocity, sigma=1)
    smoothed_angle = gaussian_filter1d(angles[1:], sigma=1)
    vel_threshold = 0.5
    highlight_width = 3
    k = 2
    shadows = []
    low_speed_mask = np.abs(smoothed_velocity) < vel_threshold
    low_speed_intervals = find_intervals(low_speed_mask)
    for start, end in low_speed_intervals:
        if end - start + 1 <= k:
            shadows.append({
                'type': 'low_speed',
                'start_time': time_for_plot[start],
                'end_time': time_for_plot[end],
                'start_idx': start,
                'end_idx': end
            })
    max_idx = np.argmax(smoothed_angle)
    s_max = max(0, max_idx - highlight_width)
    e_max = min(len(time_for_plot) - 1, max_idx + highlight_width)
    shadows.append({
        'type': 'max_value',
        'start_time': time_for_plot[s_max],
        'end_time': time_for_plot[e_max],
        'start_idx': s_max,
        'end_idx': e_max
    })
    min_idx = np.argmin(smoothed_angle)
    s_min = max(0, min_idx - highlight_width)
    e_min = min(len(time_for_plot) - 1, min_idx + highlight_width)
    shadows.append({
        'type': 'min_value',
        'start_time': time_for_plot[s_min],
        'end_time': time_for_plot[e_min],
        'start_idx': s_min,
        'end_idx': e_min
    })
    return shadows

def is_hover_in_shadow(hover_time, shadows):
    for shadow in shadows:
        if shadow['start_time'] <= hover_time <= shadow['end_time']:
            return True
    return False

def find_shadows_in_range(shadows, start_time, end_time):
    shadows_in_range = []
    for shadow in shadows:
        if not (shadow['end_time'] < start_time or shadow['start_time'] > end_time):
            shadows_in_range.append(shadow)
    return shadows_in_range

def generate_joint_graph(joint_name, idx, action_df, delta_t, time_for_plot, all_shadows, highlighted_shadows=None):
    angles = action_df[joint_name].values
    velocity = np.diff(angles) / delta_t
    smoothed_velocity = gaussian_filter1d(velocity, sigma=1)
    smoothed_angle = gaussian_filter1d(angles[1:], sigma=1)
    shapes = []
    current_shadows = all_shadows[joint_name]
    for shadow in current_shadows:
        is_highlighted = False
        if highlighted_shadows:
            for h_shadow in highlighted_shadows:
                if (shadow['start_time'] == h_shadow['start_time'] and 
                    shadow['end_time'] == h_shadow['end_time']):
                    is_highlighted = True
                    break
        color = "#3b82f6" if is_highlighted else "#ef4444"  # Blue for highlighted, red for normal
        opacity = 0.7 if is_highlighted else 0.4
        shapes.append({
            "type": "rect",
            "xref": "x",
            "yref": "paper",
            "x0": shadow['start_time'],
            "x1": shadow['end_time'],
            "y0": 0,
            "y1": 1,
            "fillcolor": color,
            "opacity": opacity,
            "line": {"width": 0}
        })
    return {
        "data": [
            go.Scatter(
                x=time_for_plot,
                y=smoothed_angle,
                name="Joint Angle",
                line=dict(color='#f59e0b', width=2),
                hovertemplate='<b>Time:</b> %{x:.2f}s<br><b>Angle:</b> %{y:.2f}°<extra></extra>'
            )
        ],
        "layout": go.Layout(
            title={
                'text': joint_name.replace('_', ' ').title(),
                'font': {'size': 16, 'color': '#374151'}
            },
            xaxis={
                "title": "Time (seconds)",
                "titlefont": {"color": "#6b7280"},
                "tickfont": {"color": "#6b7280"},
                "gridcolor": "#f3f4f6",
                "zerolinecolor": "#e5e7eb"
            },
            yaxis={
                "title": "Angle (degrees)",
                "titlefont": {"color": "#6b7280"},
                "tickfont": {"color": "#6b7280"},
                "gridcolor": "#f3f4f6",
                "zerolinecolor": "#e5e7eb"
            },
            shapes=shapes,
            hovermode="x unified",
            height=220,
            margin=dict(t=30, b=30, l=50, r=30),
            showlegend=False,
            plot_bgcolor='white',
            paper_bgcolor='white',
            font={'family': "'Segoe UI', Tahoma, Geneva, Verdana, sans-serif"}
        )
    }

