import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from math import sqrt def apply_offset(offset): sizes = list(offset.size()[2:]) grid_list = torch.meshgrid([torch.arange(size, device=offset.device) for size in sizes]) grid_list = reversed(grid_list) # apply offset grid_list = [grid.float().unsqueeze(0) + offset[:, dim, ...] for dim, grid in enumerate(grid_list)] # normalize grid_list = [grid / ((size - 1.0) / 2.0) - 1.0 for grid, size in zip(grid_list, reversed(sizes))] return torch.stack(grid_list, dim=-1) def TVLoss(x): tv_h = x[:, :, 1:, :] - x[:, :, :-1, :] tv_w = x[:, :, :, 1:] - x[:, :, :, :-1] return torch.mean(torch.abs(tv_h)) + torch.mean(torch.abs(tv_w)) # backbone class EqualLR: def __init__(self, name): self.name = name def compute_weight(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * sqrt(2 / fan_in) @staticmethod def apply(module, name): fn = EqualLR(name) weight = getattr(module, name) del module._parameters[name] module.register_parameter(name + '_orig', nn.Parameter(weight.data)) module.register_forward_pre_hook(fn) return fn def __call__(self, module, input): weight = self.compute_weight(module) setattr(module, self.name, weight) def equal_lr(module, name='weight'): EqualLR.apply(module, name) return module class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() linear = nn.Linear(in_dim, out_dim) linear.weight.data.normal_() linear.bias.data.zero_() self.linear = equal_lr(linear) def forward(self, input): return self.linear(input) class ModulatedConv2d(nn.Module): def __init__(self, fin, fout, kernel_size, padding_type='zero', upsample=False, downsample=False, latent_dim=512, normalize_mlp=False): super(ModulatedConv2d, self).__init__() self.in_channels = fin self.out_channels = fout self.kernel_size = kernel_size padding_size = kernel_size // 2 if kernel_size == 1: self.demudulate = False else: self.demudulate = True self.weight = nn.Parameter(torch.Tensor(fout, fin, kernel_size, kernel_size)) self.bias = nn.Parameter(torch.Tensor(1, fout, 1, 1)) #self.conv = F.conv2d if normalize_mlp: self.mlp_class_std = nn.Sequential(EqualLinear(latent_dim, fin), PixelNorm()) else: self.mlp_class_std = EqualLinear(latent_dim, fin) #self.blur = Blur(fout) if padding_type == 'reflect': self.padding = nn.ReflectionPad2d(padding_size) else: self.padding = nn.ZeroPad2d(padding_size) self.weight.data.normal_() self.bias.data.zero_() def forward(self, input, latent): fan_in = self.weight.data.size(1) * self.weight.data[0][0].numel() weight = self.weight * sqrt(2 / fan_in) weight = weight.view(1, self.out_channels, self.in_channels, self.kernel_size, self.kernel_size) s = self.mlp_class_std(latent).view(-1, 1, self.in_channels, 1, 1) weight = s * weight if self.demudulate: d = torch.rsqrt((weight ** 2).sum(4).sum(3).sum(2) + 1e-5).view(-1, self.out_channels, 1, 1, 1) weight = (d * weight).view(-1, self.in_channels, self.kernel_size, self.kernel_size) else: weight = weight.view(-1, self.in_channels, self.kernel_size, self.kernel_size) batch,_,height,width = input.shape #input = input.view(1,-1,h,w) #input = self.padding(input) #out = self.conv(input, weight, groups=b).view(b, self.out_channels, h, w) + self.bias input = input.view(1,-1,height,width) input = self.padding(input) out = F.conv2d(input, weight, groups=batch).view(batch, self.out_channels, height, width) + self.bias return out class StyledConvBlock(nn.Module): def __init__(self, fin, fout, latent_dim=256, padding='zero', actvn='lrelu', normalize_affine_output=False, modulated_conv=False): super(StyledConvBlock, self).__init__() if not modulated_conv: if padding == 'reflect': padding_layer = nn.ReflectionPad2d else: padding_layer = nn.ZeroPad2d if modulated_conv: conv2d = ModulatedConv2d else: conv2d = EqualConv2d if modulated_conv: self.actvn_gain = sqrt(2) else: self.actvn_gain = 1.0 self.modulated_conv = modulated_conv if actvn == 'relu': activation = nn.ReLU(True) else: activation = nn.LeakyReLU(0.2,True) if self.modulated_conv: self.conv0 = conv2d(fin, fout, kernel_size=3, padding_type=padding, upsample=False, latent_dim=latent_dim, normalize_mlp=normalize_affine_output) else: conv0 = conv2d(fin, fout, kernel_size=3) seq0 = [padding_layer(1), conv0] self.conv0 = nn.Sequential(*seq0) self.actvn0 = activation if self.modulated_conv: self.conv1 = conv2d(fout, fout, kernel_size=3, padding_type=padding, downsample=False, latent_dim=latent_dim, normalize_mlp=normalize_affine_output) else: conv1 = conv2d(fout, fout, kernel_size=3) seq1 = [padding_layer(1), conv1] self.conv1 = nn.Sequential(*seq1) self.actvn1 = activation def forward(self, input, latent=None): if self.modulated_conv: out = self.conv0(input,latent) else: out = self.conv0(input) out = self.actvn0(out) * self.actvn_gain if self.modulated_conv: out = self.conv1(out,latent) else: out = self.conv1(out) out = self.actvn1(out) * self.actvn_gain return out class Styled_F_ConvBlock(nn.Module): def __init__(self, fin, fout, latent_dim=256, padding='zero', actvn='lrelu', normalize_affine_output=False, modulated_conv=False): super(Styled_F_ConvBlock, self).__init__() if not modulated_conv: if padding == 'reflect': padding_layer = nn.ReflectionPad2d else: padding_layer = nn.ZeroPad2d if modulated_conv: conv2d = ModulatedConv2d else: conv2d = EqualConv2d if modulated_conv: self.actvn_gain = sqrt(2) else: self.actvn_gain = 1.0 self.modulated_conv = modulated_conv if actvn == 'relu': activation = nn.ReLU(True) else: activation = nn.LeakyReLU(0.2,True) if self.modulated_conv: self.conv0 = conv2d(fin, 128, kernel_size=3, padding_type=padding, upsample=False, latent_dim=latent_dim, normalize_mlp=normalize_affine_output) else: conv0 = conv2d(fin, 128, kernel_size=3) seq0 = [padding_layer(1), conv0] self.conv0 = nn.Sequential(*seq0) self.actvn0 = activation if self.modulated_conv: self.conv1 = conv2d(128, fout, kernel_size=3, padding_type=padding, downsample=False, latent_dim=latent_dim, normalize_mlp=normalize_affine_output) else: conv1 = conv2d(128, fout, kernel_size=3) seq1 = [padding_layer(1), conv1] self.conv1 = nn.Sequential(*seq1) #self.actvn1 = activation def forward(self, input, latent=None): if self.modulated_conv: out = self.conv0(input,latent) else: out = self.conv0(input) out = self.actvn0(out) * self.actvn_gain if self.modulated_conv: out = self.conv1(out,latent) else: out = self.conv1(out) #out = self.actvn1(out) * self.actvn_gain return out class ResBlock(nn.Module): def __init__(self, in_channels): super(ResBlock, self).__init__() self.block = nn.Sequential( nn.BatchNorm2d(in_channels), nn.ReLU(inplace=True), nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(in_channels), nn.ReLU(inplace=True), nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False) ) def forward(self, x): return self.block(x) + x class DownSample(nn.Module): def __init__(self, in_channels, out_channels): super(DownSample, self).__init__() self.block= nn.Sequential( nn.BatchNorm2d(in_channels), nn.ReLU(inplace=True), nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1, bias=False) ) def forward(self, x): return self.block(x) class FeatureEncoder(nn.Module): def __init__(self, in_channels, chns=[64,128,256,256,256]): # in_channels = 3 for images, and is larger (e.g., 17+1+1) for agnositc representation super(FeatureEncoder, self).__init__() self.encoders = [] for i, out_chns in enumerate(chns): if i == 0: encoder = nn.Sequential(DownSample(in_channels, out_chns), ResBlock(out_chns), ResBlock(out_chns)) else: encoder = nn.Sequential(DownSample(chns[i-1], out_chns), ResBlock(out_chns), ResBlock(out_chns)) self.encoders.append(encoder) self.encoders = nn.ModuleList(self.encoders) def forward(self, x): encoder_features = [] for encoder in self.encoders: x = encoder(x) encoder_features.append(x) return encoder_features class RefinePyramid(nn.Module): def __init__(self, chns=[64,128,256,256,256], fpn_dim=256): super(RefinePyramid, self).__init__() self.chns = chns # adaptive self.adaptive = [] for in_chns in list(reversed(chns)): adaptive_layer = nn.Conv2d(in_chns, fpn_dim, kernel_size=1) self.adaptive.append(adaptive_layer) self.adaptive = nn.ModuleList(self.adaptive) # output conv self.smooth = [] for i in range(len(chns)): smooth_layer = nn.Conv2d(fpn_dim, fpn_dim, kernel_size=3, padding=1) self.smooth.append(smooth_layer) self.smooth = nn.ModuleList(self.smooth) def forward(self, x): conv_ftr_list = x feature_list = [] last_feature = None for i, conv_ftr in enumerate(list(reversed(conv_ftr_list))): # adaptive feature = self.adaptive[i](conv_ftr) # fuse if last_feature is not None: feature = feature + F.interpolate(last_feature, scale_factor=2, mode='nearest') # smooth feature = self.smooth[i](feature) last_feature = feature feature_list.append(feature) return tuple(reversed(feature_list)) class AFlowNet(nn.Module): def __init__(self, num_pyramid, fpn_dim=256): super(AFlowNet, self).