File size: 9,266 Bytes
28c6826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
"""Pytorch impl of Aligned Xception 41, 65, 71

This is a correct, from scratch impl of Aligned Xception (Deeplab) models compatible with TF weights at
https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md

Hacked together by / Copyright 2020 Ross Wightman
"""
from collections import OrderedDict

import torch.nn as nn
import torch.nn.functional as F

from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from .helpers import build_model_with_cfg
from .layers import ClassifierHead, ConvBnAct, create_conv2d
from .layers.helpers import to_3tuple
from .registry import register_model

__all__ = ['XceptionAligned']


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (10, 10),
        'crop_pct': 0.903, 'interpolation': 'bicubic',
        'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
        'first_conv': 'stem.0.conv', 'classifier': 'head.fc',
        **kwargs
    }


default_cfgs = dict(
    xception41=_cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_xception_41-e6439c97.pth'),
    xception65=_cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_xception_65-c9ae96e8.pth'),
    xception71=_cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_xception_71-8eec7df1.pth'),
)


class SeparableConv2d(nn.Module):
    def __init__(
            self, inplanes, planes, kernel_size=3, stride=1, dilation=1, padding='',
            act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, norm_kwargs=None):
        super(SeparableConv2d, self).__init__()
        norm_kwargs = norm_kwargs if norm_kwargs is not None else {}
        self.kernel_size = kernel_size
        self.dilation = dilation

        # depthwise convolution
        self.conv_dw = create_conv2d(
            inplanes, inplanes, kernel_size, stride=stride,
            padding=padding, dilation=dilation, depthwise=True)
        self.bn_dw = norm_layer(inplanes, **norm_kwargs)
        if act_layer is not None:
            self.act_dw = act_layer(inplace=True)
        else:
            self.act_dw = None

        # pointwise convolution
        self.conv_pw = create_conv2d(inplanes, planes, kernel_size=1)
        self.bn_pw = norm_layer(planes, **norm_kwargs)
        if act_layer is not None:
            self.act_pw = act_layer(inplace=True)
        else:
            self.act_pw = None

    def forward(self, x):
        x = self.conv_dw(x)
        x = self.bn_dw(x)
        if self.act_dw is not None:
            x = self.act_dw(x)
        x = self.conv_pw(x)
        x = self.bn_pw(x)
        if self.act_pw is not None:
            x = self.act_pw(x)
        return x


class XceptionModule(nn.Module):
    def __init__(
            self, in_chs, out_chs, stride=1, dilation=1, pad_type='',
            start_with_relu=True, no_skip=False, act_layer=nn.ReLU, norm_layer=None, norm_kwargs=None):
        super(XceptionModule, self).__init__()
        norm_kwargs = norm_kwargs if norm_kwargs is not None else {}
        out_chs = to_3tuple(out_chs)
        self.in_channels = in_chs
        self.out_channels = out_chs[-1]
        self.no_skip = no_skip
        if not no_skip and (self.out_channels != self.in_channels or stride != 1):
            self.shortcut = ConvBnAct(
                in_chs, self.out_channels, 1, stride=stride,
                norm_layer=norm_layer, norm_kwargs=norm_kwargs, act_layer=None)
        else:
            self.shortcut = None

        separable_act_layer = None if start_with_relu else act_layer
        self.stack = nn.Sequential()
        for i in range(3):
            if start_with_relu:
                self.stack.add_module(f'act{i + 1}', nn.ReLU(inplace=i > 0))
            self.stack.add_module(f'conv{i + 1}', SeparableConv2d(
                in_chs, out_chs[i], 3, stride=stride if i == 2 else 1, dilation=dilation, padding=pad_type,
                act_layer=separable_act_layer, norm_layer=norm_layer, norm_kwargs=norm_kwargs))
            in_chs = out_chs[i]

    def forward(self, x):
        skip = x
        x = self.stack(x)
        if self.shortcut is not None:
            skip = self.shortcut(skip)
        if not self.no_skip:
            x = x + skip
        return x


class XceptionAligned(nn.Module):
    """Modified Aligned Xception
    """

