File size: 11,060 Bytes
dc155d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84712e3
dc155d4
 
 
 
 
 
 
 
 
1f4a684
dc155d4
 
 
 
 
 
 
 
f10a213
 
 
 
 
 
 
 
 
 
dc155d4
 
 
76c0773
cea20cd
 
 
 
 
 
 
 
 
 
 
e5acb29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76c0773
09577e1
e435c71
 
 
84712e3
dc155d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fc9eeb
dc155d4
 
 
 
 
 
 
 
 
 
 
 
 
152d0c5
 
39627f8
dc155d4
 
 
 
 
d761d5b
dc155d4
 
d761d5b
 
dc155d4
 
 
 
 
 
 
 
 
 
39627f8
 
dc155d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39627f8
dc155d4
 
 
 
 
 
 
 
 
 
 
 
5daf83d
152d0c5
dc155d4
 
 
 
 
 
 
 
 
 
6fc9eeb
ed7a43b
 
dc155d4
 
 
 
 
 
 
 
39627f8
dc155d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# PyTorch 2.8 (temporary hack)
import os
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')

# Actual demo code
import spaces
import torch
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
import gc
from optimization import optimize_pipeline_


MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"

LANDSCAPE_WIDTH = 832
LANDSCAPE_HEIGHT = 480
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81

MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)


pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID,
    transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
        subfolder='transformer',
        torch_dtype=torch.bfloat16,
        device_map='cuda',
    ),
    transformer_2=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
        subfolder='transformer_2',
        torch_dtype=torch.bfloat16,
        device_map='cuda',
    ),
    torch_dtype=torch.bfloat16,
).to('cuda')

# load, fuse, unload before compilation
# pipe.load_lora_weights(
#    "vrgamedevgirl84/Wan14BT2VFusioniX", 
#    weight_name="FusionX_LoRa/Phantom_Wan_14B_FusionX_LoRA.safetensors", 
#     adapter_name="phantom"
# )

# pipe.set_adapters(["phantom"], adapter_weights=[0.95])
# pipe.fuse_lora(adapter_names=["phantom"], lora_scale=1.0)
# pipe.unload_lora_weights()


# pipe.load_lora_weights(
#    "vrgamedevgirl84/Wan14BT2VFusioniX", 
#    weight_name="FusionX_LoRa/Phantom_Wan_14B_FusionX_LoRA.safetensors", 
#     adapter_name="phantom"
# )
# kwargs = {}
# kwargs["load_into_transformer_2"] = True
# pipe.load_lora_weights(
#    "vrgamedevgirl84/Wan14BT2VFusioniX", 
#    weight_name="FusionX_LoRa/Phantom_Wan_14B_FusionX_LoRA.safetensors", 
#     adapter_name="phantom_2", **kwargs
# )
# pipe.set_adapters(["phantom", "phantom_2"], adapter_weights=[1., 1.])
# pipe.fuse_lora(adapter_names=["phantom"], lora_scale=3., components=["transformer"])
# pipe.fuse_lora(adapter_names=["phantom_2"], lora_scale=1., components=["transformer_2"])
# pipe.unload_lora_weights()

for i in range(3): 
    gc.collect()
    torch.cuda.synchronize() 
    torch.cuda.empty_cache()

optimize_pipeline_(pipe,
    image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
    prompt='prompt',
    height=LANDSCAPE_HEIGHT,
    width=LANDSCAPE_WIDTH,
    num_frames=MAX_FRAMES_MODEL,
)


default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"


def resize_image(image: Image.Image) -> Image.Image:
    if image.height > image.width:
        transposed = image.transpose(Image.Transpose.ROTATE_90)
        resized = resize_image_landscape(transposed)
        return resized.transpose(Image.Transpose.ROTATE_270)
    return resize_image_landscape(image)


def resize_image_landscape(image: Image.Image) -> Image.Image:
    target_aspect = LANDSCAPE_WIDTH / LANDSCAPE_HEIGHT
    width, height = image.size
    in_aspect = width / height
    if in_aspect > target_aspect:
        new_width = round(height * target_aspect)
        left = (width - new_width) // 2
        image = image.crop((left, 0, left + new_width, height))
    else:
        new_height = round(width / target_aspect)
        top = (height - new_height) // 2
        image = image.crop((0, top, width, top + new_height))
    return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)

def get_duration(
    input_image,
    prompt,
    negative_prompt,
    duration_seconds,
    guidance_scale,
    guidance_scale_2,
    steps,
    seed,
    randomize_seed,
    progress,
):
    return steps * 15

