Spaces:
Runtime error
Runtime error
File size: 11,913 Bytes
382191a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import os
import argparse
import json
import logging
import pandas as pd
COMET_REF_MODELS = ["wmt20-comet-da", "wmt21-comet-mqm", "wmt22-comet-da"]
COMET_SRC_MODELS = ["wmt20-comet-qe-da", "wmt21-comet-qe-mqm", "wmt22-cometkiwi-da"]
DOC_SCORING_SCRIPT = "./doc_score.py"
def count_lines(fname):
def _make_gen(reader):
b = reader(2 ** 16)
while b:
yield b
b = reader(2 ** 16)
with open(fname, "rb") as f:
count = sum(buf.count(b"\n") for buf in _make_gen(f.raw.read))
return count
def read_last_line(fname):
with open(fname, 'rb') as f:
try: # catch OSError in case of a one line file
f.seek(-2, os.SEEK_END)
while f.read(1) != b'\n':
f.seek(-2, os.SEEK_CUR)
except OSError:
f.seek(0)
last_line = f.readline().decode()
return last_line
def is_doc_boundary(doc_ids, idx):
after_idx = min(len(doc_ids) - 1, idx + 1)
return (not doc_ids[after_idx] == doc_ids[idx]) or (idx == len(doc_ids) - 1)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--testset', type=str, required=True, help='A path to the test set directory containing references and sources for each language pair. Must contain {src_lang}{tgt_lang}/test.{src_lang}-{tgt_lang}.{tgt_lang} and {src_lang}{tgt_lang}/test.{src_lang}-{tgt_lang}.{src_lang}')
parser.add_argument('--docids', type=str, required=False, help='A path to the directory containing doc-ids corresponding to testset for each language pair. Must contain {src_lang}{tgt_lang}/test.{src_lang}-{tgt_lang}.docids')
parser.add_argument('--hypotheses', type=str, nargs='+', required=True, help='A path to the model output files. must contain {src_lang}{tgt_lang}/test.{src_lang}-{tgt_lang}.{tgt_lang}')
parser.add_argument('--directions', type=str, required=True, nargs='+', help='Language directions to evaluate on e.g. "en-de de-en"')
parser.add_argument('--comet-models', type=str, required=False, nargs='+', help='A list of COMET models to use for evaluation')
parser.add_argument('--gpus', type=int, required=False, default=1, help='Number of GPUs to use with COMET')
parser.add_argument('--metrics', type=str, required=True, nargs='+', help='A list of metrics to use for evaluation, options ["bleu", "comet", "doc-comet", "chrf", "doc-bleu", "doc-chrf"]')
parser.add_argument('--save-name', type=str, required=False, default='scores', help='name of the output files/folders')
parser.add_argument('--sliding-window', type=int, required=False, default=1, help='The stride step over document')
parser.add_argument('--context-length', type=int, required=False, default=4, help='The number of sentences in a single context')
args = parser.parse_args()
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s.%(msecs)03d %(levelname)s %(module)s - %(funcName)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
for hypotheses in args.hypotheses:
scores = {}
for direction in args.directions:
src = direction.split('-')[0]
tgt = direction.split('-')[1]
logging.info(f"Evaluating {direction}")
os.makedirs(f"{hypotheses}/{src}{tgt}/{args.save_name}", exist_ok=True)
hyp_file = f"{hypotheses}/{src}{tgt}/test.{direction}.{tgt}"
src_file = f"{args.testset}/{src}{tgt}/test.{direction}.{src}"
ref_file = f"{args.testset}/{src}{tgt}/test.{direction}.{tgt}"
hyp_line_count = count_lines(hyp_file)
src_line_count = count_lines(src_file)
ref_line_count = count_lines(ref_file)
