Spaces:
Runtime error
Runtime error
Upload 2 files (#2)
Browse files- Upload 2 files (04bf3e8a3105f8ae6015fddd446d207b7d0e5591)
Co-authored-by: Jinwei <[email protected]>
- .gitattributes +1 -0
- app.py +579 -0
- geohash.csv +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
geohash.csv filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,579 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoTokenizer,AutoModelForTokenClassification
|
| 3 |
+
from transformers import GeoLMModel
|
| 4 |
+
import requests
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import scipy.spatial as sp
|
| 8 |
+
import streamlit as st
|
| 9 |
+
import folium
|
| 10 |
+
from streamlit.components.v1 import html
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
from haversine import haversine, Unit
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
dataset=None
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def generate_human_readable(tokens,labels):
|
| 21 |
+
ret = []
|
| 22 |
+
for t,lab in zip(tokens,labels):
|
| 23 |
+
if t == '[SEP]':
|
| 24 |
+
continue
|
| 25 |
+
|
| 26 |
+
if t.startswith("##") :
|
| 27 |
+
assert len(ret) > 0
|
| 28 |
+
ret[-1] = ret[-1] + t.strip('##')
|
| 29 |
+
|
| 30 |
+
elif lab==2:
|
| 31 |
+
assert len(ret) > 0
|
| 32 |
+
ret[-1] = ret[-1] + " "+ t.strip('##')
|
| 33 |
+
else:
|
| 34 |
+
ret.append(t)
|
| 35 |
+
|
| 36 |
+
return ret
|
| 37 |
+
|
| 38 |
+
def getSlice(tensor):
|
| 39 |
+
result = []
|
| 40 |
+
curr = []
|
| 41 |
+
for index, value in enumerate(tensor[0]):
|
| 42 |
+
if value == 1 or value == 2:
|
| 43 |
+
curr.append(index)
|
| 44 |
+
|
| 45 |
+
if value == 0 and curr != []:
|
| 46 |
+
result.append(curr)
|
| 47 |
+
curr = []
|
| 48 |
+
|
| 49 |
+
return result
|
| 50 |
+
|
| 51 |
+
def getIndex(input):
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
tokenizer, model= getModel1()
|
| 55 |
+
|
| 56 |
+
# Tokenize input sentence
|
| 57 |
+
tokens = tokenizer.encode(input, return_tensors="pt")
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# Pass tokens through the model
|
| 61 |
+
outputs = model(tokens)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# Retrieve predicted labels for each token
|
| 65 |
+
predicted_labels = torch.argmax(outputs.logits, dim=2)
|
| 66 |
+
|
| 67 |
+
predicted_labels = predicted_labels.detach().cpu().numpy()
|
| 68 |
+
|
| 69 |
+
# "id2label": { "0": "O", "1": "B-Topo", "2": "I-Topo" }
|
| 70 |
+
|
| 71 |
+
predicted_labels = [model.config.id2label[label] for label in predicted_labels[0]]
|
| 72 |
+
# print(predicted_labels)
|
| 73 |
+
|
| 74 |
+
predicted_labels = torch.argmax(outputs.logits, dim=2)
|
| 75 |
+
|
| 76 |
+
# print(predicted_labels)
|
| 77 |
+
|
| 78 |
+
query_tokens = tokens[0][torch.where(predicted_labels[0] != 0)[0]]
|
| 79 |
+
|
| 80 |
+
query_labels = predicted_labels[0][torch.where(predicted_labels[0] != 0)[0]]
|
| 81 |
+
|
| 82 |
+
print(predicted_labels)
|
| 83 |
+
print(predicted_labels.shape)
|
| 84 |
+
|
| 85 |
+
slices=getSlice(predicted_labels)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
# print(tokenizer.convert_ids_to_tokens(query_tokens))
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
return slices
|
| 92 |
+
|
| 93 |
+
def cutSlices(tensor, slicesList):
|
| 94 |
+
|
| 95 |
+
locationTensor= torch.zeros(1, len(slicesList), 768)
|
| 96 |
+
|
| 97 |
+
curr=0
|
| 98 |
+
for slice in slicesList:
|
| 99 |
+
|
| 100 |
+
if len(slice)==1:
|
| 101 |
+
locationTensor[0][curr] = tensor[0][slice[0]]
|
| 102 |
+
curr=curr+1
|
| 103 |
+
if len(slice)>1 :
|
| 104 |
+
|
| 105 |
+
sliceTensor=tensor[0][slice[0]:slice[-1]+1]
|
| 106 |
+
#(len, 768)-> (1,len, 768)
|
| 107 |
+
sliceTensor = sliceTensor.unsqueeze(0)
|
| 108 |
+
|
| 109 |
+
mean = torch.mean(sliceTensor,dim=1,keepdim=True)
|
| 110 |
+
|
| 111 |
+
locationTensor[0][curr] = mean[0]
|
| 112 |
+
|
| 113 |
+
curr=curr+1
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
