zeerd commited on
Commit
a06a315
·
verified ·
1 Parent(s): dbce24f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -11
app.py CHANGED
@@ -1,19 +1,12 @@
1
  import streamlit as st
2
  from langchain_community.llms import HuggingFaceHub
3
  from langchain_community.embeddings import SentenceTransformerEmbeddings
4
- from langchain.vectorstores import FAISS
5
  import numpy as np
6
 
7
  # gemma = 'google/gemma-7b-it';
8
  gemma = 'google/recurrentgemma-2b-it';
9
 
10
- # 1. 初始化 Gemma 模型
11
- try:
12
- llm = HuggingFaceHub(repo_id=gemma, model_kwargs={"temperature": 0.5, "max_length": 512})
13
- except Exception as e:
14
- st.error(f"Gemma 模型加载失败:{e}")
15
- st.stop()
16
-
17
  # 2. 准备知识库数据 (示例)
18
  knowledge_base = [
19
  "Gemma 是 Google 开发的大型语言模型。",
@@ -32,7 +25,13 @@ except Exception as e:
32
  st.stop()
33
 
34
  # 4. 问答函数
35
- def answer_question(question):
 
 
 
 
 
 
36
  try:
37
  question_embedding = embeddings.embed_query(question)
38
  question_embedding_np = " ".join(map(str, question_embedding))
@@ -53,13 +52,16 @@ def answer_question(question):
53
  # 5. Streamlit 界面
54
  st.title("Gemma 知识库问答系统")
55
 
56
- question = st.text_area("请输入问题", height=100)
 
 
 
57
 
58
  if st.button("提交"):
59
  if not question:
60
  st.warning("请输入问题!")
61
  else:
62
  with st.spinner("正在查询..."):
63
- answer = answer_question(question)
64
  st.write("答案:")
65
  st.write(answer)
 
1
  import streamlit as st
2
  from langchain_community.llms import HuggingFaceHub
3
  from langchain_community.embeddings import SentenceTransformerEmbeddings
4
+ from langchain_community.vectorstores import FAISS
5
  import numpy as np
6
 
7
  # gemma = 'google/gemma-7b-it';
8
  gemma = 'google/recurrentgemma-2b-it';
9
 
 
 
 
 
 
 
 
10
  # 2. 准备知识库数据 (示例)
11
  knowledge_base = [
12
  "Gemma 是 Google 开发的大型语言模型。",
 
25
  st.stop()
26
 
27
  # 4. 问答函数
28
+ def answer_question(gemma, temperature, max_length, question):
29
+ # 1. 初始化 Gemma 模型
30
+ try:
31
+ llm = HuggingFaceHub(repo_id=gemma, model_kwargs={"temperature": temperature, "max_length": max_length})
32
+ except Exception as e:
33
+ st.error(f"Gemma 模型加载失败:{e}")
34
+ st.stop()
35
  try:
36
  question_embedding = embeddings.embed_query(question)
37
  question_embedding_np = " ".join(map(str, question_embedding))
 
52
  # 5. Streamlit 界面
53
  st.title("Gemma 知识库问答系统")
54
 
55
+ gemma = st.text_area("模型", "google/gemma-7b-it", height=50)
56
+ temperature = st.text_area("temperature", "1.0", height=50)
57
+ max_length = st.text_area("max_length", "1024", height=50)
58
+ question = st.text_area("请输入问题", "Gemma 有哪些特点?", height=100)
59
 
60
  if st.button("提交"):
61
  if not question:
62
  st.warning("请输入问题!")
63
  else:
64
  with st.spinner("正在查询..."):
65
+ answer = answer_question(gemma, temperature, max_length, question)
66
  st.write("答案:")
67
  st.write(answer)