linoyts HF Staff commited on
Commit
0f291d9
·
verified ·
1 Parent(s): b6730f2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -60,7 +60,7 @@ optimize_pipeline_(pipe,
60
  )
61
 
62
 
63
- default_prompt_i2v = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
64
  default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
65
 
66
 
@@ -90,11 +90,11 @@ def generate_video(
90
  progress=gr.Progress(track_tqdm=True),
91
  ):
92
  """
93
- Generate a video from an input image using the Wan 2.2 14B I2V model with Phantom LoRA.
94
 
95
- This function takes an input image and generates a video animation based on the provided
96
- prompt and parameters. It uses an FP8 qunatized Wan 2.2 14B Image-to-Video model in with Phantom LoRA
97
- for fast generation in 6-8 steps.
98
 
99
  Args:
100
  prompt (str): Text prompt describing the desired animation or motion.
@@ -153,18 +153,18 @@ def generate_video(
153
  return video_path, current_seed
154
 
155
  with gr.Blocks() as demo:
156
- gr.Markdown("# Fast 6 steps Wan 2.2 I2V (14B) with Phantom LoRA")
157
- gr.Markdown("run Wan 2.2 in just 6-8 steps, with [FusionX Phantom LoRA by DeeJayT](https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX/tree/main/FusionX_LoRa), compatible with 🧨 diffusers")
158
  with gr.Row():
159
  with gr.Column():
160
- prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
161
  duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=MAX_DURATION, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
162
 
163
  with gr.Accordion("Advanced Settings", open=False):
164
  negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
165
  seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
166
  randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
167
- steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps")
168
  guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage")
169
  guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=3, label="Guidance Scale 2 - low noise stage")
170
 
 
60
  )
61
 
62
 
63
+ default_prompt_t2v = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
64
  default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
65
 
66
 
 
90
  progress=gr.Progress(track_tqdm=True),
91
  ):
92
  """
93
+ Generate a video from a text prompt using the Wan 2.2 14B T2V model with Lightning LoRA.
94
 
95
+ This function takes an input prompt and generates a video animation based on the provided
96
+ prompt and parameters. It uses an FP8 qunatized Wan 2.2 14B Text-to-Video model with Lightning LoRA
97
+ for fast generation in 4-8 steps.
98
 
99
  Args:
100
  prompt (str): Text prompt describing the desired animation or motion.
 
153
  return video_path, current_seed
154
 
155
  with gr.Blocks() as demo:
156
+ gr.Markdown("# Fast 4 steps Wan 2.2 T2V (14B) with Lightning LoRA")
157
+ gr.Markdown("run Wan 2.2 in just 4-8 steps, with [Wan 2.2 Lightning LoRA](https://huggingface.co/Kijai/WanVideo_comfy/tree/main/Wan22-Lightning), compatible with 🧨 diffusers")
158
  with gr.Row():
159
  with gr.Column():
160
+ prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v)
161
  duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=MAX_DURATION, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
162
 
163
  with gr.Accordion("Advanced Settings", open=False):
164
  negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
165
  seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
166
  randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
167
+ steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps")
168
  guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage")
169
  guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=3, label="Guidance Scale 2 - low noise stage")
170