Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,8 @@ import streamlit as st
|
|
2 |
from langchain_community.llms import HuggingFaceHub
|
3 |
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
4 |
from langchain_community.vectorstores import FAISS
|
5 |
-
import numpy as np
|
6 |
|
7 |
-
#
|
8 |
-
gemma = 'google/recurrentgemma-2b-it';
|
9 |
-
|
10 |
-
# 2. 准备知识库数据 (示例)
|
11 |
knowledge_base = [
|
12 |
"Gemma 是 Google 开发的大型语言模型。",
|
13 |
"Gemma 具有强大的自然语言处理能力。",
|
@@ -16,7 +12,7 @@ knowledge_base = [
|
|
16 |
"Gemma 支持多种语言。"
|
17 |
]
|
18 |
|
19 |
-
#
|
20 |
try:
|
21 |
embeddings = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
|
22 |
db = FAISS.from_texts(knowledge_base, embeddings)
|
@@ -24,24 +20,27 @@ except Exception as e:
|
|
24 |
st.error(f"向量数据库构建失败:{e}")
|
25 |
st.stop()
|
26 |
|
27 |
-
#
|
28 |
def answer_question(gemma, temperature, max_length, question):
|
29 |
-
#
|
30 |
try:
|
31 |
llm = HuggingFaceHub(repo_id=gemma, model_kwargs={"temperature": temperature, "max_length": max_length})
|
32 |
except Exception as e:
|
33 |
st.error(f"Gemma 模型加载失败:{e}")
|
34 |
st.stop()
|
|
|
|
|
35 |
try:
|
36 |
question_embedding = embeddings.embed_query(question)
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
42 |
|
43 |
prompt = f"请根据以下知识库回答问题:\n{context}\n问题:{question}"
|
44 |
-
print(prompt)
|
45 |
|
46 |
answer = llm(prompt)
|
47 |
return answer
|
@@ -53,8 +52,8 @@ def answer_question(gemma, temperature, max_length, question):
|
|
53 |
st.title("Gemma 知识库问答系统")
|
54 |
|
55 |
gemma = st.selectbox("模型", ("google/gemma-2-9b-it", "google/gemma-2-2b-it", "google/recurrentgemma-2b-it"), 2)
|
56 |
-
temperature = st.
|
57 |
-
max_length = st.
|
58 |
question = st.text_area("请输入问题", "Gemma 有哪些特点?")
|
59 |
|
60 |
if st.button("提交"):
|
@@ -62,6 +61,6 @@ if st.button("提交"):
|
|
62 |
st.warning("请输入问题!")
|
63 |
else:
|
64 |
with st.spinner("正在查询..."):
|
65 |
-
answer = answer_question(gemma, temperature, max_length, question)
|
66 |
st.write("答案:")
|
67 |
st.write(answer)
|
|
|
2 |
from langchain_community.llms import HuggingFaceHub
|
3 |
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
4 |
from langchain_community.vectorstores import FAISS
|
|
|
5 |
|
6 |
+
# 1. 准备知识库数据 (示例)
|
|
|
|
|
|
|
7 |
knowledge_base = [
|
8 |
"Gemma 是 Google 开发的大型语言模型。",
|
9 |
"Gemma 具有强大的自然语言处理能力。",
|
|
|
12 |
"Gemma 支持多种语言。"
|
13 |
]
|
14 |
|
15 |
+
# 2. 构建向量数据库 (如果需要,仅构建一次)
|
16 |
try:
|
17 |
embeddings = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
|
18 |
db = FAISS.from_texts(knowledge_base, embeddings)
|
|
|
20 |
st.error(f"向量数据库构建失败:{e}")
|
21 |
st.stop()
|
22 |
|
23 |
+
# 3. 问答函数
|
24 |
def answer_question(gemma, temperature, max_length, question):
|
25 |
+
# 4. 初始化 Gemma 模型
|
26 |
try:
|
27 |
llm = HuggingFaceHub(repo_id=gemma, model_kwargs={"temperature": temperature, "max_length": max_length})
|
28 |
except Exception as e:
|
29 |
st.error(f"Gemma 模型加载失败:{e}")
|
30 |
st.stop()
|
31 |
+
|
32 |
+
# 5. 获取答案
|
33 |
try:
|
34 |
question_embedding = embeddings.embed_query(question)
|
35 |
+
question_embedding_str = " ".join(map(str, question_embedding))
|
36 |
+
print('question_embedding: ' + question_embedding_str)
|
37 |
+
docs_and_scores = db.similarity_search_with_score(question_embedding_str)
|
38 |
+
|
39 |
+
context = "\n".join([doc.page_content for doc, _ in docs_and_scores])
|
40 |
+
print('context: ' + context)
|
41 |
|
42 |
prompt = f"请根据以下知识库回答问题:\n{context}\n问题:{question}"
|
43 |
+
print('prompt: ' + prompt)
|
44 |
|
45 |
answer = llm(prompt)
|
46 |
return answer
|
|
|
52 |
st.title("Gemma 知识库问答系统")
|
53 |
|
54 |
gemma = st.selectbox("模型", ("google/gemma-2-9b-it", "google/gemma-2-2b-it", "google/recurrentgemma-2b-it"), 2)
|
55 |
+
temperature = st.text_input("temperature", "1.0")
|
56 |
+
max_length = st.text_input("max_length", "1024")
|
57 |
question = st.text_area("请输入问题", "Gemma 有哪些特点?")
|
58 |
|
59 |
if st.button("提交"):
|
|
|
61 |
st.warning("请输入问题!")
|
62 |
else:
|
63 |
with st.spinner("正在查询..."):
|
64 |
+
answer = answer_question(gemma, float(temperature), int(max_length), question)
|
65 |
st.write("答案:")
|
66 |
st.write(answer)
|