File size: 15,978 Bytes
a5e11b9
 
 
79d936d
 
 
 
 
a5e11b9
 
 
 
 
 
 
 
79d936d
 
 
 
a5e11b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79d936d
a5e11b9
79d936d
 
 
 
 
 
a5e11b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79d936d
 
 
 
 
a5e11b9
79d936d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e11b9
 
 
 
 
 
 
 
 
 
 
 
 
79d936d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e11b9
 
79d936d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e11b9
 
79d936d
 
a5e11b9
79d936d
a5e11b9
79d936d
a5e11b9
79d936d
 
 
 
 
a5e11b9
79d936d
 
 
a5e11b9
 
79d936d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import os
import json
import time
import datetime
import pytz
import socket
import threading
import traceback
import gradio as gr

from huggingface_hub import try_to_load_from_cache, snapshot_download

from ...config import Config
from ...globals import Global
from ...models import clear_cache, unload_models
from ...utils.prompter import Prompter
from ..trainer_callback import (
    UiTrainerCallback, reset_training_status,
    update_training_states, set_train_output
)

from .data_processing import get_data_from_input


def do_train(
    # Dataset
    template,
    load_dataset_from,
    dataset_from_data_dir,
    dataset_text,
    dataset_text_format,
    dataset_plain_text_input_variables_separator,
    dataset_plain_text_input_and_output_separator,
    dataset_plain_text_data_separator,
    # Training Options
    max_seq_length,
    evaluate_data_count,
    micro_batch_size,
    gradient_accumulation_steps,
    epochs,
    learning_rate,
    train_on_inputs,
    lora_r,
    lora_alpha,
    lora_dropout,
    lora_target_modules,
    lora_modules_to_save,
    load_in_8bit,
    fp16,
    bf16,
    gradient_checkpointing,
    save_steps,
    save_total_limit,
    logging_steps,
    additional_training_arguments,
    additional_lora_config,
    model_name,
    continue_from_model,
    continue_from_checkpoint,
    progress=gr.Progress(track_tqdm=False),
):
    if Global.is_training:
        return render_training_status()

    reset_training_status()
    Global.is_train_starting = True

    try:
        base_model_name = Global.base_model_name
        tokenizer_name = Global.tokenizer_name or Global.base_model_name

        resume_from_checkpoint_param = None
        if continue_from_model == "-" or continue_from_model == "None":
            continue_from_model = None
        if continue_from_checkpoint == "-" or continue_from_checkpoint == "None":
            continue_from_checkpoint = None
        if continue_from_model:
            resume_from_model_path = os.path.join(
                Config.data_dir, "lora_models", continue_from_model)
            resume_from_checkpoint_param = resume_from_model_path
            if continue_from_checkpoint:
                resume_from_checkpoint_param = os.path.join(
                    resume_from_checkpoint_param, continue_from_checkpoint)
                will_be_resume_from_checkpoint_file = os.path.join(
                    resume_from_checkpoint_param, "pytorch_model.bin")
                if not os.path.exists(will_be_resume_from_checkpoint_file):
                    raise ValueError(
                        f"Unable to resume from checkpoint {continue_from_model}/{continue_from_checkpoint}. Resuming is only possible from checkpoints stored locally in the data directory. Please ensure that the file '{will_be_resume_from_checkpoint_file}' exists.")
            else:
                will_be_resume_from_checkpoint_file = os.path.join(
                    resume_from_checkpoint_param, "adapter_model.bin")
                if not os.path.exists(will_be_resume_from_checkpoint_file):
                    # Try to get model in Hugging Face cache
                    resume_from_checkpoint_param = None
                    possible_hf_model_name = None
                    possible_model_info_file = os.path.join(
                        resume_from_model_path, "info.json")
                    if "/" in continue_from_model:
                        possible_hf_model_name = continue_from_model
                    elif os.path.exists(possible_model_info_file):
                        with open(possible_model_info_file, "r") as file:
                            model_info = json.load(file)
                            possible_hf_model_name = model_info.get(
                                "hf_model_name")
                    if possible_hf_model_name:
                        possible_hf_model_cached_path = try_to_load_from_cache(
                            possible_hf_model_name, 'adapter_model.bin')
                        if not possible_hf_model_cached_path:
                            snapshot_download(possible_hf_model_name)
                            possible_hf_model_cached_path = try_to_load_from_cache(
                                possible_hf_model_name, 'adapter_model.bin')
                        if possible_hf_model_cached_path:
                            resume_from_checkpoint_param = os.path.dirname(
                                possible_hf_model_cached_path)

                    if not resume_from_checkpoint_param:
                        raise ValueError(
                            f"Unable to continue from model {continue_from_model}. Continuation is only possible from models stored locally in the data directory. Please ensure that the file '{will_be_resume_from_checkpoint_file}' exists.")

