import numpy as np import os import imageio import math import torch import importlib import re import argparse from natsort import natsorted # convert a tensor into a numpy array def tensor2im(image_tensor, bytes=255.0, imtype=np.uint8): if image_tensor.dim() == 3: image_numpy = image_tensor.cpu().float().numpy() else: image_numpy = image_tensor[0].cpu().float().numpy() image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * bytes return image_numpy.astype(imtype) # conver a tensor into a numpy array def tensor2array(value_tensor): if value_tensor.dim() == 3: numpy = value_tensor.view(-1).cpu().float().numpy() else: numpy = value_tensor[0].view(-1).cpu().float().numpy() return numpy # label color map def uint82bin(n, count=8): """returns the binary of integer n, count refers to amount of bits""" return ''.join([str((n >> y) & 1) for y in range(count-1, -1, -1)]) def labelcolormap(N): if N == 19: # CelebAMask-HQ cmap = np.array([(0, 0, 0), (204, 0, 0), (76, 153, 0), (204, 204, 0), (51, 51, 255), (204, 0, 204), (0, 255, 255), (51, 255, 255), (102, 51, 0), (255, 0, 0), (102, 204, 0), (255, 255, 0), (0, 0, 153), (0, 0, 204), (255, 51, 153), (0, 204, 204), (0, 51, 0), (255, 153, 51), (0, 204, 0)], dtype=np.uint8) else: cmap = np.zeros((N, 3), dtype=np.uint8) for i in range(N): r, g, b = 0, 0, 0 id = i for j in range(7): str_id = uint82bin(id) r = r ^ (np.uint8(str_id[-1]) << (7-j)) g = g ^ (np.uint8(str_id[-2]) << (7-j)) b = b ^ (np.uint8(str_id[-3]) << (7-j)) id = id >> 3 cmap[i, 0] = r cmap[i, 1] = g cmap[i, 2] = b return cmap class Colorize(object): def __init__(self, n): self.cmap = labelcolormap(n) self.cmap = torch.from_numpy(self.cmap[:n]) def __call__(self, gray_image): if len(gray_image.size()) != 3: gray_image = gray_image[0] size = gray_image.size() color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0) for label in range(0, len(self.cmap)): mask = (label == gray_image[0]).cpu() color_image[0][mask] = self.cmap[label][0] color_image[1][mask] = self.cmap[label][1] color_image[2][mask] = self.cmap[label][2] color_image = color_image.float()/255.0 * 2 - 1 return color_image def make_colorwheel(): ''' Generates a color wheel for optical flow visualization as presented in: Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf According to the C++ source code of Daniel Scharstein According to the Matlab source code of Deqing Sun ''' RY = 15 YG = 6 GC = 4 CB = 11 BM = 13 MR = 6 ncols = RY + YG + GC + CB + BM + MR colorwheel = np.zeros((ncols, 3)) col = 0 # RY colorwheel[0:RY, 0] = 255 colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY) col = col+RY # YG colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG) colorwheel[col:col+YG, 1] = 255 col = col+YG # GC colorwheel[col:col+GC, 1] = 255 colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC) col = col+GC # CB colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB) colorwheel[col:col+CB, 2] = 255 col = col+CB # BM colorwheel[col:col+BM, 2] = 255 colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM) col = col+BM # MR colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR) colorwheel[col:col+MR, 0] = 255 return colorwheel class flow2color(): # code from: https://github.com/tomrunia/OpticalFlow_Visualization # MIT License # # Copyright (c) 2018 Tom Runia # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to conditions. # # Author: Tom Runia # Date Created: 2018-08-03 def __init__(self): self.colorwheel = make_colorwheel() def flow_compute_color(self, u, v, convert_to_bgr=False): ''' Applies the flow color wheel to (possibly clipped) flow components u and v. According to the C++ source code of Daniel Scharstein According to the Matlab source code of Deqing Sun :param u: np.ndarray, input