Spaces:
Runtime error
Runtime error
File size: 14,680 Bytes
28c6826 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
""" EfficientNet, MobileNetV3, etc Blocks
Hacked together by / Copyright 2020 Ross Wightman
"""
import torch
import torch.nn as nn
from torch.nn import functional as F
from .layers import create_conv2d, drop_path, get_act_layer
from .layers.activations import sigmoid
# Defaults used for Google/Tensorflow training of mobile networks /w RMSprop as per
# papers and TF reference implementations. PT momentum equiv for TF decay is (1 - TF decay)
# NOTE: momentum varies btw .99 and .9997 depending on source
# .99 in official TF TPU impl
# .9997 (/w .999 in search space) for paper
BN_MOMENTUM_TF_DEFAULT = 1 - 0.99
BN_EPS_TF_DEFAULT = 1e-3
_BN_ARGS_TF = dict(momentum=BN_MOMENTUM_TF_DEFAULT, eps=BN_EPS_TF_DEFAULT)
def get_bn_args_tf():
return _BN_ARGS_TF.copy()
def resolve_bn_args(kwargs):
bn_args = get_bn_args_tf() if kwargs.pop('bn_tf', False) else {}
bn_momentum = kwargs.pop('bn_momentum', None)
if bn_momentum is not None:
bn_args['momentum'] = bn_momentum
bn_eps = kwargs.pop('bn_eps', None)
if bn_eps is not None:
bn_args['eps'] = bn_eps
return bn_args
_SE_ARGS_DEFAULT = dict(
gate_fn=sigmoid,
act_layer=None,
reduce_mid=False,
divisor=1)
def resolve_se_args(kwargs, in_chs, act_layer=None):
se_kwargs = kwargs.copy() if kwargs is not None else {}
# fill in args that aren't specified with the defaults
for k, v in _SE_ARGS_DEFAULT.items():
se_kwargs.setdefault(k, v)
# some models, like MobilNetV3, calculate SE reduction chs from the containing block's mid_ch instead of in_ch
if not se_kwargs.pop('reduce_mid'):
se_kwargs['reduced_base_chs'] = in_chs
# act_layer override, if it remains None, the containing block's act_layer will be used
if se_kwargs['act_layer'] is None:
assert act_layer is not None
se_kwargs['act_layer'] = act_layer
return se_kwargs
def resolve_act_layer(kwargs, default='relu'):
act_layer = kwargs.pop('act_layer', default)
if isinstance(act_layer, str):
act_layer = get_act_layer(act_layer)
return act_layer
def make_divisible(v, divisor=8, min_value=None):
min_value = min_value or divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def round_channels(channels, multiplier=1.0, divisor=8, channel_min=None):
"""Round number of filters based on depth multiplier."""
if not multiplier:
return channels
channels *= multiplier
return make_divisible(channels, divisor, channel_min)
class ChannelShuffle(nn.Module):
# FIXME haven't used yet
def __init__(self, groups):
super(ChannelShuffle, self).__init__()
self.groups = groups
def forward(self, x):
"""Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]"""
N, C, H, W = x.size()
g = self.groups
assert C % g == 0, "Incompatible group size {} for input channel {}".format(
g, C
)
return (
x.view(N, g, int(C / g), H, W)
.permute(0, 2, 1, 3, 4)
.contiguous()
.view(N, C, H, W)
)
class SqueezeExcite(nn.Module):
def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None,
act_layer=nn.ReLU, gate_fn=sigmoid, divisor=1, **_):
super(SqueezeExcite, self).__init__()
reduced_chs = make_divisible((reduced_base_chs or in_chs) * se_ratio, divisor)
self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
self.act1 = act_layer(inplace=True)
self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True)
self.gate_fn = gate_fn
def forward(self, x):
x_se = x.mean((2, 3), keepdim=True)
x_se = self.conv_reduce(x_se)
x_se = self.act1(x_se)
x_se = self.conv_expand(x_se)
return x * self.gate_fn(x_se)
class ConvBnAct(nn.Module):
def __init__(self, in_chs, out_chs, kernel_size,
stride=1, dilation=1, pad_type='', act_layer=nn.ReLU,
norm_layer=nn.BatchNorm2d, norm_kwargs=None):
super(ConvBnAct, self).__init__()
norm_kwargs = norm_kwargs or {}
self.conv = create_conv2d(in_chs, out_chs, kernel_size, stride=stride, dilation=dilation, padding=pad_type)
self.bn1 = norm_layer(out_chs, **norm_kwargs)
self.act1 = act_layer(inplace=True)
def feature_info(self, location):
if location == 'expansion': # output of conv after act, same as block coutput
info = dict(module='act1', hook_type='forward', num_chs=self.conv.out_channels)
else: # location == 'bottleneck', block output
info = dict(module='', hook_type='', num_chs=self.conv.out_channels)
return info
def forward(self, x):
x = self.conv(x)
x = self.bn1(x)
x = self.act1(x)
return x
class DepthwiseSeparableConv(nn.Module):
""" DepthwiseSeparable block
Used for DS convs in MobileNet-V1 and in the place of IR blocks that have no expansion
(factor of 1.0). This is an alternative to having a IR with an optional first pw conv.