__init__() padding_type='zero' actvn = 'lrelu' normalize_mlp = False modulated_conv = True self.netRefine = [] self.netStyle = [] self.netF = [] for i in range(num_pyramid): netRefine_layer = torch.nn.Sequential( torch.nn.Conv2d(2 * fpn_dim, out_channels=128, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=32, out_channels=2, kernel_size=3, stride=1, padding=1) ) style_block = StyledConvBlock(256, 49, latent_dim=256, padding=padding_type, actvn=actvn, normalize_affine_output=normalize_mlp, modulated_conv=modulated_conv) style_F_block = Styled_F_ConvBlock(49, 2, latent_dim=256, padding=padding_type, actvn=actvn, normalize_affine_output=normalize_mlp, modulated_conv=modulated_conv) self.netRefine.append(netRefine_layer) self.netStyle.append(style_block) self.netF.append(style_F_block) self.netRefine = nn.ModuleList(self.netRefine) self.netStyle = nn.ModuleList(self.netStyle) self.netF = nn.ModuleList(self.netF) self.cond_style = torch.nn.Sequential(torch.nn.Conv2d(256, 128, kernel_size=(8,6), stride=1, padding=0), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)) self.image_style = torch.nn.Sequential(torch.nn.Conv2d(256, 128, kernel_size=(8,6), stride=1, padding=0), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)) def forward(self, x, x_warps, x_conds, warp_feature=True): last_flow = None B = x_conds[len(x_warps)-1].shape[0] cond_style = self.cond_style(x_conds[len(x_warps) - 1]).view(B,-1) image_style = self.image_style(x_warps[len(x_warps) - 1]).view(B,-1) style = torch.cat([cond_style, image_style], 1) for i in range(len(x_warps)): x_warp = x_warps[len(x_warps) - 1 - i] x_cond = x_conds[len(x_warps) - 1 - i] if last_flow is not None and warp_feature: x_warp_after = F.grid_sample(x_warp, last_flow.detach().permute(0, 2, 3, 1), mode='bilinear', padding_mode='border') else: x_warp_after = x_warp stylemap = self.netStyle[i](x_warp_after, style) flow = self.netF[i](stylemap, style) flow = apply_offset(flow) if last_flow is not None: flow = F.grid_sample(last_flow, flow, mode='bilinear', padding_mode='border') else: flow = flow.permute(0, 3, 1, 2) last_flow = flow x_warp = F.grid_sample(x_warp, flow.permute(0, 2, 3, 1),mode='bilinear', padding_mode='border') concat = torch.cat([x_warp,x_cond],1) flow = self.netRefine[i](concat) flow = apply_offset(flow) flow = F.grid_sample(last_flow, flow, mode='bilinear', padding_mode='border') last_flow = F.interpolate(flow, scale_factor=2, mode='bilinear') x_warp = F.grid_sample(x, last_flow.permute(0, 2, 3, 1), mode='bilinear', padding_mode='border') return x_warp, last_flow class AFWM(nn.Module): def __init__(self, opt, input_nc): super(AFWM, self).__init__() num_filters = [64,128,256,256,256] self.image_features = FeatureEncoder(3, num_filters) self.cond_features = FeatureEncoder(input_nc, num_filters) self.image_FPN = RefinePyramid(num_filters) self.cond_FPN = RefinePyramid(num_filters) self.aflow_net = AFlowNet(len(num_filters)) def forward(self, cond_input, image_input): #import ipdb; ipdb.set_trace() cond_pyramids = self.cond_FPN(self.cond_features(cond_input)) # maybe use nn.Sequential image_pyramids = self.image_FPN(self.image_features(image_input)) x_warp, last_flow = self.aflow_net(image_input, image_pyramids, cond_pyramids) return x_warp, last_flow def update_learning_rate(self,optimizer): lrd = opt.lr / opt.niter_decay lr = self.old_lr - lrd for param_group in optimizer.param_groups: param_group['lr'] = lr if opt.verbose: print('update learning rate: %f -> %f' % (self.old_lr, lr)) self.old_lr = lr def update_learning_rate_warp(self,optimizer): lrd = 0.2 * opt.lr / opt.niter_decay lr = self.old_lr_warp - lrd for param_group in optimizer.param_groups: param_group['lr'] = lr if opt.verbose: print('update learning rate: %f -> %f' % (self.old_lr_warp, lr)) self.old_lr_warp = lr