# ------------------ 联动高亮回调 ------------------
@app.callback(
    [Output(f"graph-{i}", "figure") for i in range(6)],
    [Input("store-data", "data")] + [Input(f"graph-{i}", "hoverData") for i in range(6)],
    prevent_initial_call=True
)
def update_all_graphs(data, *hover_datas):
    if not data or "data_df" not in data or len(data["data_df"]) == 0:
        return [no_update] * 6
    columns = data["columns"]
    df = pd.DataFrame.from_records(data["data_df"])
    action_df = pd.DataFrame(df["action"].tolist(), columns=columns)
    timestamps = df["timestamp"].values
    delta_t = np.diff(timestamps)
    time_for_plot = timestamps[1:]
    all_shadows = {}
    for joint in columns:
        all_shadows[joint] = get_shadow_info(joint, action_df, delta_t, time_for_plot)

    # 查找是否有任何一个hover落在阴影内
    for idx, hover_data in enumerate(hover_datas):
        if hover_data and "points" in hover_data and len(hover_data["points"]) > 0:
            hover_time = float(hover_data["points"][0]["x"])
            triggered_joint = columns[idx]
            if is_hover_in_shadow(hover_time, all_shadows[triggered_joint]):
                hover_idx = np.searchsorted(time_for_plot, hover_time)
                start_idx = max(0, hover_idx - 20)
                end_idx = min(len(time_for_plot) - 1, hover_idx + 20)
                start_time = time_for_plot[start_idx]
                end_time = time_for_plot[end_idx]
                figures = []
                for i, joint in enumerate(columns):
                    shadows_in_range = find_shadows_in_range(all_shadows[joint], start_time, end_time)
                    fig = generate_joint_graph(joint, i, action_df, delta_t, time_for_plot, all_shadows, shadows_in_range)
                    figures.append(fig)
                return figures
    # 没有hover或不在阴影内,全部正常显示
    return [
        generate_joint_graph(joint, i, action_df, delta_t, time_for_plot, all_shadows)
        for i, joint in enumerate(columns)
    ]

# ------------------ 视频帧提取函数 ------------------
def get_video_frame(video_path, time_in_seconds):
    try:
        cap = cv2.VideoCapture(video_path)
        if not cap.isOpened():
            print(f"❌ 无法打开视频: {video_path}")
            return None
        fps = cap.get(cv2.CAP_PROP_FPS)
        if fps <= 0:
            cap.release()
            return None
        frame_num = int(time_in_seconds * fps)
        cap.set(cv2.CAP_PROP_POS_FRAMES, frame_num)
        success, frame = cap.read()
        cap.release()
        if success and frame is not None:
            height, width = frame.shape[:2]
            if width > 640:
                new_width = 640
                new_height = int(height * (new_width / width))
                frame = cv2.resize(frame, (new_width, new_height))
            encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), 85]
            _, buffer = cv2.imencode('.jpg', frame, encode_param)
            encoded = base64.b64encode(buffer).decode('utf-8')
            return f"data:image/jpeg;base64,{encoded}"
        else:
            return None
    except Exception as e:
        print(f"❌ 提取视频帧异常: {e}")
        return None

# ------------------ 视频帧回调 ------------------
for i in range(6):
    @app.callback(
        Output(f"video1-{i}", "src"),
        Output(f"video2-{i}", "src"),
        Input("store-data", "data"),
        Input(f"graph-{i}", "hoverData"),
        prevent_initial_call=True
    )
    def update_video_frames(data, hover_data, idx=i):
        if not data or "data_df" not in data or len(data["data_df"]) == 0:
            return no_update, no_update
        columns = data["columns"]
        df = pd.DataFrame.from_records(data["data_df"])
        timestamps = df["timestamp"].values
        time_for_plot = timestamps[1:]
        video_paths = data["video_paths"]
        
        # 确定要显示的时间点
        display_time = 0.0  # 默认显示开始时间
        if hover_data and "points" in hover_data and len(hover_data["points"]) > 0:
            # 如果有hover数据,使用hover时间
            display_time = float(hover_data["points"][0]["x"])
        elif len(time_for_plot) > 0:
            # 如果没有hover数据,使用时间轴开始时间
            display_time = time_for_plot[0]
        
        try:
            frame1 = get_video_frame(video_paths[0], display_time)
            frame2 = get_video_frame(video_paths[1], display_time)
            if frame1 and frame2:
                return frame1, frame2
            else:
                return no_update, no_update
        except Exception as e:
            print(f"update_video_frames callback error: {e}")
            return no_update, no_update

# ------------------ 启动应用 ------------------
if __name__ == "__main__":
    app.run(debug=True, host='0.0.0.0', port=7860)