Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,6 +12,130 @@ from optimization import optimize_pipeline_
|
|
| 12 |
from qwenimage.pipeline_qwen_image_edit import QwenImageEditPipeline
|
| 13 |
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# --- Model Loading ---
|
| 17 |
dtype = torch.bfloat16
|
|
@@ -34,6 +158,7 @@ def infer(
|
|
| 34 |
randomize_seed=False,
|
| 35 |
true_guidance_scale=4.0,
|
| 36 |
num_inference_steps=50,
|
|
|
|
| 37 |
progress=gr.Progress(track_tqdm=True),
|
| 38 |
):
|
| 39 |
"""
|
|
@@ -52,6 +177,10 @@ def infer(
|
|
| 52 |
print(f"Negative Prompt: '{negative_prompt}'")
|
| 53 |
print(f"Seed: {seed}, Steps: {num_inference_steps}")
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
# Generate the image
|
| 56 |
image = pipe(
|
| 57 |
image,
|
|
@@ -124,6 +253,11 @@ with gr.Blocks(css=css) as demo:
|
|
| 124 |
value=50,
|
| 125 |
)
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
# gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)
|
| 128 |
|
| 129 |
gr.on(
|
|
@@ -137,6 +271,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 137 |
randomize_seed,
|
| 138 |
true_guidance_scale,
|
| 139 |
num_inference_steps,
|
|
|
|
| 140 |
],
|
| 141 |
outputs=[result, seed],
|
| 142 |
)
|
|
|
|
| 12 |
from qwenimage.pipeline_qwen_image_edit import QwenImageEditPipeline
|
| 13 |
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
|
| 14 |
|
| 15 |
+
from huggingface_hub import InferenceClient
|
| 16 |
+
import math
|
| 17 |
+
|
| 18 |
+
# --- Prompt Enhancement using Hugging Face InferenceClient ---
|
| 19 |
+
def polish_prompt_hf(original_prompt, system_prompt):
|
| 20 |
+
"""
|
| 21 |
+
Rewrites the prompt using a Hugging Face InferenceClient.
|
| 22 |
+
"""
|
| 23 |
+
# Ensure HF_TOKEN is set
|
| 24 |
+
api_key = os.environ.get("HF_TOKEN")
|
| 25 |
+
if not api_key:
|
| 26 |
+
print("Warning: HF_TOKEN not set. Falling back to original prompt.")
|
| 27 |
+
return original_prompt
|
| 28 |
+
|
| 29 |
+
try:
|
| 30 |
+
# Initialize the client
|
| 31 |
+
client = InferenceClient(
|
| 32 |
+
provider="cerebras",
|
| 33 |
+
api_key=api_key,
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# Format the messages for the chat completions API
|
| 37 |
+
messages = [
|
| 38 |
+
{"role": "system", "content": system_prompt},
|
| 39 |
+
{"role": "user", "content": original_prompt}
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
# Call the API
|
| 43 |
+
completion = client.chat.completions.create(
|
| 44 |
+
model="Qwen/Qwen3-235B-A22B-Instruct-2507",
|
| 45 |
+
messages=messages,
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# Parse the response
|
| 49 |
+
result = completion.choices[0].message.content
|
| 50 |
+
|
| 51 |
+
# Try to extract JSON if present
|
| 52 |
+
if '{"Rewritten"' in result:
|
| 53 |
+
try:
|
| 54 |
+
# Clean up the response
|
| 55 |
+
result = result.replace('```json', '').replace('```', '')
|
| 56 |
+
result_json = json.loads(result)
|
| 57 |
+
polished_prompt = result_json.get('Rewritten', result)
|
| 58 |
+
except:
|
| 59 |
+
polished_prompt = result
|
| 60 |
+
else:
|
| 61 |
+
polished_prompt = result
|
| 62 |
+
|
| 63 |
+
polished_prompt = polished_prompt.strip().replace("\n", " ")
|
| 64 |
+
return polished_prompt
|
| 65 |
+
|
| 66 |
+
except Exception as e:
|
| 67 |
+
print(f"Error during API call to Hugging Face: {e}")
|
| 68 |
+
# Fallback to original prompt if enhancement fails
|
| 69 |
+
return original_prompt
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def polish_prompt(prompt, img):
|
| 73 |
+
"""
|
| 74 |
+
Main function to polish prompts for image editing using HF inference.
|
| 75 |
+
"""
|
| 76 |
+
SYSTEM_PROMPT = '''
|
| 77 |
+
# Edit Instruction Rewriter
|
| 78 |
+
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited.
|
| 79 |
+
|
| 80 |
+
Please strictly follow the rewriting rules below:
|
| 81 |
+
|
| 82 |
+
## 1. General Principles
|
| 83 |
+
- Keep the rewritten prompt **concise**. Avoid overly long sentences and reduce unnecessary descriptive language.
|
| 84 |
+
- If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary.
|
| 85 |
+
- Keep the core intention of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility.
|
| 86 |
+
- All added objects or modifications must align with the logic and style of the edited input image's overall scene.
|
| 87 |
+
|
| 88 |
+
## 2. Task Type Handling Rules
|
| 89 |
+
### 1. Add, Delete, Replace Tasks
|
| 90 |
+
- If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar.