return locationTensor
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def MLearningFormInput(input):
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
tokenizer,model=getModel2()
|
| 127 |
+
|
| 128 |
+
tokens = tokenizer.encode(input, return_tensors="pt")
|
| 129 |
+
|
| 130 |
+
# ['[CLS]', 'Minneapolis','[SEP]','Saint','Paul','[SEP]','Du','##lut','##h','[SEP]']
|
| 131 |
+
# print(tokens)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
outputs = model(tokens, spatial_position_list_x=torch.zeros(tokens.shape), spatial_position_list_y=torch.zeros(tokens.shape))
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
# print(outputs.last_hidden_state)
|
| 138 |
+
|
| 139 |
+
# print(outputs.last_hidden_state.shape)
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
slicesIndex=getIndex(input)
|
| 143 |
+
|
| 144 |
+
# print(slicesIndex)
|
| 145 |
+
|
| 146 |
+
#tensor -> tensor
|
| 147 |
+
res= cutSlices(outputs.last_hidden_state, slicesIndex)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
return res
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def generate_human_readable(tokens,labels):
|
| 157 |
+
ret = []
|
| 158 |
+
for t,lab in zip(tokens,labels):
|
| 159 |
+
if t == '[SEP]':
|
| 160 |
+
continue
|
| 161 |
+
|
| 162 |
+
if t.startswith("##") :
|
| 163 |
+
assert len(ret) > 0
|
| 164 |
+
ret[-1] = ret[-1] + t.strip('##')
|
| 165 |
+
|
| 166 |
+
elif lab==2:
|
| 167 |
+
assert len(ret) > 0
|
| 168 |
+
ret[-1] = ret[-1] + " "+ t.strip('##')
|
| 169 |
+
else:
|
| 170 |
+
ret.append(t)
|
| 171 |
+
|
| 172 |
+
return ret
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def getLocationName(input_sentence):
|
| 176 |
+
# Model name from Hugging Face model hub
|
| 177 |
+
tokenizer, model= getModel1()
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
# Tokenize input sentence
|
| 181 |
+
tokens = tokenizer.encode(input_sentence, return_tensors="pt")
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
# Pass tokens through the model
|
| 185 |
+
outputs = model(tokens)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
# Retrieve predicted labels for each token
|
| 189 |
+
predicted_labels = torch.argmax(outputs.logits, dim=2)
|
| 190 |
+
|
| 191 |
+
predicted_labels = predicted_labels.detach().cpu().numpy()
|
| 192 |
+
|
| 193 |
+
# "id2label": { "0": "O", "1": "B-Topo", "2": "I-Topo" }
|
| 194 |
+
|
| 195 |
+
predicted_labels = [model.config.id2label[label] for label in predicted_labels[0]]
|
| 196 |
+
|
| 197 |
+
predicted_labels = torch.argmax(outputs.logits, dim=2)
|
| 198 |
+
|
| 199 |
+
query_tokens = tokens[0][torch.where(predicted_labels[0] != 0)[0]]
|
| 200 |
+
|
| 201 |
+
query_labels = predicted_labels[0][torch.where(predicted_labels[0] != 0)[0]]
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
human_readable = generate_human_readable(tokenizer.convert_ids_to_tokens(query_tokens), query_labels)
|
| 205 |
+
|
| 206 |
+
return human_readable
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def search_geonames(toponym, df):
|
| 211 |
+
# GeoNames API endpoint
|
| 212 |
+
api_endpoint = "http://api.geonames.org/searchJSON"
|
| 213 |
+
|
| 214 |
+
username = "zekun"
|
| 215 |
+
|
| 216 |
+
print(toponym)
|
| 217 |
+
|
| 218 |
+
params = {
|
| 219 |
+
'q': toponym,
|
| 220 |
+
'username': username,
|
| 221 |
+
'maxRows':10
|
| 222 |
+
}
|
| 223 |
+
|
| 224 |
+
response = requests.get(api_endpoint, params=params)
|
| 225 |
+
data = response.json()
|
| 226 |
+
|
| 227 |
+
result = []
|
| 228 |
+
|
| 229 |
+
lat=[]
|
| 230 |
+
lon=[]
|
| 231 |
+
|
| 232 |
+
if 'geonames' in data:
|
| 233 |
+
for place_info in data['geonames']:
|
| 234 |
+
latitude = float(place_info.get('lat', 0.0))
|
| 235 |
+
longitude = float(place_info.get('lng', 0.0))
|
| 236 |
+
|
| 237 |
+
lat.append(latitude)
|
| 238 |
+
lon.append(longitude)
|
| 239 |
+
|
| 240 |
+
print(latitude)
|
| 241 |
+
print(longitude)
|
