import argparse import torch class BaseOptions(): def __init__(self): self.parser = argparse.ArgumentParser() self.initialized = False def initialize(self): self.parser.add_argument('--name', type=str, default='demo', help='name of the experiment. It decides where to store samples and models') self.parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') self.parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization') self.parser.add_argument('--use_dropout', action='store_true', help='use dropout for the generator') self.parser.add_argument('--data_type', default=32, type=int, choices=[8, 16, 32], help="Supported data type i.e. 8, 16, 32 bit") self.parser.add_argument('--verbose', action='store_true', default=False, help='toggles verbose') self.parser.add_argument('--batchSize', type=int, default=1, help='input batch size') self.parser.add_argument('--loadSize', type=int, default=512, help='scale images to this size') self.parser.add_argument('--fineSize', type=int, default=512, help='then crop to this size') self.parser.add_argument('--input_nc', type=int, default=3, help='# of input image channels') self.parser.add_argument('--output_nc', type=int, default=3, help='# of output image channels') self.parser.add_argument('--dataroot', type=str, default='/home/sh0089/sen/fashion/') self.parser.add_argument('--resize_or_crop', type=str, default='scale_width', help='scaling and cropping of images at load time [resize_and_crop|crop|scale_width|scale_width_and_crop]') self.parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly') self.parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data argumentation') self.parser.add_argument('--nThreads', default=1, type=int, help='# threads for loading data') self.parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.') self.parser.add_argument('--display_winsize', type=int, default=512, help='display window size') self.parser.add_argument('--tf_log', action='store_true', help='if specified, use tensorboard logging. Requires tensorflow installed') self.initialized = True def parse(self, save=True): if not self.initialized: self.initialize() self.opt = self.parser.parse_args() self.opt.isTrain = self.isTrain # train or test str_ids = self.opt.gpu_ids.split(',') self.opt.gpu_ids = [] for str_id in str_ids: id = int(str_id) if id >= 0: self.opt.gpu_ids.append(id) if len(self.opt.gpu_ids) > 0: torch.cuda.set_device(self.opt.gpu_ids[0]) args = vars(self.opt) print('------------ Options -------------') for k, v in sorted(args.items()): print('%s: %s' % (str(k), str(v))) print('-------------- End ----------------') return self.opt