import streamlit as st import torch import torch.nn as nn import transformers from transformers import AutoTokenizer,AutoModel import numpy as np import torch.nn as nn import matplotlib.pyplot as plt import torch.nn.functional as F class BCNN(nn.Module): def __init__(self, embedding_dim, output_dim, dropout,bidirectional_units,conv_filters): super().__init__() self.bert = AutoModel.from_pretrained('vinai/phobert-base-v2') #.fc_input = nn.Linear(embedding_dim,embedding_dim) self.bidirectional_lstm = nn.LSTM( embedding_dim, bidirectional_units, bidirectional=True, batch_first=True ) self.conv1 = nn.Conv1d(in_channels=2*bidirectional_units, out_channels=conv_filters[0], kernel_size=4) self.conv2 = nn.Conv1d(in_channels=2*bidirectional_units, out_channels=conv_filters[1], kernel_size=5) self.fc = nn.Linear(64, output_dim) self.dropout = nn.Dropout(dropout) def forward(self,b_input_ids,b_input_mask): encoded = self.bert(b_input_ids,b_input_mask)[0] embedded, _ = self.bidirectional_lstm(encoded) embedded = embedded.permute(0, 2, 1) conved_1 = F.relu(self.conv1(embedded)) conved_2 = F.relu(self.conv2(embedded)) #conved_n = [batch size, n_filters, sent len - filter_sizes[n] + 1] pooled_1 = F.max_pool1d(conved_1, conved_1.shape[2]).squeeze(2) pooled_2 = F.max_pool1d(conved_2, conved_2.shape[2]).squeeze(2) #pooled_n = [batch size, n_fibatlters] cat = self.dropout(torch.cat((pooled_1, pooled_2), dim = 1)) #cat = [batch size, n_filters * len(filter_sizes)] result = self.fc(cat) return result class TextClassificationApp: def __init__(self, model_path, class_names, model_name='vinai/phobert-base-v2'): """ Initialize Streamlit Text Classification App Args: model_path (str): Path to the pre-trained .pt model file class_names (list): List of classification labels model_name (str): Hugging Face model name for tokenization """ # Set up Streamlit page st.set_page_config( page_title="Text Classification", page_icon="📝", layout="wide" ) # Device configuration self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Load tokenizer self.tokenizer = AutoTokenizer.from_pretrained(model_name) # Load the model EMBEDDING_DIM = 768 OUTPUT_DIM = 2 DROPOUT = 0.1 CONV_FILTERS = [32, 32] # Number of filters for each kernel size (4 and 5) BIDIRECTIONAL_UNITS = 128 self.model = BCNN(EMBEDDING_DIM, OUTPUT_DIM, DROPOUT, BIDIRECTIONAL_UNITS, CONV_FILTERS) self.model = torch.load(r'toxic.pt',map_location=torch.device('cpu')) self.model.eval() # Set to evaluation mode # Store class names self.class_names = class_names # Maximum sequence length self.max_length = 128 def preprocess_text(self, text): """ Preprocess input text for model prediction Args: text (str): Input text to classify Returns: torch.Tensor: Tokenized and encoded input """ # Tokenize and encode the text input_ids = [] attention_masks = [] encoded = self.tokenizer.encode_plus( text, add_special_tokens=True, max_length=self.max_length, padding='max_length', truncation=True, return_tensors='pt' ) input_ids.append(encoded['input_ids'].to(self.device)) attention_masks.append(encoded['attention_mask'].to(self.device)) input_ids = torch.cat(input_ids, dim=0).to(self.device) attention_masks = torch.cat(attention_masks, dim=0).to(self.device) return input_ids, attention_masks def predict(self, text): """ Make prediction on the input text Args: text (str): Input text to classify Returns: tuple: (predicted class, probabilities) """ # Preprocess the text inputs,mask = self.preprocess_text(text) # Disable gradient calculation with torch.no_grad(): # Get model outputs outputs = self.model(inputs,mask) # Apply softmax to get probabilities probabilities = torch.softmax(outputs, dim=1) # Get top predictions top_probs, top_classes = torch.topk(probabilities, k=1) return top_classes[0].cpu().numpy(), top_probs[0].cpu().numpy() def run(self): """ Main Streamlit app runner """ # Title and description st.title("📄 Text Classification") st.write("Enter text to classify") # Text input text_input = st.text_area( "Paste your text here", height=250, placeholder="Enter the text you want to classify..." ) # Prediction button if st.button("Classify Text"): if text_input.strip(): # Make prediction top_classes, top_probs = self.predict(text_input) # Display results st.subheader("Classification Results") # Create columns for results cols = st.columns(3) for i, (cls, prob) in enumerate(zip(top_classes, top_probs)): with cols[i]: st.metric( label=f"Top {i+1} Prediction", value=f"{self.class_names[cls]}", delta=f"{prob:.2%}" ) # Show input text details with st.expander("Input Text Details"): st.write("**Original Text:**") st.write(text_input) st.write(f"**Text Length:** {len(text_input)} characters") else: st.warning("Please enter some text to classify") def main(): # Replace these with your actual model path and class names MODEL_PATH = '/workspaces/final-project-dl/toxic.pt' CLASS_NAMES = [ 'Non-toxic', 'Toxic' ] # Initialize and run the app app = TextClassificationApp(MODEL_PATH, CLASS_NAMES) app.run() if __name__ == "__main__": main()