File size: 11,913 Bytes
382191a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import argparse
import json
import logging
import pandas as pd

COMET_REF_MODELS = ["wmt20-comet-da", "wmt21-comet-mqm", "wmt22-comet-da"]
COMET_SRC_MODELS = ["wmt20-comet-qe-da", "wmt21-comet-qe-mqm", "wmt22-cometkiwi-da"]
DOC_SCORING_SCRIPT = "./doc_score.py"

def count_lines(fname):
  def _make_gen(reader):
    b = reader(2 ** 16)
    while b:
      yield b
      b = reader(2 ** 16)

  with open(fname, "rb") as f:
    count = sum(buf.count(b"\n") for buf in _make_gen(f.raw.read))
  return count

def read_last_line(fname):
  with open(fname, 'rb') as f:
    try:  # catch OSError in case of a one line file 
      f.seek(-2, os.SEEK_END)
      while f.read(1) != b'\n':
        f.seek(-2, os.SEEK_CUR)
    except OSError:
      f.seek(0)
    last_line = f.readline().decode()
    return last_line
  
def is_doc_boundary(doc_ids, idx):
  after_idx = min(len(doc_ids) - 1, idx + 1)
  return (not doc_ids[after_idx] == doc_ids[idx]) or (idx == len(doc_ids) - 1)

def main():
  parser = argparse.ArgumentParser()
  parser.add_argument('--testset', type=str, required=True, help='A path to the test set directory containing references and sources for each language pair. Must contain {src_lang}{tgt_lang}/test.{src_lang}-{tgt_lang}.{tgt_lang} and {src_lang}{tgt_lang}/test.{src_lang}-{tgt_lang}.{src_lang}')
  parser.add_argument('--docids', type=str, required=False, help='A path to the directory containing doc-ids corresponding to testset for each language pair. Must contain {src_lang}{tgt_lang}/test.{src_lang}-{tgt_lang}.docids')
  parser.add_argument('--hypotheses', type=str, nargs='+', required=True, help='A path to the model output files. must contain {src_lang}{tgt_lang}/test.{src_lang}-{tgt_lang}.{tgt_lang}')
  parser.add_argument('--directions', type=str, required=True, nargs='+', help='Language directions to evaluate on e.g. "en-de de-en"')
  parser.add_argument('--comet-models', type=str, required=False, nargs='+', help='A list of COMET models to use for evaluation')
  parser.add_argument('--gpus', type=int, required=False, default=1, help='Number of GPUs to use with COMET')
  parser.add_argument('--metrics', type=str, required=True, nargs='+', help='A list of metrics to use for evaluation, options ["bleu", "comet", "doc-comet", "chrf", "doc-bleu", "doc-chrf"]')
  parser.add_argument('--save-name', type=str, required=False, default='scores', help='name of the output files/folders')
  parser.add_argument('--sliding-window', type=int, required=False, default=1, help='The stride step over document')
  parser.add_argument('--context-length', type=int, required=False, default=4, help='The number of sentences in a single context')
  args = parser.parse_args()
  
  logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s.%(msecs)03d %(levelname)s %(module)s - %(funcName)s: %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S'
  )
  
  for hypotheses in args.hypotheses:
    scores = {}
    for direction in args.directions:
      src = direction.split('-')[0]
      tgt = direction.split('-')[1]
      logging.info(f"Evaluating {direction}")

      os.makedirs(f"{hypotheses}/{src}{tgt}/{args.save_name}", exist_ok=True)

      hyp_file = f"{hypotheses}/{src}{tgt}/test.{direction}.{tgt}"
      src_file = f"{args.testset}/{src}{tgt}/test.{direction}.{src}"
      ref_file = f"{args.testset}/{src}{tgt}/test.{direction}.{tgt}"

      hyp_line_count = count_lines(hyp_file)
      src_line_count = count_lines(src_file)
      ref_line_count = count_lines(ref_file)

      assert (ref_line_count == hyp_line_count) and (ref_line_count == src_line_count), f"ref_file = {ref_line_count}, hyp_file = {hyp_line_count}, src_file = {src_line_count} - src/ref/hyp lines count should be matched"

