Spaces:
Runtime error
Runtime error
update
Browse files
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
3 |
import os
|
|
|
4 |
|
5 |
from hugsvision.inference.TorchVisionClassifierInference import TorchVisionClassifierInference
|
6 |
|
@@ -15,20 +17,31 @@ colname = "mobilenet_v2"
|
|
15 |
radio = gr.inputs.Radio(models_name, default="mobilenet_v2", type="value", label=colname)
|
16 |
print(radio.label)
|
17 |
|
18 |
-
def predict_image(image):
|
19 |
-
|
20 |
-
image = np.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
classifier = TorchVisionClassifierInference(
|
23 |
-
model_path = "./models/" + colname
|
24 |
)
|
25 |
|
26 |
-
pred = classifier.
|
27 |
|
28 |
label2id = json.load(open("./models/" + colname + "/best_model.pth"))["label2id"].keys()
|
29 |
# vec = [100.0 if a.lower() == pred.lower() else 0.00 for a in label2id]
|
30 |
acc = dict((label2id[i], "%.2f" % 100.0 if label2id[i].lower() == pred.lower() else 0.0) for i in range(len(label2id)))
|
31 |
-
|
32 |
return acc
|
33 |
# return pred
|
34 |
|
@@ -37,6 +50,7 @@ categories = open("categories.txt", "r")
|
|
37 |
labels = categories.readline().split(";")
|
38 |
|
39 |
image = gr.inputs.Image(shape=(300, 300), label="Upload Your Image Here")
|
|
|
40 |
label = gr.outputs.Label(num_top_classes=len(labels))
|
41 |
|
42 |
samples = ['./samples/basking.jpg', './samples/blacktip.jpg']
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
import os
|
5 |
+
import json
|
6 |
|
7 |
from hugsvision.inference.TorchVisionClassifierInference import TorchVisionClassifierInference
|
8 |
|
|
|
17 |
radio = gr.inputs.Radio(models_name, default="mobilenet_v2", type="value", label=colname)
|
18 |
print(radio.label)
|
19 |
|
20 |
+
def predict_image(image, model_name):
|
21 |
+
|
22 |
+
image = Image.fromarray(np.uint8(image)).convert('RGB')
|
23 |
+
|
24 |
+
print("======================")
|
25 |
+
print(type(image))
|
26 |
+
print(type(model_name))
|
27 |
+
print("==========")
|
28 |
+
print(image)
|
29 |
+
print(model_name)
|
30 |
+
print("======================")
|
31 |
+
|
32 |
+
# image = np.array(image) / 255
|
33 |
+
# image = np.expand_dims(image, axis=0)
|
34 |
|
35 |
classifier = TorchVisionClassifierInference(
|
36 |
+
model_path = "./models/" + colname,
|
37 |
)
|
38 |
|
39 |
+
pred = classifier.predict_image(img=image)
|
40 |
|
41 |
label2id = json.load(open("./models/" + colname + "/best_model.pth"))["label2id"].keys()
|
42 |
# vec = [100.0 if a.lower() == pred.lower() else 0.00 for a in label2id]
|
43 |
acc = dict((label2id[i], "%.2f" % 100.0 if label2id[i].lower() == pred.lower() else 0.0) for i in range(len(label2id)))
|
44 |
+
print(acc)
|
45 |
return acc
|
46 |
# return pred
|
47 |
|
|
|
50 |
labels = categories.readline().split(";")
|
51 |
|
52 |
image = gr.inputs.Image(shape=(300, 300), label="Upload Your Image Here")
|
53 |
+
print(image)
|
54 |
label = gr.outputs.Label(num_top_classes=len(labels))
|
55 |
|
56 |
samples = ['./samples/basking.jpg', './samples/blacktip.jpg']
|