File size: 4,828 Bytes
dc155d4
 
 
 
 
 
 
 
 
 
 
 
879ee4e
dc155d4
 
 
 
7019232
dc155d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
879ee4e
e5acb29
bb98bd0
 
 
e5acb29
b5c3f40
 
e5acb29
bb98bd0
 
 
e5acb29
bb98bd0
34767f8
bb98bd0
e5acb29
 
dc155d4
 
 
 
 
 
 
6ff4937
dc155d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82d7cc1
dc155d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55e04d3
 
dc155d4
55e04d3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
"""
"""

from typing import Any
from typing import Callable
from typing import ParamSpec

import spaces
import torch
from torch.utils._pytree import tree_map_only
from torchao.quantization import quantize_
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
from torchao.quantization import Int8WeightOnlyConfig

from optimization_utils import capture_component_call
from optimization_utils import aoti_compile
from optimization_utils import ZeroGPUCompiledModel
from optimization_utils import drain_module_parameters


P = ParamSpec('P')


TRANSFORMER_NUM_FRAMES_DIM = torch.export.Dim('num_frames', min=3, max=21)

TRANSFORMER_DYNAMIC_SHAPES = {
    'hidden_states': {
        2: TRANSFORMER_NUM_FRAMES_DIM,
    },
}

INDUCTOR_CONFIGS = {
    'conv_1x1_as_mm': True,
    'epilogue_fusion': False,
    'coordinate_descent_tuning': True,
    'coordinate_descent_check_all_directions': True,
    'max_autotune': True,
    'triton.cudagraphs': True,
}


def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):

    @spaces.GPU(duration=1500)
    def compile_transformer():
        
        pipeline.load_lora_weights(
            "Kijai/WanVideo_comfy", 
            weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors", 
            adapter_name="lightx2v"
        )
        kwargs_lora = {}
        kwargs_lora["load_into_transformer_2"] = True
        pipeline.load_lora_weights(
            "Kijai/WanVideo_comfy", 
            weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors", 
            adapter_name="lightx2v_2", **kwargs_lora
        )
        pipeline.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.])
        pipeline.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"])
        pipeline.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"])
        pipeline.unload_lora_weights()
        
        with capture_component_call(pipeline, 'transformer') as call:
            pipeline(*args, **kwargs)
        
        dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs)
        dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES

        quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
        quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig())
        
        hidden_states: torch.Tensor = call.kwargs['hidden_states']
        hidden_states_transposed = hidden_states.transpose(-1, -2).contiguous()
        if hidden_states.shape[-1] > hidden_states.shape[-2]:
            hidden_states_landscape = hidden_states
            hidden_states_portrait = hidden_states_transposed
        else:
            hidden_states_landscape = hidden_states_transposed
            hidden_states_portrait = hidden_states

        exported_landscape_1 = torch.export.export(
            mod=pipeline.transformer,
            args=call.args,
            kwargs=call.kwargs | {'hidden_states': hidden_states_landscape},
            dynamic_shapes=dynamic_shapes,
        )
        
        exported_portrait_2 = torch.export.export(
            mod=pipeline.transformer_2,
            args=call.args,
            kwargs=call.kwargs | {'hidden_states': hidden_states_portrait},
            dynamic_shapes=dynamic_shapes,
        )

        compiled_landscape_1 = aoti_compile(exported_landscape_1, INDUCTOR_CONFIGS)
        compiled_portrait_2 = aoti_compile(exported_portrait_2, INDUCTOR_CONFIGS)

        compiled_landscape_2 = ZeroGPUCompiledModel(compiled_landscape_1.archive_file, compiled_portrait_2.weights)
        compiled_portrait_1 = ZeroGPUCompiledModel(compiled_portrait_2.archive_file, compiled_landscape_1.weights)

        return (
            compiled_landscape_1,
            compiled_landscape_2,
            compiled_portrait_1,
            compiled_portrait_2,
        )

    quantize_(pipeline.text_encoder, Int8WeightOnlyConfig())
    cl1, cl2, cp1, cp2 = compile_transformer()

    def combined_transformer_1(*args, **kwargs):
        hidden_states: torch.Tensor = kwargs['hidden_states']
        if hidden_states.shape[-1] > hidden_states.shape[-2]:
            return cl1(*args, **kwargs)
        else:
            return cp1(*args, **kwargs)

    def combined_transformer_2(*args, **kwargs):
        hidden_states: torch.Tensor = kwargs['hidden_states']
        if hidden_states.shape[-1] > hidden_states.shape[-2]:
            return cl2(*args, **kwargs)
        else:
            return cp2(*args, **kwargs)

    pipeline.transformer.forward = combined_transformer_1
    drain_module_parameters(pipeline.transformer)

    pipeline.transformer_2.forward = combined_transformer_2
    drain_module_parameters(pipeline.transformer_2)