Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| """ | |
| from typing import Any | |
| from typing import Callable | |
| from typing import ParamSpec | |
| from torchao.quantization import quantize_ | |
| from torchao.quantization import Float8DynamicActivationFloat8WeightConfig | |
| import spaces | |
| import torch | |
| from torch.utils._pytree import tree_map | |
| P = ParamSpec('P') | |
| TRANSFORMER_IMAGE_SEQ_LENGTH_DIM = torch.export.Dim.AUTO(min=3584, max=9727) | |
| TRANSFORMER_IMAGE_HEIGHT_DIM = torch.export.Dim.DYNAMIC | |
| TRANSFORMER_IMAGE_WIDTH_DIM = torch.export.Dim.DYNAMIC | |
| TRANSFORMER_DYNAMIC_SHAPES = { | |
| 'hidden_states': {1: TRANSFORMER_IMAGE_SEQ_LENGTH_DIM}, | |
| 'img_shapes': [(None, TRANSFORMER_IMAGE_HEIGHT_DIM, TRANSFORMER_IMAGE_WIDTH_DIM)] | |
| } | |
| INDUCTOR_CONFIGS = { | |
| 'conv_1x1_as_mm': True, | |
| 'epilogue_fusion': False, | |
| 'coordinate_descent_tuning': True, | |
| 'coordinate_descent_check_all_directions': True, | |
| 'max_autotune': True, | |
| 'triton.cudagraphs': True, | |
| } | |
| def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): | |
| def compile_transformer(): | |
| with spaces.aoti_capture(pipeline.transformer) as call: | |
| pipeline(*args, **kwargs) | |
| dynamic_shapes = tree_map(lambda t: None, call.kwargs) | |
| dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES | |
| quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig()) | |
| exported = torch.export.export( | |
| mod=pipeline.transformer, | |
| args=call.args, | |
| kwargs=call.kwargs, | |
| dynamic_shapes=dynamic_shapes, | |
| ) | |
| return spaces.aoti_compile(exported, INDUCTOR_CONFIGS) | |
| spaces.aoti_apply(compile_transformer(), pipeline.transformer) | |