Spaces:
Sleeping
Sleeping
File size: 5,070 Bytes
b2b50b7 0fe9a0c b2b50b7 0fe9a0c b2b50b7 0fe9a0c b2b50b7 0fe9a0c b2b50b7 2c52598 67a4038 2c52598 b2b50b7 67a4038 b2b50b7 2c52598 67a4038 2c52598 b2b50b7 2c52598 b2b50b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# app.py
import requests
import gradio as gr
# Hugging Face Inference API configuration
HF_API_KEY = "your_huggingface_api_key" # Replace with your Hugging Face API key
HF_API_URL = f"https://api-inference.huggingface.co/models/codeparrot/codeparrot-small"
# Groq API configuration
GROQ_API_KEY = "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"
GROQ_API_URL = "https://api.groq.com/v1/completions"
# Function to query Hugging Face Inference API
def query_huggingface(prompt):
try:
headers = {
"Authorization": f"Bearer {HF_API_KEY}",
"Content-Type": "application/json"
}
data = {
"inputs": prompt,
"parameters": {
"max_length": 150 # Limit the length of the generated text
}
}
response = requests.post(HF_API_URL, headers=headers, json=data, timeout=30) # Add timeout
response.raise_for_status() # Raise an error for bad responses (4xx, 5xx)
return response.json()[0]["generated_text"]
except Exception as e:
return f"Error querying Hugging Face API: {str(e)}"
# Function to query Groq API
def query_groq(prompt):
try:
headers = {
"Authorization": f"Bearer {GROQ_API_KEY}",
"Content-Type": "application/json"
}
data = {
"prompt": prompt,
"max_tokens": 150
}
response = requests.post(GROQ_API_URL, headers=headers, json=data, timeout=10) # Add timeout
response.raise_for_status() # Raise an error for bad responses (4xx, 5xx)
return response.json()["choices"][0]["text"]
except Exception as e:
return f"Error querying Groq API: {str(e)}"
# Function to generate smart contract code
def generate_smart_contract(language, requirements):
try:
# Create a prompt for the model
prompt = f"Generate a {language} smart contract with the following requirements: {requirements}"
# Use Hugging Face Inference API to generate code
generated_code = query_huggingface(prompt)
# Enhance the code using Groq API
enhanced_code = query_groq(generated_code)
return enhanced_code
except Exception as e:
return f"Error generating smart contract: {str(e)}"
# Custom CSS for a 3D CGI Figma-like feel
custom_css = """
body {
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
background: linear-gradient(135deg, #1e3c72 0%, #2a5298 100%);
color: #fff;
perspective: 1000px;
overflow: hidden;
}
.gradio-container {
background: rgba(255, 255, 255, 0.1);
border-radius: 15px;
padding: 20px;
box-shadow: 0 4px 30px rgba(0, 0, 0, 0.1);
backdrop-filter: blur(10px);
border: 1px solid rgba(255, 255, 255, 0.3);
transform-style: preserve-3d;
transform: rotateY(0deg) rotateX(0deg);
transition: transform 0.5s ease;
}
.gradio-container:hover {
transform: rotateY(10deg) rotateX(10deg);
}
.gradio-input, .gradio-output {
background: rgba(255, 255, 255, 0.2);
border: none;
border-radius: 10px;
padding: 10px;
color: #fff;
transform-style: preserve-3d;
transition: transform 0.3s ease;
}
.gradio-input:focus, .gradio-output:focus {
background: rgba(255, 255, 255, 0.3);
outline: none;
transform: translateZ(20px);
}
.gradio-button {
background: linear-gradient(135deg, #6a11cb 0%, #2575fc 100%);
border: none;
border-radius: 10px;
color: #fff;
padding: 10px 20px;
font-size: 16px;
cursor: pointer;
transition: background 0.3s ease, transform 0.3s ease;
transform-style: preserve-3d;
}
.gradio-button:hover {
background: linear-gradient(135deg, #2575fc 0%, #6a11cb 100%);
transform: translateZ(10px);
}
h1 {
text-align: center;
font-size: 2.5em;
margin-bottom: 20px;
color: white; /* White title color */
transform-style: preserve-3d;
transform: translateZ(30px);
}
@keyframes float {
0% {
transform: translateY(0) translateZ(0);
}
50% {
transform: translateY(-10px) translateZ(10px);
}
100% {
transform: translateY(0) translateZ(0);
}
}
.gradio-container {
animation: float 4s ease-in-out infinite;
}
"""
# Gradio interface for the app
def generate_contract(language, requirements):
return generate_smart_contract(language, requirements)
# Dropdown options for programming languages
languages = ["Solidity", "Vyper", "Rust", "JavaScript", "Python"]
interface = gr.Interface(
fn=generate_contract,
inputs=[
gr.Dropdown(label="Programming Language", choices=languages, value="Solidity"), # Dropdown menu
gr.Textbox(label="Requirements", placeholder="e.g., ERC20 token with minting functionality")
],
outputs=gr.Textbox(label="Generated Smart Contract"),
title="Smart Contract Generator",
description="Generate smart contracts using AI.",
css=custom_css
)
# Launch the Gradio app
if __name__ == "__main__":
interface.launch() |