    def __init__(self, block_cfg, num_classes=1000, in_chans=3, output_stride=32,
                 act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_rate=0., global_pool='avg'):
        super(XceptionAligned, self).__init__()
        self.num_classes = num_classes
        self.drop_rate = drop_rate
        assert output_stride in (8, 16, 32)
        norm_kwargs = norm_kwargs if norm_kwargs is not None else {}

        layer_args = dict(act_layer=act_layer, norm_layer=norm_layer, norm_kwargs=norm_kwargs)
        self.stem = nn.Sequential(*[
            ConvBnAct(in_chans, 32, kernel_size=3, stride=2, **layer_args),
            ConvBnAct(32, 64, kernel_size=3, stride=1, **layer_args)
        ])

        curr_dilation = 1
        curr_stride = 2
        self.feature_info = []
        self.blocks = nn.Sequential()
        for i, b in enumerate(block_cfg):
            b['dilation'] = curr_dilation
            if b['stride'] > 1:
                self.feature_info += [dict(
                    num_chs=to_3tuple(b['out_chs'])[-2], reduction=curr_stride, module=f'blocks.{i}.stack.act3')]
                next_stride = curr_stride * b['stride']
                if next_stride > output_stride:
                    curr_dilation *= b['stride']
                    b['stride'] = 1
                else:
                    curr_stride = next_stride
            self.blocks.add_module(str(i), XceptionModule(**b, **layer_args))
            self.num_features = self.blocks[-1].out_channels

        self.feature_info += [dict(
            num_chs=self.num_features, reduction=curr_stride, module='blocks.' + str(len(self.blocks) - 1))]

        self.head = ClassifierHead(
            in_chs=self.num_features, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate)

    def get_classifier(self):
        return self.head.fc

    def reset_classifier(self, num_classes, global_pool='avg'):
        self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)

    def forward_features(self, x):
        x = self.stem(x)
        x = self.blocks(x)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x


def _xception(variant, pretrained=False, **kwargs):
    return build_model_with_cfg(
        XceptionAligned, variant, pretrained, default_cfg=default_cfgs[variant],
        feature_cfg=dict(flatten_sequential=True, feature_cls='hook'), **kwargs)


@register_model
def xception41(pretrained=False, **kwargs):
    """ Modified Aligned Xception-41
    """
    block_cfg = [
        # entry flow
        dict(in_chs=64, out_chs=128, stride=2),
        dict(in_chs=128, out_chs=256, stride=2),
        dict(in_chs=256, out_chs=728, stride=2),
        # middle flow
        *([dict(in_chs=728, out_chs=728, stride=1)] * 8),
        # exit flow
        dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2),
        dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True, start_with_relu=False),
    ]
    model_args = dict(block_cfg=block_cfg, norm_kwargs=dict(eps=.001, momentum=.1), **kwargs)
    return _xception('xception41', pretrained=pretrained, **model_args)


@register_model
def xception65(pretrained=False, **kwargs):
    """ Modified Aligned Xception-65
    """
    block_cfg = [
        # entry flow
        dict(in_chs=64, out_chs=128, stride=2),
        dict(in_chs=128, out_chs=256, stride=2),
        dict(in_chs=256, out_chs=728, stride=2),
        # middle flow
        *([dict(in_chs=728, out_chs=728, stride=1)] * 16),
        # exit flow
        dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2),
        dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True, start_with_relu=False),
    ]
    model_args = dict(block_cfg=block_cfg, norm_kwargs=dict(eps=.001, momentum=.1), **kwargs)
    return _xception('xception65', pretrained=pretrained, **model_args)


@register_model
def xception71(pretrained=False, **kwargs):
    """ Modified Aligned Xception-71
    """
    block_cfg = [
        # entry flow
        dict(in_chs=64, out_chs=128, stride=2),
        dict(in_chs=128, out_chs=256, stride=1),
        dict(in_chs=256, out_chs=256, stride=2),
        dict(in_chs=256, out_chs=728, stride=1),
        dict(in_chs=728, out_chs=728, stride=2),
        # middle flow
        *([dict(in_chs=728, out_chs=728, stride=1)] * 16),
        # exit flow
        dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2),
        dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True, start_with_relu=False),
    ]
    model_args = dict(block_cfg=block_cfg, norm_kwargs=dict(eps=.001, momentum=.1), **kwargs)
    return _xception('xception71', pretrained=pretrained, **model_args)