| 242 |
+
|
| 243 |
+
# getNeighborsDistance
|
| 244 |
+
|
| 245 |
+
id = place_info.get('geonameId', '')
|
| 246 |
+
|
| 247 |
+
print(id)
|
| 248 |
+
|
| 249 |
+
global dataset
|
| 250 |
+
res = get50Neigbors(id, dataset, k=50)
|
| 251 |
+
result.append(res)
|
| 252 |
+
# candidate_places.append({
|
| 253 |
+
# 'name': place_info.get('name', ''),
|
| 254 |
+
# 'country': place_info.get('countryName', ''),
|
| 255 |
+
# 'latitude': latitude,
|
| 256 |
+
# 'longitude': longitude,
|
| 257 |
+
|
| 258 |
+
# })
|
| 259 |
+
print(res)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
df['lat'] = lat
|
| 263 |
+
df['lon'] = lon
|
| 264 |
+
result = torch.cat(result, dim=1).detach().numpy()
|
| 265 |
+
return result
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def get50Neigbors(locationID, dataset, k=50):
|
| 270 |
+
|
| 271 |
+
print("neighbor part----------------------------------------------------------------")
|
| 272 |
+
|
| 273 |
+
input_row = dataset.loc[dataset['GeonameID'] == locationID].iloc[0]
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
lat, lon, geohash,name = input_row['Latitude'], input_row['Longitude'], input_row['Geohash'], input_row['Name']
|
| 277 |
+
|
| 278 |
+
filtered_dataset = dataset.loc[dataset['Geohash'].str.startswith(geohash[:7])].copy()
|
| 279 |
+
|
| 280 |
+
filtered_dataset['distance'] = filtered_dataset.apply(
|
| 281 |
+
lambda row: haversine((lat, lon), (row['Latitude'], row['Longitude']), Unit.KILOMETERS),
|
| 282 |
+
axis=1
|
| 283 |
+
).copy()
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
print("neighbor search end----------------------------------------------------------------")
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
filtered_dataset = filtered_dataset.sort_values(by='distance')
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
nearest_neighbors = filtered_dataset.head(k)[['Name']]
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
neighbors=nearest_neighbors.values.tolist()
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
tokenizer, model= getModel1_0()
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
sep_token_id = tokenizer.convert_tokens_to_ids(tokenizer.sep_token)
|
| 304 |
+
cls_token_id = tokenizer.convert_tokens_to_ids(tokenizer.cls_token)
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
neighbor_token_list = []
|
| 308 |
+
neighbor_token_list.append(cls_token_id)
|
| 309 |
+
|
| 310 |
+
target_token=tokenizer.convert_tokens_to_ids(tokenizer.tokenize(name))
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
for neighbor in neighbors:
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
neighbor_token = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(neighbor[0]))
|
| 318 |
+
neighbor_token_list.extend(neighbor_token)
|
| 319 |
+
neighbor_token_list.append(sep_token_id)
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
# print(tokenizer.convert_ids_to_tokens(neighbor_token_list))
|
| 323 |
+
|
| 324 |
+
#--------------------------------------------
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
tokens = torch.Tensor(neighbor_token_list).unsqueeze(0).long()
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
# input "new neighbor sentence"-> model -> output
|
| 331 |
+
outputs = model(tokens, spatial_position_list_x=torch.zeros(tokens.shape), spatial_position_list_y=torch.zeros(tokens.shape))
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
# print(outputs.last_hidden_state)
|
| 336 |
+
|
| 337 |
+
# print(outputs.last_hidden_state.shape)
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
targetIndex=list(range(1, len(target_token)+1))
|
| 341 |
+
|
| 342 |
+
# #tensor -> tensor
|
| 343 |
+
# get (1, len(target_token), 768) -> (1, 1, 768)
|
| 344 |
+
res=cutSlices(outputs.last_hidden_state, [targetIndex])
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
print("neighbor end----------------------------------------------------------------")