        output_dir = os.path.join(Config.data_dir, "lora_models", model_name)
        if os.path.exists(output_dir):
            if (not os.path.isdir(output_dir)) or os.path.exists(os.path.join(output_dir, 'adapter_config.json')):
                raise ValueError(
                    f"The output directory already exists and is not empty. ({output_dir})")

        wandb_group = template
        wandb_tags = [f"template:{template}"]
        if load_dataset_from == "Data Dir" and dataset_from_data_dir:
            wandb_group += f"/{dataset_from_data_dir}"
            wandb_tags.append(f"dataset:{dataset_from_data_dir}")

        finetune_args = {
            'base_model': base_model_name,
            'tokenizer': tokenizer_name,
            'output_dir': output_dir,
            'micro_batch_size': micro_batch_size,
            'gradient_accumulation_steps': gradient_accumulation_steps,
            'num_train_epochs': epochs,
            'learning_rate': learning_rate,
            'cutoff_len': max_seq_length,
            'val_set_size': evaluate_data_count,
            'lora_r': lora_r,
            'lora_alpha': lora_alpha,
            'lora_dropout': lora_dropout,
            'lora_target_modules': lora_target_modules,
            'lora_modules_to_save': lora_modules_to_save,
            'train_on_inputs': train_on_inputs,
            'load_in_8bit': load_in_8bit,
            'fp16': fp16,
            'bf16': bf16,
            'gradient_checkpointing': gradient_checkpointing,
            'group_by_length': False,
            'resume_from_checkpoint': resume_from_checkpoint_param,
            'save_steps': save_steps,
            'save_total_limit': save_total_limit,
            'logging_steps': logging_steps,
            'additional_training_arguments': additional_training_arguments,
            'additional_lora_config': additional_lora_config,
            'wandb_api_key': Config.wandb_api_key,
            'wandb_project': Config.default_wandb_project if Config.enable_wandb else None,
            'wandb_group': wandb_group,
            'wandb_run_name': model_name,
            'wandb_tags': wandb_tags
        }

        prompter = Prompter(template)
        data = get_data_from_input(
            load_dataset_from=load_dataset_from,
            dataset_text=dataset_text,
            dataset_text_format=dataset_text_format,
            dataset_plain_text_input_variables_separator=dataset_plain_text_input_variables_separator,
            dataset_plain_text_input_and_output_separator=dataset_plain_text_input_and_output_separator,
            dataset_plain_text_data_separator=dataset_plain_text_data_separator,
            dataset_from_data_dir=dataset_from_data_dir,
            prompter=prompter
        )

        def training():
            Global.is_training = True

            try:
                # Need RAM for training
                unload_models()
                Global.new_base_model_that_is_ready_to_be_used = None
                Global.name_of_new_base_model_that_is_ready_to_be_used = None
                clear_cache()

                train_data = prompter.get_train_data_from_dataset(data)

                if Config.ui_dev_mode:
                    message = "Currently in UI dev mode, not doing the actual training."
                    message += f"\n\nArgs: {json.dumps(finetune_args, indent=2)}"
                    message += f"\n\nTrain data (first 5):\n{json.dumps(train_data[:5], indent=2)}"

                    print(message)

                    total_steps = 300
                    for i in range(300):
                        if (Global.should_stop_training):
                            break

                        current_step = i + 1
                        total_epochs = 3
                        current_epoch = i / 100
                        log_history = []

                        if (i > 20):
                            loss = 3 + (i - 0) * (0.5 - 3) / (300 - 0)
                            log_history = [{'loss': loss}]

                        update_training_states(
                            total_steps=total_steps,
                            current_step=current_step,
                            total_epochs=total_epochs,
                            current_epoch=current_epoch,
                            log_history=log_history
                        )
                        time.sleep(0.1)

                    result_message = set_train_output(message)
                    print(result_message)
                    time.sleep(1)
                    Global.is_training = False
                    return

                training_callbacks = [UiTrainerCallback]

                if not os.path.exists(output_dir):
                    os.makedirs(output_dir)

                with open(os.path.join(output_dir, "info.json"), 'w') as info_json_file:
                    dataset_name = "N/A (from text input)"
                    if load_dataset_from == "Data Dir":
                        dataset_name = dataset_from_data_dir

                    info = {
                        'base_model': base_model_name,
                        'prompt_template': template,
                        'dataset_name': dataset_name,
                        'dataset_rows': len(train_data),
                        'trained_on_machine': socket.gethostname(),
                        'timestamp': time.time(),
                    }
                    if continue_from_model:
                        info['continued_from_model'] = continue_from_model
                        if continue_from_checkpoint:
                            info['continued_from_checkpoint'] = continue_from_checkpoint

                    if Global.version:
                        info['tuner_version'] = Global.version

                    json.dump(info, info_json_file, indent=2)

                train_output = Global.finetune_train_fn(
                    train_data=train_data,
                    callbacks=training_callbacks,
                    **finetune_args,
                )

                result_message = set_train_output(train_output)
                print(result_message + "\n" + str(train_output))

                clear_cache()