      scores[direction] = {
        "references": ref_file,
        "hypotheses": hyp_file,
        "sources": src_file
      }
      for m in ["chrf", "bleu"]:
        tokenizer = "ja-mecab" if tgt == "ja" else "zh" if tgt == "zh" else "13a"
        if m in args.metrics:
          command = f"sacrebleu -m {m} -tok {tokenizer} {ref_file} < {hyp_file} > {hypotheses}/{src}{tgt}/{args.save_name}/{m}.scores"
          logging.info(command)
          os.system(command)
          with open(f"{hypotheses}/{src}{tgt}/{args.save_name}/{m}.scores", 'r') as score_file:
            score = json.load(score_file)
          # Logging detailed evaluation
          logging.info(f"{direction} {m} scores: {json.dumps(score, indent=2)}")
          scores[direction][m] = score
          
        if f"doc-{m}" in args.metrics:
          assert args.docids, f'document ids directory must be probided to calculate doc-{m}'
          docids_file = f"{args.docids}/{src}{tgt}/test.{direction}.docids"
          scores[direction]["docids"] = docids_file
          docids_line_count = count_lines(docids_file)
          assert docids_line_count == src_line_count, "Doc Ids file line count is not matching"
          with open(src_file, 'r') as f_src, open(ref_file, 'r') as f_ref, open(hyp_file, 'r') as f_hyp, open(docids_file, 'r') as f_docids:
            lines_src = [x.strip() for x in f_src.readlines()]
            lines_ref = [x.strip() for x in f_ref.readlines()]
            lines_hyp = [x.strip() for x in f_hyp.readlines()]
            docid_lines = [x.strip() for x in f_docids.readlines()]            
            assert len(lines_src) == len(docid_lines), "Doc id file lines are not matching"
          docs_src, docs_ref, docs_hyp = [], [], []
          current_doc = []
          i = 0
          while i < len(lines_src):
            current_doc.append({
              'source': lines_src[i],
              'reference': lines_ref[i],
              'hypothesis': lines_hyp[i]
            })
            if is_doc_boundary(docid_lines, i):
              docs_src.append([current_doc[j]['source'] for j in range(len(current_doc))])
              docs_ref.append([current_doc[j]['reference'] for j in range(len(current_doc))])
              docs_hyp.append([current_doc[j]['hypothesis'] for j in range(len(current_doc))])
              current_doc = []
            i += 1
          assert len(docs_src) == len(docs_ref) and len(docs_src) == len(docs_hyp), "docs reconstruction failed"
          tmp_dir = f"{hypotheses}/{src}{tgt}/{args.save_name}/tmp"
          os.makedirs(tmp_dir, exist_ok=True)
          with open(f"{tmp_dir}/test.{direction}.docsnt.src.{src}", 'w') as src_tmp_out,  open(f"{tmp_dir}/test.{direction}.docsnt.ref.{tgt}", 'w') as ref_tmp_out,  open(f"{tmp_dir}/test.{direction}.docsnt.hyp.{tgt}", 'w') as hyp_tmp_out:
            for s_doc, r_doc, h_doc in zip(docs_src, docs_ref, docs_hyp):
              s = ' '.join([x.strip() for x in s_doc]).strip()
              r = ' '.join([x.strip() for x in r_doc]).strip()
              h = ' '.join([x.strip() for x in h_doc]).strip()
              src_tmp_out.write(s + '\n')
              ref_tmp_out.write(r + '\n')
              hyp_tmp_out.write(h + '\n')
          tmp_ref_path = f"{tmp_dir}/test.{direction}.docsnt.ref.{tgt}"
          tmp_hyp_path = f"{tmp_dir}/test.{direction}.docsnt.hyp.{tgt}"
          command = f"sacrebleu -m {m} -tok {tokenizer} {tmp_ref_path} < {tmp_hyp_path} > {hypotheses}/{src}{tgt}/{args.save_name}/doc-{m}.scores"
          logging.info(command)
          os.system(command)
          with open(f"{hypotheses}/{src}{tgt}/{args.save_name}/doc-{m}.scores", 'r') as score_file:
            score = json.load(score_file)
          logging.info(f"{direction} doc-{m} scores: {json.dumps(score, indent=2)}")
          scores[direction][f'doc-{m}'] = score
        