horizontal flow :param v: np.ndarray, input vertical flow :param convert_to_bgr: bool, whether to change ordering and output BGR instead of RGB :return: ''' flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) ncols = self.colorwheel.shape[0] rad = np.sqrt(np.square(u) + np.square(v)) a = np.arctan2(-v, -u)/np.pi fk = (a+1) / 2*(ncols-1) k0 = np.floor(fk).astype(np.int32) k1 = k0 + 1 k1[k1 == ncols] = 0 f = fk - k0 for i in range(self.colorwheel.shape[1]): tmp = self.colorwheel[:,i] col0 = tmp[k0] / 255.0 col1 = tmp[k1] / 255.0 col = (1-f)*col0 + f*col1 idx = (rad <= 1) col[idx] = 1 - rad[idx] * (1-col[idx]) col[~idx] = col[~idx] * 0.75 # out of range? # Note the 2-i => BGR instead of RGB ch_idx = 2-i if convert_to_bgr else i flow_image[:,:,ch_idx] = np.floor(255 * col) return flow_image def __call__(self, flow_uv, clip_flow=None, convert_to_bgr=False): ''' Expects a two dimensional flow image of shape [H,W,2] According to the C++ source code of Daniel Scharstein According to the Matlab source code of Deqing Sun :param flow_uv: np.ndarray of shape [H,W,2] :param clip_flow: float, maximum clipping value for flow :return: ''' if len(flow_uv.size()) != 3: flow_uv = flow_uv[0] flow_uv = flow_uv.permute(1,2,0).cpu().detach().numpy() assert flow_uv.ndim == 3, 'input flow must have three dimensions' assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]' if clip_flow is not None: flow_uv = np.clip(flow_uv, 0, clip_flow) u = flow_uv[:,:,1] v = flow_uv[:,:,0] rad = np.sqrt(np.square(u) + np.square(v)) rad_max = np.max(rad) epsilon = 1e-5 u = u / (rad_max + epsilon) v = v / (rad_max + epsilon) image = self.flow_compute_color(u, v, convert_to_bgr) image = torch.tensor(image).float().permute(2,0,1)/255.0 * 2 - 1 return image def save_image(image_numpy, image_path): if image_numpy.shape[2] == 1: image_numpy = image_numpy.reshape(image_numpy.shape[0], image_numpy.shape[1]) imageio.imwrite(image_path, image_numpy) def mkdirs(paths): if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): if not os.path.exists(path): os.makedirs(path) def find_class_in_module(target_cls_name, module): target_cls_name = target_cls_name.replace('_', '').lower() clslib = importlib.import_module(module) cls = None for name, clsobj in clslib.__dict__.items(): if name.lower() == target_cls_name: cls = clsobj if cls is None: print("In %s, there should be a class whose name matches %s in lowercase without underscore(_)" % (module, target_cls_name)) exit(0) return cls def atoi(text): return int(text) if text.isdigit() else text def natural_keys(text): ''' alist.sort(key=natural_keys) sorts in human order http://nedbatchelder.com/blog/200712/human_sorting.html (See Toothy's implementation in the comments) ''' return [atoi(c) for c in re.split('(\d+)', text)] def natural_sort(items): items.sort(key=natural_keys) class StoreDictKeyPair(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): my_dict = {} for kv in values.split(","): # print(kv) k,v = kv.split("=") my_dict[k] = int(v) setattr(namespace, self.dest, my_dict) class StoreList(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): my_list = [int(item) for item in values.split(',')] setattr(namespace, self.dest, my_list) # def get_iteration(dir_name, file_name, net_name): if os.path.exists(os.path.join(dir_name, file_name)) is False: return None if 'latest' in file_name: gen_models = [os.path.join(dir_name, f) for f in os.listdir(dir_name) if os.path.isfile(os.path.join(dir_name, f)) and (not 'latest' in f) and ('_net_'+net_name+'.pth' in f)] if gen_models == []: return 0 model_name = os.path.basename(natsorted(gen_models)[-1]) else: model_name = file_name iterations = int(model_name.replace('_net_'+net_name+'.pth', '')) return iterations