"""
def __init__(self, in_chs, out_chs, dw_kernel_size=3,
stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False,
pw_kernel_size=1, pw_act=False, se_ratio=0., se_kwargs=None,
norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_path_rate=0.):
super(DepthwiseSeparableConv, self).__init__()
norm_kwargs = norm_kwargs or {}
has_se = se_ratio is not None and se_ratio > 0.
self.has_residual = (stride == 1 and in_chs == out_chs) and not noskip
self.has_pw_act = pw_act # activation after point-wise conv
self.drop_path_rate = drop_path_rate
self.conv_dw = create_conv2d(
in_chs, in_chs, dw_kernel_size, stride=stride, dilation=dilation, padding=pad_type, depthwise=True)
self.bn1 = norm_layer(in_chs, **norm_kwargs)
self.act1 = act_layer(inplace=True)
# Squeeze-and-excitation
if has_se:
se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer)
self.se = SqueezeExcite(in_chs, se_ratio=se_ratio, **se_kwargs)
else:
self.se = None
self.conv_pw = create_conv2d(in_chs, out_chs, pw_kernel_size, padding=pad_type)
self.bn2 = norm_layer(out_chs, **norm_kwargs)
self.act2 = act_layer(inplace=True) if self.has_pw_act else nn.Identity()
def feature_info(self, location):
if location == 'expansion': # after SE, input to PW
info = dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels)
else: # location == 'bottleneck', block output
info = dict(module='', hook_type='', num_chs=self.conv_pw.out_channels)
return info
def forward(self, x):
residual = x
x = self.conv_dw(x)
x = self.bn1(x)
x = self.act1(x)
if self.se is not None:
x = self.se(x)
x = self.conv_pw(x)
x = self.bn2(x)
x = self.act2(x)
if self.has_residual:
if self.drop_path_rate > 0.:
x = drop_path(x, self.drop_path_rate, self.training)
x += residual
return x
class InvertedResidual(nn.Module):
""" Inverted residual block w/ optional SE and CondConv routing"""
def __init__(self, in_chs, out_chs, dw_kernel_size=3,
stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False,
exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1,
se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None,
conv_kwargs=None, drop_path_rate=0.):
super(InvertedResidual, self).__init__()
norm_kwargs = norm_kwargs or {}
conv_kwargs = conv_kwargs or {}
mid_chs = make_divisible(in_chs * exp_ratio)
has_se = se_ratio is not None and se_ratio > 0.