@spaces.GPU(duration=get_duration)
def generate_video(
    input_image,
    prompt,
    negative_prompt=default_negative_prompt,
    duration_seconds = MAX_DURATION,
    guidance_scale = 1,
    guidance_scale_2 = 3,
    steps = 6,
    seed = 42,
    randomize_seed = False,
    progress=gr.Progress(track_tqdm=True),
):
    """
    Generate a video from an input image using the Wan 2.2 14B I2V model with Phantom LoRA.
    
    This function takes an input image and generates a video animation based on the provided
    prompt and parameters. It uses an FP8 qunatized Wan 2.2 14B Image-to-Video model in with Phantom LoRA
    for fast generation in 6-8 steps.
    
    Args:
        input_image (PIL.Image): The input image to animate. Will be resized to target dimensions.
        prompt (str): Text prompt describing the desired animation or motion.
        negative_prompt (str, optional): Negative prompt to avoid unwanted elements. 
            Defaults to default_negative_prompt (contains unwanted visual artifacts).
        duration_seconds (float, optional): Duration of the generated video in seconds.
            Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS.
        guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence.
            Defaults to 1.0. Range: 0.0-20.0.
        guidance_scale_2 (float, optional): Controls adherence to the prompt. Higher values = more adherence.
            Defaults to 1.0. Range: 0.0-20.0.
        steps (int, optional): Number of inference steps. More steps = higher quality but slower.
            Defaults to 4. Range: 1-30.
        seed (int, optional): Random seed for reproducible results. Defaults to 42.
            Range: 0 to MAX_SEED (2147483647).
        randomize_seed (bool, optional): Whether to use a random seed instead of the provided seed.
            Defaults to False.
        progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).
    
    Returns:
        tuple: A tuple containing:
            - video_path (str): Path to the generated video file (.mp4)
            - current_seed (int): The seed used for generation (useful when randomize_seed=True)
    
    Raises:
        gr.Error: If input_image is None (no image uploaded).
    
    Note:
        - The function automatically resizes the input image to the target dimensions
        - Frame count is calculated as duration_seconds * FIXED_FPS (24)
        - Output dimensions are adjusted to be multiples of MOD_VALUE (32)
        - The function uses GPU acceleration via the @spaces.GPU decorator
        - Generation time varies based on steps and duration (see get_duration function)
    """
    if input_image is None:
        raise gr.Error("Please upload an input image.")
    
    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
    resized_image = resize_image(input_image)

    output_frames_list = pipe(
        image=resized_image,
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=resized_image.height,
        width=resized_image.width,
        num_frames=num_frames,
        guidance_scale=float(guidance_scale),
        guidance_scale_2=float(guidance_scale_2),
        num_inference_steps=int(steps),
        generator=torch.Generator(device="cuda").manual_seed(current_seed),
    ).frames[0]

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name

    export_to_video(output_frames_list, video_path, fps=FIXED_FPS)

    return video_path, current_seed

with gr.Blocks() as demo:
    gr.Markdown("# Fast 6 steps Wan 2.2 I2V (14B) with Phantom LoRA")
    gr.Markdown("run Wan 2.2 in just 6-8 steps, with [FusionX Phantom LoRA by DeeJayT](https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX/tree/main/FusionX_LoRa), compatible with 🧨 diffusers")
    with gr.Row():
        with gr.Column():
            input_image_component = gr.Image(type="pil", label="Input Image (auto-resized to target H/W)")
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
            duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=MAX_DURATION, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
            
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
                steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps") 
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage")
                guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=3, label="Guidance Scale 2 - low noise stage")

            generate_button = gr.Button("Generate Video", variant="primary")
        with gr.Column():
            video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
    
    ui_inputs = [
        input_image_component, prompt_input,
        negative_prompt_input, duration_seconds_input,
        guidance_scale_input, guidance_scale_2_input, steps_slider, seed_input, randomize_seed_checkbox
    ]
    generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])

    gr.Examples(
        examples=[ 
            [
                "wan_i2v_input.JPG",
                "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
            ],
        ],
        inputs=[input_image_component, prompt_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
    )

if __name__ == "__main__":
    demo.queue().launch(mcp_server=True)