Spaces:
Runtime error
Runtime error
""" Quick n Simple Image Folder, Tarfile based DataSet | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import torch.utils.data as data | |
import os | |
import re | |
import torch | |
import tarfile | |
from PIL import Image | |
IMG_EXTENSIONS = ['.png', '.jpg', '.jpeg'] | |
def natural_key(string_): | |
"""See http://www.codinghorror.com/blog/archives/001018.html""" | |
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] | |
def find_images_and_targets(folder, types=IMG_EXTENSIONS, class_to_idx=None, leaf_name_only=True, sort=True): | |
labels = [] | |
filenames = [] | |
for root, subdirs, files in os.walk(folder, topdown=False): | |
rel_path = os.path.relpath(root, folder) if (root != folder) else '' | |
label = os.path.basename(rel_path) if leaf_name_only else rel_path.replace(os.path.sep, '_') | |
for f in files: | |
base, ext = os.path.splitext(f) | |
if ext.lower() in types: | |
filenames.append(os.path.join(root, f)) | |
labels.append(label) | |
if class_to_idx is None: | |
# building class index | |
unique_labels = set(labels) | |
sorted_labels = list(sorted(unique_labels, key=natural_key)) | |
class_to_idx = {c: idx for idx, c in enumerate(sorted_labels)} | |
images_and_targets = [(f, class_to_idx[l]) for f, l in zip(filenames, labels) if l in class_to_idx] | |
if sort: | |
images_and_targets = sorted(images_and_targets, key=lambda k: natural_key(k[0])) | |
return images_and_targets, class_to_idx | |
def load_class_map(filename, root=''): | |
class_map_path = filename | |
if not os.path.exists(class_map_path): | |
class_map_path = os.path.join(root, filename) | |
assert os.path.exists(class_map_path), 'Cannot locate specified class map file (%s)' % filename | |
class_map_ext = os.path.splitext(filename)[-1].lower() | |
if class_map_ext == '.txt': | |
with open(class_map_path) as f: | |
class_to_idx = {v.strip(): k for k, v in enumerate(f)} | |
else: | |
assert False, 'Unsupported class map extension' | |
return class_to_idx | |
class Dataset(data.Dataset): | |
def __init__( | |
self, | |
root, | |
load_bytes=False, | |
transform=None, | |
class_map=''): | |
class_to_idx = None | |
if class_map: | |
class_to_idx = load_class_map(class_map, root) | |
images, class_to_idx = find_images_and_targets(root, class_to_idx=class_to_idx) | |
if len(images) == 0: | |
raise RuntimeError(f'Found 0 images in subfolders of {root}. ' | |
f'Supported image extensions are {", ".join(IMG_EXTENSIONS)}') | |
self.root = root | |
self.samples = images | |
self.imgs = self.samples # torchvision ImageFolder compat | |
self.class_to_idx = class_to_idx | |
self.load_bytes = load_bytes | |
self.transform = transform | |
def __getitem__(self, index): | |
path, target = self.samples[index] | |
img = open(path, 'rb').read() if self.load_bytes else Image.open(path).convert('RGB') | |
if self.transform is not None: | |
img = self.transform(img) | |
if target is None: | |
target = torch.zeros(1).long() | |
return img, target | |
def __len__(self): | |
return len(self.samples) | |
def filename(self, index, basename=False, absolute=False): | |
filename = self.samples[index][0] | |
if basename: | |
filename = os.path.basename(filename) | |
elif not absolute: | |
filename = os.path.relpath(filename, self.root) | |
return filename | |
def filenames(self, basename=False, absolute=False): | |
fn = lambda x: x | |
if basename: | |
fn = os.path.basename | |
elif not absolute: | |
fn = lambda x: os.path.relpath(x, self.root) | |
return [fn(x[0]) for x in self.samples] | |
def _extract_tar_info(tarfile, class_to_idx=None, sort=True): | |
files = [] | |
labels = [] | |
for ti in tarfile.getmembers(): | |
if not ti.isfile(): | |
continue | |
dirname, basename = os.path.split(ti.path) | |
label = os.path.basename(dirname) | |
ext = os.path.splitext(basename)[1] | |
if ext.lower() in IMG_EXTENSIONS: | |
files.append(ti) | |
labels.append(label) | |
if class_to_idx is None: | |
unique_labels = set(labels) | |
sorted_labels = list(sorted(unique_labels, key=natural_key)) | |
class_to_idx = {c: idx for idx, c in enumerate(sorted_labels)} | |
tarinfo_and_targets = [(f, class_to_idx[l]) for f, l in zip(files, labels) if l in class_to_idx] | |
if sort: | |
tarinfo_and_targets = sorted(tarinfo_and_targets, key=lambda k: natural_key(k[0].path)) | |
return tarinfo_and_targets, class_to_idx | |
class DatasetTar(data.Dataset): | |
def __init__(self, root, load_bytes=False, transform=None, class_map=''): | |
class_to_idx = None | |
if class_map: | |
class_to_idx = load_class_map(class_map, root) | |
assert os.path.isfile(root) | |
self.root = root | |
with tarfile.open(root) as tf: # cannot keep this open across processes, reopen later | |
self.samples, self.class_to_idx = _extract_tar_info(tf, class_to_idx) | |
self.imgs = self.samples | |
self.tarfile = None # lazy init in __getitem__ | |
self.load_bytes = load_bytes | |
self.transform = transform | |
def __getitem__(self, index): | |
if self.tarfile is None: | |
self.tarfile = tarfile.open(self.root) | |
tarinfo, target = self.samples[index] | |
iob = self.tarfile.extractfile(tarinfo) | |
img = iob.read() if self.load_bytes else Image.open(iob).convert('RGB') | |
if self.transform is not None: | |
img = self.transform(img) | |
if target is None: | |
target = torch.zeros(1).long() | |
return img, target | |
def __len__(self): | |
return len(self.samples) | |
def filename(self, index, basename=False): | |
filename = self.samples[index][0].name | |
if basename: | |
filename = os.path.basename(filename) | |
return filename | |
def filenames(self, basename=False): | |
fn = os.path.basename if basename else lambda x: x | |
return [fn(x[0].name) for x in self.samples] | |
class AugMixDataset(torch.utils.data.Dataset): | |
"""Dataset wrapper to perform AugMix or other clean/augmentation mixes""" | |
def __init__(self, dataset, num_splits=2): | |
self.augmentation = None | |
self.normalize = None | |
self.dataset = dataset | |
if self.dataset.transform is not None: | |
self._set_transforms(self.dataset.transform) | |
self.num_splits = num_splits | |
def _set_transforms(self, x): | |
assert isinstance(x, (list, tuple)) and len(x) == 3, 'Expecting a tuple/list of 3 transforms' | |
self.dataset.transform = x[0] | |
self.augmentation = x[1] | |
self.normalize = x[2] | |
def transform(self): | |
return self.dataset.transform | |
def transform(self, x): | |
self._set_transforms(x) | |
def _normalize(self, x): | |
return x if self.normalize is None else self.normalize(x) | |
def __getitem__(self, i): | |
x, y = self.dataset[i] # all splits share the same dataset base transform | |
x_list = [self._normalize(x)] # first split only normalizes (this is the 'clean' split) | |
# run the full augmentation on the remaining splits | |
for _ in range(self.num_splits - 1): | |
x_list.append(self._normalize(self.augmentation(x))) | |
return tuple(x_list), y | |
def __len__(self): | |
return len(self.dataset) | |