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
return res
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def cosine_similarity(target_feature, candidate_feature):
|
| 356 |
+
|
| 357 |
+
target_feature = target_feature.squeeze()
|
| 358 |
+
candidate_feature = candidate_feature.squeeze()
|
| 359 |
+
|
| 360 |
+
dot_product = torch.dot(target_feature, candidate_feature)
|
| 361 |
+
|
| 362 |
+
target = torch.norm(target_feature)
|
| 363 |
+
candidate = torch.norm(candidate_feature)
|
| 364 |
+
|
| 365 |
+
similarity = dot_product / (target * candidate)
|
| 366 |
+
|
| 367 |
+
return similarity.item()
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
@st.cache_data
|
| 371 |
+
|
| 372 |
+
def getCSV():
|
| 373 |
+
dataset = pd.read_csv('geohash.csv')
|
| 374 |
+
return dataset
|
| 375 |
+
|
| 376 |
+
@st.cache_data
|
| 377 |
+
|
| 378 |
+
def getModel1():
|
| 379 |
+
# Model name from Hugging Face model hub
|
| 380 |
+
model_name = "zekun-li/geolm-base-toponym-recognition"
|
| 381 |
+
|
| 382 |
+
# Load tokenizer and model
|
| 383 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 384 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
| 385 |
+
|
| 386 |
+
return tokenizer,model
|
| 387 |
+
|
| 388 |
+
def getModel1_0():
|
| 389 |
+
# Model name from Hugging Face model hub
|
| 390 |
+
model_name = "zekun-li/geolm-base-toponym-recognition"
|
| 391 |
+
|
| 392 |
+
# Load tokenizer and model
|
| 393 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 394 |
+
model = GeoLMModel.from_pretrained(model_name)
|
| 395 |
+
return tokenizer,model
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
def getModel2():
|
| 400 |
+
|
| 401 |
+
model_name = "zekun-li/geolm-base-cased"
|
| 402 |
+
|
| 403 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 404 |
+
|
| 405 |
+
model = GeoLMModel.from_pretrained(model_name)
|
| 406 |
+
|
| 407 |
+
return tokenizer,model
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
def showing(df):
|
| 411 |
+
|
| 412 |
+
m = folium.Map(location=[df['lat'].mean(), df['lon'].mean()], zoom_start=5)
|
| 413 |
+
|
| 414 |
+
size_scale = 100
|
| 415 |
+
color_scale = 255
|
| 416 |
+
for i in range(len(df)):
|
| 417 |
+
lat, lon, prob = df.iloc[i]['lat'], df.iloc[i]['lon'], df.iloc[i]['prob']
|
| 418 |
+
|
| 419 |
+
size = int(prob**2 * size_scale )
|
| 420 |
+
color = int(prob**2 * color_scale)
|
| 421 |
+
|
| 422 |
+
folium.CircleMarker(
|
| 423 |
+
location=[lat, lon],
|
| 424 |
+
radius=size,
|
| 425 |
+
color=f'#{color:02X}0000',
|
| 426 |
+
fill=True,
|
| 427 |
+
fill_color=f'#{color:02X}0000'
|
| 428 |
+
).add_to(m)
|
| 429 |
+
|
| 430 |
+
m.save("map.html")
|
| 431 |
+
|
| 432 |
+
with open("map.html", "r", encoding="utf-8") as f:
|
| 433 |
+
map_html = f.read()
|
| 434 |
+
|
| 435 |
+
st.components.v1.html(map_html, height=600)
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
def mapping(selected_place,locations, sentence_info):
|
| 439 |
+
location_index = locations.index(selected_place)
|
| 440 |
+
print(location_index)
|
| 441 |
+
|
| 442 |
+
df = pd.DataFrame()
|
| 443 |
+
|
| 444 |
+
# get same name for "Beijing" in geonames
|
| 445 |
+
same_name_embedding=search_geonames(selected_place, df)
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
sim_matrix=[]
|
| 449 |
+
print(sim_matrix)
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
print("calculate similarities-----------------------------------")
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
same_name_embedding=torch.tensor(same_name_embedding)
|
| 456 |
+
# loop each "Beijing"
|
| 457 |
+
for i in range(same_name_embedding.size(1)):
|
| 458 |
+
print((sentence_info[:, location_index, :]).shape)
|
| 459 |
+
print((same_name_embedding[:, i, :]).shape)
|
| 460 |
+
|
| 461 |
+
similarities = cosine_similarity(sentence_info[:, location_index, :], same_name_embedding[:, i, :])
|
| 462 |
+
