Spaces:
Runtime error
Runtime error
File size: 17,637 Bytes
28c6826 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
"""
SEResNet implementation from Cadene's pretrained models
https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/senet.py
Additional credit to https://github.com/creafz
Original model: https://github.com/hujie-frank/SENet
ResNet code gently borrowed from
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
FIXME I'm deprecating this model and moving them to ResNet as I don't want to maintain duplicate
support for extras like dilation, switchable BN/activations, feature extraction, etc that don't exist here.
"""
import math
from collections import OrderedDict
import torch.nn as nn
import torch.nn.functional as F
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .layers import create_classifier
from .registry import register_model
__all__ = ['SENet']
def _cfg(url='', **kwargs):
return {
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bilinear',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'layer0.conv1', 'classifier': 'last_linear',
**kwargs
}
default_cfgs = {
'legacy_senet154':
_cfg(url='http://data.lip6.fr/cadene/pretrainedmodels/senet154-c7b49a05.pth'),
'legacy_seresnet18': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet18-4bb0ce65.pth',
interpolation='bicubic'),
'legacy_seresnet34': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet34-a4004e63.pth'),
'legacy_seresnet50': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet50-ce0d4300.pth'),
'legacy_seresnet101': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet101-7e38fcc6.pth'),
'legacy_seresnet152': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet152-d17c99b7.pth'),
'legacy_seresnext26_32x4d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26_32x4d-65ebdb501.pth',
interpolation='bicubic'),
'legacy_seresnext50_32x4d':
_cfg(url='http://data.lip6.fr/cadene/pretrainedmodels/se_resnext50_32x4d-a260b3a4.pth'),
'legacy_seresnext101_32x4d':
_cfg(url='http://data.lip6.fr/cadene/pretrainedmodels/se_resnext101_32x4d-3b2fe3d8.pth'),
}
def _weight_init(m):
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1.)
nn.init.constant_(m.bias, 0.)
class SEModule(nn.Module):
def __init__(self, channels, reduction):
super(SEModule, self).__init__()
self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
module_input = x
x = x.mean((2, 3), keepdim=True)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return module_input * x
class Bottleneck(nn.Module):
"""
Base class for bottlenecks that implements `forward()` method.
"""
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out = self.se_module(out) + residual
out = self.relu(out)
return out
class SEBottleneck(Bottleneck):
"""
Bottleneck for SENet154.
"""
expansion = 4
def __init__(self, inplanes, planes, groups, reduction, stride=1,
downsample=None):
super(SEBottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes * 2, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes * 2)
self.conv2 = nn.Conv2d(
planes * 2, planes * 4, kernel_size=3, stride=stride,
padding=1, groups=groups, bias=False)
self.bn2 = nn.BatchNorm2d(planes * 4)
self.conv3 = nn.Conv2d(
planes * 4, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.se_module = SEModule(planes * 4, reduction=reduction)
self.downsample = downsample
self.stride = stride
class SEResNetBottleneck(Bottleneck):
"""
ResNet bottleneck with a Squeeze-and-Excitation module. It follows Caffe
implementation and uses `stride=stride` in `conv1` and not in `conv2`
(the latter is used in the torchvision implementation of ResNet).
"""
expansion = 4
def __init__(self, inplanes, planes, groups, reduction, stride=1,
downsample=None):
super(SEResNetBottleneck, self).__init__()
self.conv1 = nn.Conv2d(
inplanes, planes, kernel_size=1, bias=False, stride=stride)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(
planes, planes, kernel_size=3, padding=1, groups=groups, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.se_module = SEModule(planes * 4, reduction=reduction)
self.downsample = downsample
self.stride = stride
class SEResNeXtBottleneck(Bottleneck):
"""
ResNeXt bottleneck type C with a Squeeze-and-Excitation module.