|
| 91 |
+
- If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example:
|
| 92 |
+
> Original: "Add an animal"
|
| 93 |
+
> Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera"
|
| 94 |
+
- Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid.
|
| 95 |
+
- For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X.
|
| 96 |
+
|
| 97 |
+
### 2. Text Editing Tasks
|
| 98 |
+
- All text content must be enclosed in English double quotes " ". Do not translate or alter the original language of the text, and do not change the capitalization.
|
| 99 |
+
- **For text replacement tasks, always use the fixed template:**
|
| 100 |
+
- Replace "xx" to "yy".
|
| 101 |
+
- Replace the xx bounding box to "yy".
|
| 102 |
+
- If the user does not specify text content, infer and add concise text based on the instruction and the input image's context. For example:
|
| 103 |
+
> Original: "Add a line of text" (poster)
|
| 104 |
+
> Rewritten: "Add text "LIMITED EDITION" at the top center with slight shadow"
|
| 105 |
+
- Specify text position, color, and layout in a concise way.
|
| 106 |
+
|
| 107 |
+
### 3. Human Editing Tasks
|
| 108 |
+
- Maintain the person's core visual consistency (ethnicity, gender, age, hairstyle, expression, outfit, etc.).
|
| 109 |
+
- If modifying appearance (e.g., clothes, hairstyle), ensure the new element is consistent with the original style.
|
| 110 |
+
- **For expression changes, they must be natural and subtle, never exaggerated.**
|
| 111 |
+
- If deletion is not specifically emphasized, the most important subject in the original image (e.g., a person, an animal) should be preserved.
|
| 112 |
+
- For background change tasks, emphasize maintaining subject consistency at first.
|
| 113 |
+
- Example:
|
| 114 |
+
> Original: "Change the person's hat"
|
| 115 |
+
> Rewritten: "Replace the man's hat with a dark brown beret; keep smile, short hair, and gray jacket unchanged"
|
| 116 |
+
|
| 117 |
+
### 4. Style Transformation or Enhancement Tasks
|
| 118 |
+
- If a style is specified, describe it concisely with key visual traits. For example:
|
| 119 |
+
> Original: "Disco style"
|
| 120 |
+
> Rewritten: "1970s disco: flashing lights, disco ball, mirrored walls, colorful tones"
|
| 121 |
+
- If the instruction says "use reference style" or "keep current style," analyze the input image, extract main features (color, composition, texture, lighting, art style), and integrate them concisely.
|
| 122 |
+
- **For coloring tasks, including restoring old photos, always use the fixed template:** "Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"
|
| 123 |
+
- If there are other changes, place the style description at the end.
|
| 124 |
+
|
| 125 |
+
## 3. Rationality and Logic Checks
|
| 126 |
+
- Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" should be logically corrected.
|
| 127 |
+
- Add missing key information: if position is unspecified, choose a reasonable area based on composition (near subject, empty space, center/edges).
|
| 128 |
+
|
| 129 |
+
# Output Format
|
| 130 |
+
Return only the rewritten instruction text directly, without JSON formatting or any other wrapper.
|
| 131 |
+
'''
|
| 132 |
+
|
| 133 |
+
# Note: We're not actually using the image in the HF version,
|
| 134 |
+
# but keeping the interface consistent
|
| 135 |
+
full_prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:"
|
| 136 |
+
|
| 137 |
+
return polish_prompt_hf(full_prompt, SYSTEM_PROMPT)
|
| 138 |
+
|
| 139 |
|
| 140 |
# --- Model Loading ---
|
| 141 |
dtype = torch.bfloat16
|
|
|
|
| 158 |
randomize_seed=False,
|
| 159 |
true_guidance_scale=4.0,
|
| 160 |
num_inference_steps=50,
|
| 161 |
+
rewrite_prompt=True,
|
| 162 |
progress=gr.Progress(track_tqdm=True),
|
| 163 |
):
|
| 164 |
"""
|
|
|
|
| 177 |
print(f"Negative Prompt: '{negative_prompt}'")
|
| 178 |
print(f"Seed: {seed}, Steps: {num_inference_steps}")
|
| 179 |
|
| 180 |
+
if rewrite_prompt:
|
| 181 |
+
prompt = polish_prompt(prompt, image)
|
| 182 |
+
print(f"Rewritten Prompt: {prompt}")
|
| 183 |
+
|
| 184 |
# Generate the image
|
| 185 |
image = pipe(
|
| 186 |
image,
|
|
|
|
| 253 |
value=50,
|
| 254 |
)
|
| 255 |
|
| 256 |
+
rewrite_prompt = gr.Checkbox(
|
| 257 |
+
label="Enhance prompt (using HF Inference)",
|
| 258 |
+
value=True
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
# gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)
|
| 262 |
|
| 263 |
gr.on(
|
|
|
|
| 271 |
randomize_seed,
|
| 272 |
true_guidance_scale,
|
| 273 |
num_inference_steps,
|
| 274 |
+
rewrite_prompt,
|
| 275 |
],
|
| 276 |
outputs=[result, seed],
|
| 277 |
)
|