Update app.py
Browse files
app.py
CHANGED
@@ -8,10 +8,6 @@ import torch.nn as nn
|
|
8 |
import torch.nn.functional as F
|
9 |
import pandas as pd
|
10 |
import re
|
11 |
-
from sacremoses import MosesTokenizer, MosesDetokenizer
|
12 |
-
teencode_df = pd.read_csv('teencode.txt',names=['teencode','map'],sep='\t',)
|
13 |
-
teencode_list = teencode_df['teencode'].to_list()
|
14 |
-
map_list = teencode_df['map'].to_list()
|
15 |
class BCNN(nn.Module):
|
16 |
def __init__(self, embedding_dim, output_dim,
|
17 |
dropout,bidirectional_units,conv_filters):
|
@@ -100,38 +96,6 @@ class TextClassificationApp:
|
|
100 |
words.append(re.sub(r'([A-Z])\1+', lambda m: m.group(1), word, flags = re.IGNORECASE))
|
101 |
return ' '.join(words)
|
102 |
|
103 |
-
def searchTeencode(self,word):
|
104 |
-
try:
|
105 |
-
global teencode_count
|
106 |
-
index = teencode_list.index(word)
|
107 |
-
map_word = map_list[index]
|
108 |
-
teencode_count += 1
|
109 |
-
return map_word
|
110 |
-
except:
|
111 |
-
pass
|
112 |
-
|
113 |
-
def deTeencode(self, sentence):
|
114 |
-
lenn = 0
|
115 |
-
sentence = str(sentence)
|
116 |
-
# Tokenize
|
117 |
-
nestList_tokens = sentence.split()
|
118 |
-
for tokens_idx, text_tokens in enumerate(nestList_tokens):
|
119 |
-
# Teencode
|
120 |
-
lenn += len(text_tokens)
|
121 |
-
for idx, word in enumerate(text_tokens):
|
122 |
-
deteencoded = self.searchTeencode(word)
|
123 |
-
if deteencoded is not None:
|
124 |
-
text_tokens[idx] = deteencoded
|
125 |
-
nestList_tokens[tokens_idx] = text_tokens
|
126 |
-
|
127 |
-
flat_list = [item for sublist in nestList_tokens for item in sublist]
|
128 |
-
|
129 |
-
# Detokenize
|
130 |
-
detokens = MosesDetokenizer().detokenize(flat_list, return_str=True)
|
131 |
-
|
132 |
-
return detokens
|
133 |
-
|
134 |
-
|
135 |
def preprocess_text(self, text):
|
136 |
"""
|
137 |
Preprocess input text for model prediction
|
@@ -144,7 +108,6 @@ class TextClassificationApp:
|
|
144 |
"""
|
145 |
# Tokenize and encode the text
|
146 |
text = self.remove_dub_char(text)
|
147 |
-
text = self.deTeencode(text)
|
148 |
input_ids = []
|
149 |
attention_masks = []
|
150 |
encoded = self.tokenizer.encode_plus(
|
|
|
8 |
import torch.nn.functional as F
|
9 |
import pandas as pd
|
10 |
import re
|
|
|
|
|
|
|
|
|
11 |
class BCNN(nn.Module):
|
12 |
def __init__(self, embedding_dim, output_dim,
|
13 |
dropout,bidirectional_units,conv_filters):
|
|
|
96 |
words.append(re.sub(r'([A-Z])\1+', lambda m: m.group(1), word, flags = re.IGNORECASE))
|
97 |
return ' '.join(words)
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
def preprocess_text(self, text):
|
100 |
"""
|
101 |
Preprocess input text for model prediction
|
|
|
108 |
"""
|
109 |
# Tokenize and encode the text
|
110 |
text = self.remove_dub_char(text)
|
|
|
111 |
input_ids = []
|
112 |
attention_masks = []
|
113 |
encoded = self.tokenizer.encode_plus(
|