self.has_residual = (in_chs == out_chs and stride == 1) and not noskip
self.drop_path_rate = drop_path_rate
# Point-wise expansion
self.conv_pw = create_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type, **conv_kwargs)
self.bn1 = norm_layer(mid_chs, **norm_kwargs)
self.act1 = act_layer(inplace=True)
# Depth-wise convolution
self.conv_dw = create_conv2d(
mid_chs, mid_chs, dw_kernel_size, stride=stride, dilation=dilation,
padding=pad_type, depthwise=True, **conv_kwargs)
self.bn2 = norm_layer(mid_chs, **norm_kwargs)
self.act2 = act_layer(inplace=True)
# Squeeze-and-excitation
if has_se:
se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer)
self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio, **se_kwargs)
else:
self.se = None
# Point-wise linear projection
self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs)
self.bn3 = norm_layer(out_chs, **norm_kwargs)
def feature_info(self, location):
if location == 'expansion': # after SE, input to PWL
info = dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels)
else: # location == 'bottleneck', block output
info = dict(module='', hook_type='', num_chs=self.conv_pwl.out_channels)
return info
def forward(self, x):
residual = x
# Point-wise expansion
x = self.conv_pw(x)
x = self.bn1(x)
x = self.act1(x)
# Depth-wise convolution
x = self.conv_dw(x)
x = self.bn2(x)
x = self.act2(x)
# Squeeze-and-excitation
if self.se is not None:
x = self.se(x)
# Point-wise linear projection
x = self.conv_pwl(x)
x = self.bn3(x)
if self.has_residual:
if self.drop_path_rate > 0.:
x = drop_path(x, self.drop_path_rate, self.training)
x += residual
return x
class CondConvResidual(InvertedResidual):
""" Inverted residual block w/ CondConv routing"""
def __init__(self, in_chs, out_chs, dw_kernel_size=3,
stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False,
exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1,
se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None,
num_experts=0, drop_path_rate=0.):
self.num_experts = num_experts
conv_kwargs = dict(num_experts=self.num_experts)
super(CondConvResidual, self).__init__(
in_chs, out_chs, dw_kernel_size=dw_kernel_size, stride=stride, dilation=dilation, pad_type=pad_type,
act_layer=act_layer, noskip=noskip, exp_ratio=exp_ratio, exp_kernel_size=exp_kernel_size,
pw_kernel_size=pw_kernel_size, se_ratio=se_ratio, se_kwargs=se_kwargs,
norm_layer=norm_layer, norm_kwargs=norm_kwargs, conv_kwargs=conv_kwargs,
drop_path_rate=drop_path_rate)
self.routing_fn = nn.Linear(in_chs, self.num_experts)
def forward(self, x):
residual = x
# CondConv routing
pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1)
routing_weights = torch.sigmoid(self.routing_fn(pooled_inputs))
# Point-wise expansion
x = self.conv_pw(x, routing_weights)
x = self.bn1(x)
x = self.act1(x)
# Depth-wise convolution
x = self.conv_dw(x, routing_weights)
x = self.bn2(x)
x = self.act2(x)
# Squeeze-and-excitation
if self.se is not None:
x = self.se(x)
# Point-wise linear projection
x = self.conv_pwl(x, routing_weights)
x = self.bn3(x)
if self.has_residual:
if self.drop_path_rate > 0.:
x = drop_path(x, self.drop_path_rate, self.training)
x += residual
return x
class EdgeResidual(nn.Module):
""" Residual block with expansion convolution followed by pointwise-linear w/ stride"""
def __init__(self, in_chs, out_chs, exp_kernel_size=3, exp_ratio=1.0, fake_in_chs=0,
stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False, pw_kernel_size=1,
se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None,
drop_path_rate=0.):
super(EdgeResidual, self).__init__()
norm_kwargs = norm_kwargs or {}
if fake_in_chs > 0:
mid_chs = make_divisible(fake_in_chs * exp_ratio)
else:
mid_chs = make_divisible(in_chs * exp_ratio)
has_se = se_ratio is not None and se_ratio > 0.
self.has_residual = (in_chs == out_chs and stride == 1) and not noskip
self.drop_path_rate = drop_path_rate
# Expansion convolution
self.conv_exp = create_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type)
self.bn1 = norm_layer(mid_chs, **norm_kwargs)
self.act1 = act_layer(inplace=True)
# Squeeze-and-excitation
if has_se:
se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer)
self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio, **se_kwargs)
else:
self.se = None
# Point-wise linear projection
self.conv_pwl = create_conv2d(
mid_chs, out_chs, pw_kernel_size, stride=stride, dilation=dilation, padding=pad_type)
self.bn2 = norm_layer(out_chs, **norm_kwargs)
def feature_info(self, location):
if location == 'expansion': # after SE, before PWL
info = dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels)
else: # location == 'bottleneck', block output
info = dict(module='', hook_type='', num_chs=self.conv_pwl.out_channels)
return info
def forward(self, x):
residual = x
# Expansion convolution
x = self.conv_exp(x)
x = self.bn1(x)
x = self.act1(x)
# Squeeze-and-excitation
if self.se is not None:
x = self.se(x)
# Point-wise linear projection
x = self.conv_pwl(x)
x = self.bn2(x)
if self.has_residual:
if self.drop_path_rate > 0.:
x = drop_path(x, self.drop_path_rate, self.training)
x += residual
return x
|