"""
expansion = 4
def __init__(self, inplanes, planes, groups, reduction, stride=1,
downsample=None, base_width=4):
super(SEResNeXtBottleneck, self).__init__()
width = math.floor(planes * (base_width / 64)) * groups
self.conv1 = nn.Conv2d(
inplanes, width, kernel_size=1, bias=False, stride=1)
self.bn1 = nn.BatchNorm2d(width)
self.conv2 = nn.Conv2d(
width, width, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False)
self.bn2 = nn.BatchNorm2d(width)
self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.se_module = SEModule(planes * 4, reduction=reduction)
self.downsample = downsample
self.stride = stride
class SEResNetBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None):
super(SEResNetBlock, self).__init__()
self.conv1 = nn.Conv2d(
inplanes, planes, kernel_size=3, padding=1, stride=stride, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(
planes, planes, kernel_size=3, padding=1, groups=groups, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.se_module = SEModule(planes, reduction=reduction)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
if self.downsample is not None:
residual = self.downsample(x)
out = self.se_module(out) + residual
out = self.relu(out)
return out
class SENet(nn.Module):
def __init__(self, block, layers, groups, reduction, drop_rate=0.2,
in_chans=3, inplanes=64, input_3x3=False, downsample_kernel_size=1,
downsample_padding=0, num_classes=1000, global_pool='avg'):
"""
Parameters
----------
block (nn.Module): Bottleneck class.
- For SENet154: SEBottleneck
- For SE-ResNet models: SEResNetBottleneck
- For SE-ResNeXt models: SEResNeXtBottleneck
layers (list of ints): Number of residual blocks for 4 layers of the
network (layer1...layer4).
groups (int): Number of groups for the 3x3 convolution in each
bottleneck block.
- For SENet154: 64
- For SE-ResNet models: 1
- For SE-ResNeXt models: 32
reduction (int): Reduction ratio for Squeeze-and-Excitation modules.
- For all models: 16
dropout_p (float or None): Drop probability for the Dropout layer.
If `None` the Dropout layer is not used.
- For SENet154: 0.2
- For SE-ResNet models: None
- For SE-ResNeXt models: None
inplanes (int): Number of input channels for layer1.
- For SENet154: 128
- For SE-ResNet models: 64
- For SE-ResNeXt models: 64
input_3x3 (bool): If `True`, use three 3x3 convolutions instead of
a single 7x7 convolution in layer0.
- For SENet154: True
- For SE-ResNet models: False
- For SE-ResNeXt models: False
downsample_kernel_size (int): Kernel size for downsampling convolutions
in layer2, layer3 and layer4.
- For SENet154: 3
- For SE-ResNet models: 1
- For SE-ResNeXt models: 1
downsample_padding (int): Padding for downsampling convolutions in
layer2, layer3 and layer4.
- For SENet154: 1
- For SE-ResNet models: 0
- For SE-ResNeXt models: 0
num_classes (int): Number of outputs in `last_linear` layer.
- For all models: 1000
"""
super(SENet, self).__init__()
self.inplanes = inplanes
self.num_classes = num_classes
self.drop_rate = drop_rate
if input_3x3:
layer0_modules = [
('conv1', nn.Conv2d(in_chans, 64, 3, stride=2, padding=1, bias=False)),
('bn1', nn.BatchNorm2d(64)),
('relu1', nn.ReLU(inplace=True)),
('conv2', nn.Conv2d(64, 64, 3, stride=1, padding=1, bias=False)),
('bn2', nn.BatchNorm2d(64)),
('relu2', nn.ReLU(inplace=True)),
('conv3', nn.Conv2d(64, inplanes, 3, stride=1, padding=1, bias=False)),
('bn3', nn.BatchNorm2d(inplanes)),
('relu3', nn.ReLU(inplace=True)),
]
else:
layer0_modules = [
('conv1', nn.Conv2d(
in_chans, inplanes, kernel_size=7, stride=2, padding=3, bias=False)),
('bn1', nn.BatchNorm2d(inplanes)),
('relu1', nn.ReLU(inplace=True)),
]
self.layer0 = nn.Sequential(OrderedDict(layer0_modules))