assert (ref_line_count == hyp_line_count) and (ref_line_count == src_line_count), f"ref_file = {ref_line_count}, hyp_file = {hyp_line_count}, src_file = {src_line_count} - src/ref/hyp lines count should be matched"
scores[direction] = {
"references": ref_file,
"hypotheses": hyp_file,
"sources": src_file
}
for m in ["chrf", "bleu"]:
tokenizer = "ja-mecab" if tgt == "ja" else "zh" if tgt == "zh" else "13a"
if m in args.metrics:
command = f"sacrebleu -m {m} -tok {tokenizer} {ref_file} < {hyp_file} > {hypotheses}/{src}{tgt}/{args.save_name}/{m}.scores"
logging.info(command)
os.system(command)
with open(f"{hypotheses}/{src}{tgt}/{args.save_name}/{m}.scores", 'r') as score_file:
score = json.load(score_file)
# Logging detailed evaluation
logging.info(f"{direction} {m} scores: {json.dumps(score, indent=2)}")
scores[direction][m] = score
if f"doc-{m}" in args.metrics:
assert args.docids, f'document ids directory must be probided to calculate doc-{m}'
docids_file = f"{args.docids}/{src}{tgt}/test.{direction}.docids"
scores[direction]["docids"] = docids_file
docids_line_count = count_lines(docids_file)
assert docids_line_count == src_line_count, "Doc Ids file line count is not matching"
with open(src_file, 'r') as f_src, open(ref_file, 'r') as f_ref, open(hyp_file, 'r') as f_hyp, open(docids_file, 'r') as f_docids:
lines_src = [x.strip() for x in f_src.readlines()]
lines_ref = [x.strip() for x in f_ref.readlines()]
lines_hyp = [x.strip() for x in f_hyp.readlines()]
docid_lines = [x.strip() for x in f_docids.readlines()]
assert len(lines_src) == len(docid_lines), "Doc id file lines are not matching"
docs_src, docs_ref, docs_hyp = [], [], []
current_doc = []
i = 0
while i < len(lines_src):
current_doc.append({
'source': lines_src[i],
'reference': lines_ref[i],
'hypothesis': lines_hyp[i]
})
if is_doc_boundary(docid_lines, i):
docs_src.append([current_doc[j]['source'] for j in range(len(current_doc))])
docs_ref.append([current_doc[j]['reference'] for j in range(len(current_doc))])
docs_hyp.append([current_doc[j]['hypothesis'] for j in range(len(current_doc))])
current_doc = []
i += 1
assert len(docs_src) == len(docs_ref) and len(docs_src) == len(docs_hyp), "docs reconstruction failed"
tmp_dir = f"{hypotheses}/{src}{tgt}/{args.save_name}/tmp"
os.makedirs(tmp_dir, exist_ok=True)
with open(f"{tmp_dir}/test.{direction}.docsnt.src.{src}", 'w') as src_tmp_out, open(f"{tmp_dir}/test.{direction}.docsnt.ref.{tgt}", 'w') as ref_tmp_out, open(f"{tmp_dir}/test.{direction}.docsnt.hyp.{tgt}", 'w') as hyp_tmp_out:
for s_doc, r_doc, h_doc in zip(docs_src, docs_ref, docs_hyp):
s = ' '.join([x.strip() for x in s_doc]).strip()
r = ' '.join([x.strip() for x in r_doc]).strip()
h = ' '.join([x.strip() for x in h_doc]).strip()
src_tmp_out.write(s + '\n')
ref_tmp_out.write(r + '\n')
hyp_tmp_out.write(h + '\n')
tmp_ref_path = f"{tmp_dir}/test.{direction}.docsnt.ref.{tgt}"
tmp_hyp_path = f"{tmp_dir}/test.{direction}.docsnt.hyp.{tgt}"
command = f"sacrebleu -m {m} -tok {tokenizer} {tmp_ref_path} < {tmp_hyp_path} > {hypotheses}/{src}{tgt}/{args.save_name}/doc-{m}.scores"
logging.info(command)
os.system(command)
with open(f"{hypotheses}/{src}{tgt}/{args.save_name}/doc-{m}.scores", 'r') as score_file:
score = json.load(score_file)
logging.info(f"{direction} doc-{m} scores: {json.dumps(score, indent=2)}")
scores[direction][f'doc-{m}'] = score
if "comet" in args.metrics:
scores[direction]['comet'] = {}
for model in args.comet_models:
if model not in COMET_REF_MODELS + COMET_SRC_MODELS:
logging.info(f"Skipping evaluation using {model} since it is not available")
continue
if model in COMET_REF_MODELS:
command = f"comet-score -s {src_file} -t {hyp_file} -r {ref_file} --gpus {args.gpus} --model {model} > {hypotheses}/{src}{tgt}/{args.save_name}/{model}.scores"
logging.info(command)
os.system(command)
score_line = read_last_line(f"{hypotheses}/{src}{tgt}/{args.save_name}/{model}.scores")
score = float(score_line.split()[-1])
scores[direction]['comet'][model] = score
elif model in COMET_SRC_MODELS:
command = f"comet-score -s {src_file} -t {hyp_file} --gpus {args.gpus} --model {model} > {hypotheses}/{src}{tgt}/{args.save_name}/{model}.scores"
logging.info(command)
os.system(command)
score_line = read_last_line(f"{hypotheses}/{src}{tgt}/{args.save_name}/{model}.scores")
score = float(score_line.split()[-1])
scores[direction]['comet'][model] = score
logging.info(f"{direction} comet scores: {json.dumps(scores[direction]['comet'], indent=2)}")
if "doc-comet" in args.metrics:
assert args.docids, 'document ids directory must be probided to calculate doc-comet'
docids_file = f"{args.docids}/{src}{tgt}/test.{direction}.docids"
scores[direction]["docids"] = docids_file
docids_line_count = count_lines(docids_file)
assert docids_line_count == src_line_count, "Doc Ids file line count is not matching"
scores[direction]['doc-comet'] = {}
for model in ["wmt22-cometkiwi-da"]:
if model not in COMET_REF_MODELS + COMET_SRC_MODELS:
logging.info(f"Skipping evaluation using {model} since it is not available")
continue
if model in COMET_REF_MODELS:
command = f"python {DOC_SCORING_SCRIPT} -src {src_file} -hyp {hyp_file} -ref {ref_file} --model {model} --sliding-window {args.sliding_window} --context-length {args.context_length} -doc {docids_file} > {hypotheses}/{src}{tgt}/{args.save_name}/{model}.doclevel.scores"
logging.info(command)
os.system(command)
with open(f"{hypotheses}/{src}{tgt}/{args.save_name}/{model}.doclevel.scores", 'r') as score_file:
score_json = json.load(score_file)
score = score_json['score']
scores[direction]['doc-comet'][model] = score
elif model in COMET_SRC_MODELS:
command =f"python {DOC_SCORING_SCRIPT} -src {src_file} -hyp {hyp_file} --model {model} --sliding-window {args.sliding_window} --context-length {args.context_length} -doc {docids_file} > {hypotheses}/{src}{tgt}/{args.save_name}/{model}.doclevel.scores"
logging.info(command)
os.system(command)
with open(f"{hypotheses}/{src}{tgt}/{args.save_name}/{model}.doclevel.scores", 'r') as score_file:
score_json = json.load(score_file)
score = score_json['score']
scores[direction]['doc-comet'][model] = score
with open(f"{hypotheses}/{args.save_name}.json", 'w') as score_file:
score_file.write(json.dumps(scores, indent=2))
scores_csv = {
'langs': args.directions,
}
for metric in args.metrics:
if metric == 'comet':
for model in args.comet_models:
scores_csv[f"{model}"] = []
for lang in args.directions:
scores_csv[f"{model}"].append(scores[lang][metric][model])
elif metric == 'doc-comet':
for model in ["wmt22-cometkiwi-da"]:
scores_csv[f"doc-{model}"] = []
for lang in args.directions:
scores_csv[f"doc-{model}"].append(scores[lang][metric][model])
else:
scores_csv[metric] = []
for lang in args.directions:
scores_csv[f"{metric}"].append(scores[lang][metric]["score"])
df = pd.DataFrame(scores_csv)
logging.info(f"Scores:\n{df}")
with open(f"{hypotheses}/{args.save_name}.txt", 'w') as score_file:
print(df, file=score_file)
if __name__ == "__main__":
main()
|