      if "comet" in args.metrics:
        scores[direction]['comet'] = {}
        for model in args.comet_models:
          if model not in COMET_REF_MODELS + COMET_SRC_MODELS:
            logging.info(f"Skipping evaluation using {model} since it is not available")
            continue
          if model in COMET_REF_MODELS:
            command = f"comet-score -s {src_file} -t {hyp_file} -r {ref_file} --gpus {args.gpus} --model {model} > {hypotheses}/{src}{tgt}/{args.save_name}/{model}.scores"
            logging.info(command)
            os.system(command)
            score_line = read_last_line(f"{hypotheses}/{src}{tgt}/{args.save_name}/{model}.scores")
            score = float(score_line.split()[-1])
            scores[direction]['comet'][model] = score
          elif model in COMET_SRC_MODELS:
            command = f"comet-score -s {src_file} -t {hyp_file} --gpus {args.gpus} --model {model} > {hypotheses}/{src}{tgt}/{args.save_name}/{model}.scores"
            logging.info(command)
            os.system(command)
            score_line = read_last_line(f"{hypotheses}/{src}{tgt}/{args.save_name}/{model}.scores")
            score = float(score_line.split()[-1])
            scores[direction]['comet'][model] = score
        logging.info(f"{direction} comet scores: {json.dumps(scores[direction]['comet'], indent=2)}")

      if "doc-comet" in args.metrics:
        assert args.docids, 'document ids directory must be probided to calculate doc-comet'
        docids_file = f"{args.docids}/{src}{tgt}/test.{direction}.docids"
        scores[direction]["docids"] = docids_file
        docids_line_count = count_lines(docids_file)
        assert docids_line_count == src_line_count, "Doc Ids file line count is not matching"
        scores[direction]['doc-comet'] = {}

        for model in ["wmt22-cometkiwi-da"]:
          if model not in COMET_REF_MODELS + COMET_SRC_MODELS:
            logging.info(f"Skipping evaluation using {model} since it is not available")
            continue
          if model in COMET_REF_MODELS:
            command = f"python {DOC_SCORING_SCRIPT} -src {src_file} -hyp {hyp_file} -ref {ref_file} --model {model} --sliding-window {args.sliding_window} --context-length {args.context_length} -doc {docids_file} > {hypotheses}/{src}{tgt}/{args.save_name}/{model}.doclevel.scores"
            logging.info(command)
            os.system(command)
            with open(f"{hypotheses}/{src}{tgt}/{args.save_name}/{model}.doclevel.scores", 'r') as score_file:
              score_json = json.load(score_file)
            score = score_json['score']
            scores[direction]['doc-comet'][model] = score
          elif model in COMET_SRC_MODELS:
            command =f"python {DOC_SCORING_SCRIPT} -src {src_file} -hyp {hyp_file} --model {model} --sliding-window {args.sliding_window} --context-length {args.context_length} -doc {docids_file} > {hypotheses}/{src}{tgt}/{args.save_name}/{model}.doclevel.scores"
            logging.info(command)
            os.system(command)
            with open(f"{hypotheses}/{src}{tgt}/{args.save_name}/{model}.doclevel.scores", 'r') as score_file:
              score_json = json.load(score_file)
            score = score_json['score']
            scores[direction]['doc-comet'][model] = score

    with open(f"{hypotheses}/{args.save_name}.json", 'w') as score_file:
      score_file.write(json.dumps(scores, indent=2))

    scores_csv = {
      'langs': args.directions,
    }
    for metric in args.metrics:
      if metric == 'comet':
        for model in args.comet_models:
          scores_csv[f"{model}"] = []
          for lang in args.directions:
            scores_csv[f"{model}"].append(scores[lang][metric][model])
      elif metric == 'doc-comet':
        for model in ["wmt22-cometkiwi-da"]:
          scores_csv[f"doc-{model}"] = []
          for lang in args.directions:
            scores_csv[f"doc-{model}"].append(scores[lang][metric][model])
      else:
        scores_csv[metric] = []
        for lang in args.directions:
          scores_csv[f"{metric}"].append(scores[lang][metric]["score"])
  
    df = pd.DataFrame(scores_csv)
    logging.info(f"Scores:\n{df}")

    with open(f"{hypotheses}/{args.save_name}.txt", 'w') as score_file:
      print(df, file=score_file)


if __name__ == "__main__":
  main()