# To preserve compatibility with Caffe weights `ceil_mode=True` is used instead of `padding=1`.
self.pool0 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.feature_info = [dict(num_chs=inplanes, reduction=2, module='layer0')]
self.layer1 = self._make_layer(
block,
planes=64,
blocks=layers[0],
groups=groups,
reduction=reduction,
downsample_kernel_size=1,
downsample_padding=0
)
self.feature_info += [dict(num_chs=64 * block.expansion, reduction=4, module='layer1')]
self.layer2 = self._make_layer(
block,
planes=128,
blocks=layers[1],
stride=2,
groups=groups,
reduction=reduction,
downsample_kernel_size=downsample_kernel_size,
downsample_padding=downsample_padding
)
self.feature_info += [dict(num_chs=128 * block.expansion, reduction=8, module='layer2')]
self.layer3 = self._make_layer(
block,
planes=256,
blocks=layers[2],
stride=2,
groups=groups,
reduction=reduction,
downsample_kernel_size=downsample_kernel_size,
downsample_padding=downsample_padding
)
self.feature_info += [dict(num_chs=256 * block.expansion, reduction=16, module='layer3')]
self.layer4 = self._make_layer(
block,
planes=512,
blocks=layers[3],
stride=2,
groups=groups,
reduction=reduction,
downsample_kernel_size=downsample_kernel_size,
downsample_padding=downsample_padding
)
self.feature_info += [dict(num_chs=512 * block.expansion, reduction=32, module='layer4')]
self.num_features = 512 * block.expansion
self.global_pool, self.last_linear = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)
for m in self.modules():
_weight_init(m)
def _make_layer(self, block, planes, blocks, groups, reduction, stride=1,
downsample_kernel_size=1, downsample_padding=0):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(
self.inplanes, planes * block.expansion, kernel_size=downsample_kernel_size,
stride=stride, padding=downsample_padding, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = [block(self.inplanes, planes, groups, reduction, stride, downsample)]
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, groups, reduction))
return nn.Sequential(*layers)
def get_classifier(self):
return self.last_linear
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool, self.last_linear = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)
def forward_features(self, x):
x = self.layer0(x)
x = self.pool0(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def logits(self, x):
x = self.global_pool(x)
if self.drop_rate > 0.:
x = F.dropout(x, p=self.drop_rate, training=self.training)
x = self.last_linear(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.logits(x)
return x
def _create_senet(variant, pretrained=False, **kwargs):
return build_model_with_cfg(
SENet, variant, default_cfg=default_cfgs[variant], pretrained=pretrained, **kwargs)
@register_model
def legacy_seresnet18(pretrained=False, **kwargs):
model_args = dict(
block=SEResNetBlock, layers=[2, 2, 2, 2], groups=1, reduction=16, **kwargs)
return _create_senet('legacy_seresnet18', pretrained, **model_args)
@register_model
def legacy_seresnet34(pretrained=False, **kwargs):
model_args = dict(
block=SEResNetBlock, layers=[3, 4, 6, 3], groups=1, reduction=16, **kwargs)
return _create_senet('legacy_seresnet34', pretrained, **model_args)
@register_model
def legacy_seresnet50(pretrained=False, **kwargs):
model_args = dict(
block=SEResNetBottleneck, layers=[3, 4, 6, 3], groups=1, reduction=16, **kwargs)
return _create_senet('legacy_seresnet50', pretrained, **model_args)
@register_model
def legacy_seresnet101(pretrained=False, **kwargs):
model_args = dict(
block=SEResNetBottleneck, layers=[3, 4, 23, 3], groups=1, reduction=16, **kwargs)
return _create_senet('legacy_seresnet101', pretrained, **model_args)
@register_model
def legacy_seresnet152(pretrained=False, **kwargs):
model_args = dict(
block=SEResNetBottleneck, layers=[3, 8, 36, 3], groups=1, reduction=16, **kwargs)
return _create_senet('legacy_seresnet152', pretrained, **model_args)
@register_model
def legacy_senet154(pretrained=False, **kwargs):
model_args = dict(
block=SEBottleneck, layers=[3, 8, 36, 3], groups=64, reduction=16,
downsample_kernel_size=3, downsample_padding=1, inplanes=128, input_3x3=True, **kwargs)
return _create_senet('legacy_senet154', pretrained, **model_args)
@register_model
def legacy_seresnext26_32x4d(pretrained=False, **kwargs):
model_args = dict(
block=SEResNeXtBottleneck, layers=[2, 2, 2, 2], groups=32, reduction=16, **kwargs)
return _create_senet('legacy_seresnext26_32x4d', pretrained, **model_args)
@register_model
def legacy_seresnext50_32x4d(pretrained=False, **kwargs):
model_args = dict(
block=SEResNeXtBottleneck, layers=[3, 4, 6, 3], groups=32, reduction=16, **kwargs)
return _create_senet('legacy_seresnext50_32x4d', pretrained, **model_args)
@register_model
def legacy_seresnext101_32x4d(pretrained=False, **kwargs):
model_args = dict(
block=SEResNeXtBottleneck, layers=[3, 4, 23, 3], groups=32, reduction=16, **kwargs)
return _create_senet('legacy_seresnext101_32x4d', pretrained, **model_args)
|