sim_matrix.append(similarities)
|
| 463 |
+
|
| 464 |
+
# print("Cosine Similarity Matrix:")
|
| 465 |
+
# print(sim_matrix)
|
| 466 |
+
|
| 467 |
+
def sigmoid(x):
|
| 468 |
+
return 1 / (1 + np.exp(-x))
|
| 469 |
+
|
| 470 |
+
prob_matrix = sigmoid(np.array(sim_matrix))
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
print("calculate similarities end ----------------------------------")
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
df['prob'] = prob_matrix
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
print(df)
|
| 481 |
+
|
| 482 |
+
showing(df)
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
|
| 486 |
+
def show_on_map():
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
input = st.text_area("Enter a sentence:", height=200)
|
| 491 |
+
|
| 492 |
+
st.button("Submit")
|
| 493 |
+
|
| 494 |
+
sentence_info= MLearningFormInput(input)
|
| 495 |
+
|
| 496 |
+
print("sentence info: ")
|
| 497 |
+
print(sentence_info)
|
| 498 |
+
print(sentence_info.shape)
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
# input: a sentence -> output : locations
|
| 502 |
+
locations=getLocationName(input)
|
| 503 |
+
|
| 504 |
+
selected_place = st.selectbox("Select a location:", locations)
|
| 505 |
+
|
| 506 |
+
if selected_place is not None:
|
| 507 |
+
|
| 508 |
+
mapping(selected_place, locations, sentence_info)
|
| 509 |
+
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
if __name__ == "__main__":
|
| 514 |
+
|
| 515 |
+
|
| 516 |
+
dataset = getCSV()
|
| 517 |
+
|
| 518 |
+
show_on_map()
|
| 519 |
+
|
| 520 |
+
|
| 521 |
+
# # just for testing, hidding.............................................................
|
| 522 |
+
|
| 523 |
+
# #len: 80
|
| 524 |
+
# input= 'Minneapolis, officially the City of Minneapolis, is a city in the state of Minnesota and the county seat of Hennepin County. making it the largest city in Minnesota and the 46th-most-populous in the United States. Nicknamed the "City of Lakes", Minneapolis is abundant in water, with thirteen lakes, wetlands, the Mississippi River, creeks, and waterfalls.'
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
# 1. input: a sentence -> output: tensor (1,num_locations,768)
|
| 528 |
+
# sentence_info= MLearningFormInput(input)
|
| 529 |
+
|
| 530 |
+
# print("sentence info: ")
|
| 531 |
+
# print(sentence_info)
|
| 532 |
+
# print(sentence_info.shape)
|
| 533 |
+
|
| 534 |
+
|
| 535 |
+
|
| 536 |
+
# # input: a sentence -> output : locations
|
| 537 |
+
# locations=getLocationName(input)
|
| 538 |
+
|
| 539 |
+
# print(locations)
|
| 540 |
+
|
| 541 |
+
# j=0
|
| 542 |
+
|
| 543 |
+
|
| 544 |
+
# k=0
|
| 545 |
+
|
| 546 |
+
# for location in locations:
|
| 547 |
+
|
| 548 |
+
# if k==0:
|
| 549 |
+
# # input: locations -> output: search in geoname(get top 10 items) -> loop each item -> num_location x 10 x (1,1,768)
|
| 550 |
+
# same_name_embedding=search_geonames(location)
|
| 551 |
+
|
| 552 |
+
# sim_matrix=[]
|
| 553 |
+
# print(sim_matrix)
|
| 554 |
+
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
|
| 559 |
+
# same_name_embedding=torch.tensor(same_name_embedding)
|
| 560 |
+
# # loop each "Beijing"
|
| 561 |
+
# for i in range(same_name_embedding.size(1)):
|
| 562 |
+
# # print((sentence_info[:, j, :]).shape)
|
| 563 |
+
# # print((same_name_embedding[:, i, :]).shape)
|
| 564 |
+
|
| 565 |
+
# similarities = cosine_similarity(sentence_info[:, j, :], same_name_embedding[:, i, :])
|
| 566 |
+
# sim_matrix.append(similarities)
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
|
| 570 |
+
# j=j+1
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
# print("Cosine Similarity Matrix:")
|
| 574 |
+
# print(sim_matrix)
|
| 575 |
+
|
| 576 |
+
# k=1
|
| 577 |
+
|
| 578 |
+
# else:
|
| 579 |
+
# break
|
geohash.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5a20fbc0326c65920428a298f1674f3b2046f3bafc0c38f3bb417ab15774aa0b
|
| 3 |
+
size 677244066
|