File size: 7,401 Bytes
5f49389 a1474f1 8fc3e0c 5f49389 a1474f1 5f49389 a1474f1 5f49389 a1474f1 5f49389 7dbb487 5f49389 a1474f1 5f49389 a1474f1 5f49389 64a741a 5f49389 f1a52ff 5f49389 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import streamlit as st
import torch
import torch.nn as nn
import transformers
from transformers import AutoTokenizer,AutoModel
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
import re
teencode_df = pd.read_csv('teencode.txt',names=['teencode','map'],sep='\t',)
teencode_list = teencode_df['teencode'].to_list()
map_list = teencode_df['map'].to_list()
class BCNN(nn.Module):
def __init__(self, embedding_dim, output_dim,
dropout,bidirectional_units,conv_filters):
super().__init__()
self.bert = AutoModel.from_pretrained('vinai/phobert-base-v2')
#.fc_input = nn.Linear(embedding_dim,embedding_dim)
self.bidirectional_lstm = nn.LSTM(
embedding_dim, bidirectional_units, bidirectional=True, batch_first=True
)
self.conv1 = nn.Conv1d(in_channels=2*bidirectional_units, out_channels=conv_filters[0], kernel_size=4)
self.conv2 = nn.Conv1d(in_channels=2*bidirectional_units, out_channels=conv_filters[1], kernel_size=5)
self.fc = nn.Linear(64, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self,b_input_ids,b_input_mask):
encoded = self.bert(b_input_ids,b_input_mask)[0]
embedded, _ = self.bidirectional_lstm(encoded)
embedded = embedded.permute(0, 2, 1)
conved_1 = F.relu(self.conv1(embedded))
conved_2 = F.relu(self.conv2(embedded))
#conved_n = [batch size, n_filters, sent len - filter_sizes[n] + 1]
pooled_1 = F.max_pool1d(conved_1, conved_1.shape[2]).squeeze(2)
pooled_2 = F.max_pool1d(conved_2, conved_2.shape[2]).squeeze(2)
#pooled_n = [batch size, n_fibatlters]
cat = self.dropout(torch.cat((pooled_1, pooled_2), dim = 1))
#cat = [batch size, n_filters * len(filter_sizes)]
result = self.fc(cat)
return result
class TextClassificationApp:
def __init__(self, model_path, class_names, model_name='vinai/phobert-base-v2'):
"""
Initialize Streamlit Text Classification App
Args:
model_path (str): Path to the pre-trained .pt model file
class_names (list): List of classification labels
model_name (str): Hugging Face model name for tokenization
"""
# Set up Streamlit page
# Custom CSS for justice-themed design
# Streamlit page configuration
st.set_page_config(
page_title="⚖️ Text Justice Classifier",
page_icon="⚖️",
layout="wide"
)
# Device configuration
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load the model
EMBEDDING_DIM = 768
OUTPUT_DIM = 2
DROPOUT = 0.1
CONV_FILTERS = [32, 32] # Number of filters for each kernel size (4 and 5)
BIDIRECTIONAL_UNITS = 128
self.model = BCNN(EMBEDDING_DIM, OUTPUT_DIM, DROPOUT, BIDIRECTIONAL_UNITS, CONV_FILTERS)
self.model = torch.load(r'toxic.pt',map_location=torch.device('cpu'),weights_only = False)
self.model.eval() # Set to evaluation mode
# Store class names
self.class_names = class_names
# Maximum sequence length
self.max_length = 128
def remove_dub_char(self, sentence):
sentence = str(sentence)
words = []
for word in sentence.strip().split():
if word in teencode_list:
words.append(word)
continue
words.append(re.sub(r'([A-Z])\1+', lambda m: m.group(1), word, flags = re.IGNORECASE))
return ' '.join(words)
def preprocess_text(self, text):
"""
Preprocess input text for model prediction
Args:
text (str): Input text to classify
Returns:
torch.Tensor: Tokenized and encoded input
"""
# Tokenize and encode the text
text = self.remove_dub_char(text)
input_ids = []
attention_masks = []
encoded = self.tokenizer.encode_plus(
text,
add_special_tokens=True,
max_length=self.max_length,
padding='max_length',
truncation=True,
return_tensors='pt'
)
input_ids.append(encoded['input_ids'].to(self.device))
attention_masks.append(encoded['attention_mask'].to(self.device))
input_ids = torch.cat(input_ids, dim=0).to(self.device)
attention_masks = torch.cat(attention_masks, dim=0).to(self.device)
return input_ids, attention_masks
def predict(self, text):
"""
Make prediction on the input text
Args:
text (str): Input text to classify
Returns:
tuple: (predicted class, probabilities)
"""
# Preprocess the text
inputs,mask = self.preprocess_text(text)
# Disable gradient calculation
with torch.no_grad():
# Get model outputs
outputs = self.model(inputs,mask)
# Apply softmax to get probabilities
probabilities = torch.softmax(outputs, dim=1)
# Get top predictions
top_probs, top_classes = torch.topk(probabilities, k=1)
return top_classes[0].cpu().numpy(), top_probs[0].cpu().numpy()
def run(self):
"""
Main Streamlit app runner
"""
# Title and description
st.title("📄 Toxic Classification")
st.write("Enter text to classify")
# Text input
text_input = st.text_area(
"Paste your text here",
height=250,
placeholder="Enter the text you want to classify..."
)
# Prediction button
if st.button("Classify Text"):
if text_input.strip():
# Make prediction
top_classes, top_probs = self.predict(text_input)
# Display results
st.subheader("Classification Results")
# Create columns for results
cols = st.columns(3)
for i, (cls, prob) in enumerate(zip(top_classes, top_probs)):
with cols[i]:
st.metric(
label=f"Top {i+1} Prediction",
value=f"{self.class_names[cls]}",
delta=f"{prob:.2%}"
)
# Show input text details
with st.expander("Input Text Details"):
st.write("**Original Text:**")
st.write(text_input)
st.write(f"**Text Length:** {len(text_input)} characters")
else:
st.warning("Please enter some text to classify")
def main():
# Replace these with your actual model path and class names
MODEL_PATH = 'toxic.pt'
CLASS_NAMES = [
'Non-toxic',
'Toxic'
]
# Initialize and run the app
app = TextClassificationApp(MODEL_PATH, CLASS_NAMES)
app.run()
if __name__ == "__main__":
main() |