                Global.is_training = False

            except Exception as e:
                traceback.print_exc()
                Global.training_error_message = str(e)
            finally:
                Global.is_training = False

        training_thread = threading.Thread(target=training)
        training_thread.daemon = True
        training_thread.start()

    except Exception as e:
        Global.is_training = False
        traceback.print_exc()
        Global.training_error_message = str(e)
    finally:
        Global.is_train_starting = False

    return render_training_status()


def render_training_status():
    if not Global.is_training:
        if Global.is_train_starting:
            html_content = """
            <div class="progress-block">
              <div class="progress-level">
                <div class="progress-level-inner">
                  Starting...
                </div>
              </div>
            </div>
            """
            return (gr.HTML.update(value=html_content), gr.HTML.update(visible=True))

        if Global.training_error_message:
            html_content = f"""
            <div class="progress-block is_error">
              <div class="progress-level">
                <div class="error">
                  <div class="title">
                    ⚠ Something went wrong
                  </div>
                  <div class="error-message">{Global.training_error_message}</div>
                </div>
              </div>
            </div>
            """
            return (gr.HTML.update(value=html_content), gr.HTML.update(visible=False))

        if Global.train_output_str:
            end_message = "βœ… Training completed"
            if Global.should_stop_training:
                end_message = "πŸ›‘ Train aborted"
            html_content = f"""
            <div class="progress-block">
              <div class="progress-level">
                <div class="output">
                  <div class="title">
                    {end_message}
                  </div>
                  <div class="message">{Global.train_output_str}</div>
                </div>
              </div>
            </div>
            """
            return (gr.HTML.update(value=html_content), gr.HTML.update(visible=False))

        if Global.training_status_text:
            html_content = f"""
            <div class="progress-block">
              <div class="status">{Global.training_status_text}</div>
            </div>
            """
            return (gr.HTML.update(value=html_content), gr.HTML.update(visible=False))

        html_content = """
        <div class="progress-block">
          <div class="empty-text">
            Training status will be shown here
          </div>
        </div>
        """
        return (gr.HTML.update(value=html_content), gr.HTML.update(visible=False))

    meta_info = []
    meta_info.append(
        f"{Global.training_current_step}/{Global.training_total_steps} steps")
    current_time = time.time()
    time_elapsed = current_time - Global.train_started_at
    time_remaining = -1
    if Global.training_eta:
        time_remaining = Global.training_eta - current_time
    if time_remaining >= 0:
        meta_info.append(
            f"{format_time(time_elapsed)}<{format_time(time_remaining)}")
        meta_info.append(f"ETA: {format_timestamp(Global.training_eta)}")
    else:
        meta_info.append(format_time(time_elapsed))

    html_content = f"""
    <div class="progress-block is_training">
      <div class="meta-text">{' | '.join(meta_info)}</div>
      <div class="progress-level">
        <div class="progress-level-inner">
          {Global.training_status_text} - {Global.training_progress * 100:.2f}%
        </div>
        <div class="progress-bar-wrap">
          <div class="progress-bar" style="width: {Global.training_progress * 100:.2f}%;">
          </div>
        </div>
      </div>
    </div>
    """
    return (gr.HTML.update(value=html_content), gr.HTML.update(visible=True))


def format_time(seconds):
    hours, remainder = divmod(seconds, 3600)
    minutes, seconds = divmod(remainder, 60)
    if hours == 0:
        return "{:02d}:{:02d}".format(int(minutes), int(seconds))
    else:
        return "{:02d}:{:02d}:{:02d}".format(int(hours), int(minutes), int(seconds))


def format_timestamp(timestamp):
    dt_naive = datetime.datetime.utcfromtimestamp(timestamp)
    utc = pytz.UTC
    timezone = Config.timezone
    dt_aware = utc.localize(dt_naive).astimezone(timezone)
    now = datetime.datetime.now(timezone)
    delta = dt_aware.date() - now.date()
    if delta.days == 0:
        time_str = ""
    elif delta.days == 1:
        time_str = "tomorrow at "
    elif delta.days == -1:
        time_str = "yesterday at "
    else:
        time_str = dt_aware.strftime('%A, %B %d at ')
    time_str += dt_aware.strftime('%I:%M %p').lower()
    return time_str